Optimal Insurance Design under Rank-Dependent Expected Utility

Jia-an YAN

with Xuedong He, Carole Bernard, and Xun Yu Zhou
Academy of Math. \& Systems Sci.
Chinese Academy of Sciences, China

Conference in honor of Freddy Delbaen, ETH September 28, 2012

1. Insurance Design under Rank-Dependent Expected Utility
2. Models: Indemnity Frame and Retention Frame
3. Quantile Formulation
4. A One-dimensional Optimization Problem
5. Discussion and Comparisons
6. Numerical Examples
7. Conclusion

Insurance Design under Rank Dependent Expected Utility

- An insured faces a random loss X. He can purchase an insurance contract from an insurance company (i.e. insurer). He pays a premium π and obtains an indemnity $Y=I(X)$, where I is so-called indemnity function with $0 \leq I(x) \leq x$.

Insurance Design under Rank Dependent Expected Utility

- An insured faces a random loss X. He can purchase an insurance contract from an insurance company (i.e. insurer). He pays a premium π and obtains an indemnity $Y=I(X)$, where I is so-called indemnity function with $0 \leq I(x) \leq x$.
- Example (deductible insurance contract): $I(X)=(X-C)_{+}$for some constant level $C>0$.

Insurance Design under RDEU (Cont'd)

- The insured chooses premium π and indemnity function I to maximizes the rank-dependent expected utility (RDEU) of his final wealth W :

$$
V^{\text {rdeu }}(W)=(T \circ \mathbb{P})(U(W))
$$

- where $W=W_{0}-X+I(X)-\pi, W_{0}$ is the initial wealth; U is a utility function, T is a probability distortion function, and $T \circ \mathbb{P}(U(W))$ is the Choquet integral of $U(W)$ w.r.t. $T \circ \mathbb{P}$.
- The insured chooses premium π and indemnity function I to maximizes the rank-dependent expected utility (RDEU) of his final wealth W :

$$
V^{\text {rdeu }}(W)=(T \circ \mathbb{P})(U(W))
$$

- where $W=W_{0}-X+I(X)-\pi, W_{0}$ is the initial wealth; U is a utility function, T is a probability distortion function, and $T \circ \mathbb{P}(U(W))$ is the Choquet integral of $U(W)$ w.r.t. $T \circ \mathbb{P}$.

Insurance Design under RDEU (Cont'd)

- It can be written explicitly as

$$
V^{r d u}(W)=\int U(x) d\left[-T\left(1-F_{W}(x)\right)\right]
$$

- Empirical evidence supports a concave utility function and a reversed S-shaped probability distortion function: large and small payoffs occurring with small probability are overweighted.

Insurance Design under RDEU (Cont'd)

- It can be written explicitly as

$$
V^{r d u}(W)=\int U(x) d\left[-T\left(1-F_{W}(x)\right)\right]
$$

- Empirical evidence supports a concave utility function and a reversed S-shaped probability distortion function: large and small payoffs occurring with small probability are overweighted.

A Reversed S-shaped Distortion Function

- To solve the problem, we first fixe a premium π and find the optimal indemnity function I, and then find the optimal premium π^{*}. As the second step is easy, we focus on the first step. Denote by \mathcal{I} the set of all indemnity functions. For a fixed premium π, the insured's optimization problem can be written as

- To solve the problem, we first fixe a premium π and find the optimal indemnity function I, and then find the optimal premium π^{*}. As the second step is easy, we focus on the first step.
- Denote by \mathcal{I} the set of all indemnity functions. For a fixed premium π, the insured's optimization problem can be written as

$$
\max _{I(\cdot) \in \mathcal{I}} \quad V^{r d u}\left(W_{0}-X+I(X)-\pi\right)
$$

subject to $(1+\rho) \mathbb{E}[I(X)] \leq \pi$,

- where $\rho>0$ is the insurer's safety loading.
- To solve the problem, we first fixe a premium π and find the optimal indemnity function I, and then find the optimal premium π^{*}. As the second step is easy, we focus on the first step.
- Denote by \mathcal{I} the set of all indemnity functions. For a fixed premium π, the insured's optimization problem can be written as

$$
\begin{aligned}
\max _{I(\cdot) \in \mathcal{I}} & V^{r d u}\left(W_{0}-X+I(X)-\pi\right) \\
\text { subject to } & (1+\rho) \mathbb{E}[I(X)] \leq \pi,
\end{aligned}
$$

- where $\rho>0$ is the insurer's safety loading.

Literature

- Classical works in the EUT framework: Arrow(1963, 1971), Raviv (1979), Gollier(1996), and Gollier-Sch (1996)
- Related works in the RDEU framework: Chateauneuf et al. (2000), Dana and Scarsini(2007), Carlier and Dana (2011), Sung et al. (2011), and Carlier et al (2008) All the existing works distartion assume a reversed S-shaped distortion function

Literature

- Classical works in the EUT framework: Arrow(1963, 1971), Raviv (1979), Gollier(1996), and Gollier-Sch (1996)
- Related works in the RDEU framework:

Chateauneuf et al. (2000), Dana and Scarsini(2007), Carlier and Dana (2011), Sung et al. (2011), and Carlier et al. (2008).

- All the existing works assume that probability distortion functions are convex or concave. We assume a reversed S-shaped distortion function. Our Main finding: losses above a deductible, also fully insures small losses
- Classical works in the EUT framework: Arrow(1963, 1971), Raviv (1979), Gollier(1996), and Gollier-Sch (1996)
- Related works in the RDEU framework:

Chateauneuf et al. (2000), Dana and Scarsini(2007), Carlier and Dana (2011), Sung et al. (2011), and Carlier et al. (2008).

- All the existing works assume that probability distortion functions are convex or concave. We assume a reversed S-shaped distortion function.
- Our Main finding: In addition to insuring large losses above a deductible, the optimal contract also fully insures small losses.
- Classical works in the EUT framework: Arrow(1963, 1971), Raviv (1979), Gollier(1996), and Gollier-Sch (1996)
- Related works in the RDEU framework:

Chateauneuf et al. (2000), Dana and Scarsini(2007), Carlier and Dana (2011), Sung et al. (2011), and Carlier et al. (2008).

- All the existing works assume that probability distortion functions are convex or concave. We assume a reversed S-shaped distortion function.
- Our Main finding: In addition to insuring large losses above a deductible, the optimal contract also fully insures small losses.

Retention Functions

- We assume the insured's loss is bounded by M.
- In order to apply the quantile formulation
technique, we consider the retention,
$R(X):=X-I(X)$, i.e., the part of loss retained
by the insured, where
$R(x)=x-I(x), x \in[0, M]$ is the so-called
retention function.
- We denote by \mathcal{R}, the set of all retention
functions.
- We assume the insured's loss is bounded by M.
- In order to apply the quantile formulation technique, we consider the retention, $R(X):=X-I(X)$, i.e., the part of loss retained by the insured, where $R(x)=x-I(x), x \in[0, M]$ is the so-called retention function.
- We denote by \mathcal{R}, the set of all retention functions.
- We assume the insured's loss is bounded by M.
- In order to apply the quantile formulation technique, we consider the retention, $R(X):=X-I(X)$, i.e., the part of loss retained by the insured, where
$R(x)=x-I(x), x \in[0, M]$ is the so-called retention function.
- We denote by \mathcal{R}, the set of all retention functions.

Problem 2.2: Optimal Retention Design

- We then reformulate Optimal Indemnity Design in terms of the retention function:

$$
\begin{array}{ll}
\max _{R(\cdot) \in \mathcal{R}} & V^{r d u}\left(W_{0}-R(X)-\pi\right) \\
\text { subject to } & \mathbb{E}[R(X)] \geq \Delta,
\end{array}
$$

where

$$
\Delta:=\mathbb{E}[X]-\frac{\pi}{1+\rho} .
$$

Assumptions

- Assumption 2.1 The loss X has no atom, i.e., the CDF of X is continuous. Moreover, its quantile function $F_{X}^{-1}:(0,1) \rightarrow \mathbb{R}_{+}$is continuous. increasing and is continuously differentiable on $(0, \infty)$. Furthermore, $U^{\prime}(\cdot)$ is strictly decreasing on $(0, \infty)$

Assumptions

- Assumption 2.1 The loss X has no atom, i.e., the CDF of X is continuous. Moreover, its quantile function $F_{X}^{-1}:(0,1) \rightarrow \mathbb{R}_{+}$is continuous.
- Assumption 2.2 [Concave Utility] U is strictly increasing and is continuously differentiable on $(0, \infty)$. Furthermore, $U^{\prime}(\cdot)$ is strictly decreasing on $(0, \infty)$.
- Assumption 2.3 [Reversed S-shaped Distortion] The distortion function T is continuously differentiable in the interior, and there exists

Assumptions

- Assumption 2.1 The loss X has no atom, i.e., the CDF of X is continuous. Moreover, its quantile function $F_{X}^{-1}:(0,1) \rightarrow \mathbb{R}_{+}$is continuous.
- Assumption 2.2 [Concave Utility] U is strictly increasing and is continuously differentiable on $(0, \infty)$. Furthermore, $U^{\prime}(\cdot)$ is strictly decreasing on $(0, \infty)$.
- Assumption 2.3 [Reversed S-shaped Distortion] The distortion function T is continuously differentiable in the interior, and there exists

Assumptions (Cont'd)

- $z_{0} \in(0,1)$ such that T^{\prime} is strictly decreasing on $\left(0, z_{0}\right)$ and strictly increasing on $\left(z_{0}, 1\right)$.
Furthermore, $T^{\prime}(0+):=\lim _{z \downharpoonleft 0} T^{\prime}(z)>1$ and $T^{\prime}(1-):=\lim _{z \uparrow 1} T^{\prime}(z)=+\infty$.
- The first part of Assumption 2.1 is crucial in order to use quantile formulation. The second part of Assumption 2.1 is of purely technical importance. Assumptions 2.2 and 2.3 lead to RDEU framework.

Assumptions (Cont'd)

- $z_{0} \in(0,1)$ such that T^{\prime} is strictly decreasing on $\left(0, z_{0}\right)$ and strictly increasing on ($z_{0}, 1$).
Furthermore, $T^{\prime}(0+):=\lim _{z \downarrow 0} T^{\prime}(z)>1$ and $T^{\prime}(1-):=\lim _{z \uparrow 1} T^{\prime}(z)=+\infty$.
- The first part of Assumption 2.1 is crucial in order to use quantile formulation. The second part of Assumption 2.1 is of purely technical importance. Assumptions 2.2 and 2.3 lead to RDEU framework.

Quantile Formulation

- First of all, we make a change-of-variable

$$
\begin{aligned}
V^{r d u} & \left(W_{0}-R(X)-\pi\right)=\int U(x) d\left[-T\left(1-F_{W_{0}-R(X)-\pi}(x)\right)\right] \\
& =\int_{0}^{1} U\left(F_{W_{0}-R(X)-\pi}^{-1}(z)\right) T^{\prime}(1-z) d z \\
& =\int_{0}^{1} U\left(W_{0}-\pi-F_{R(X)}^{-1}(1-z)\right) T^{\prime}(1-z) d z \\
& =\int_{0}^{1} U\left(W_{0}-\pi-F_{R(X)}^{-1}(z)\right) T^{\prime}(z) d z
\end{aligned}
$$

Quantile Formulation (Cont'd)

- Let us denote $G:=F_{R(X)}^{-1}$, the quantile function of $R(X)$. The previous calculations show that one can express the objective functional of the insured as a functional of G, which is concave in G, because the utility function U is concave.
- Intuitively, a reasonable retention functions should be non-decreasing. The following proposition shows that we can restrict ourselves to the retention functions in the form of $R(x)=G\left(F_{X}(x)\right)$ where $G(\cdot)$ is a quantile function.

Quantile Formulation (Cont'd)

- Let us denote $G:=F_{R(X)}^{-1}$, the quantile function of $R(X)$. The previous calculations show that one can express the objective functional of the insured as a functional of G, which is concave in G, because the utility function U is concave.
- Intuitively, a reasonable retention functions should be non-decreasing. The following proposition shows that we can restrict ourselves to the retention functions in the form of $R(x)=G\left(F_{X}(x)\right)$ where $G(\cdot)$ is a quantile function.

Quantile Formulation (Cont'd)

- Proposition 2.1 Under Assumption 2.1, for any feasible solution $R(\cdot)$ to Problem 2.2, $\tilde{R}(x):=F_{R(X)}^{-1}\left(F_{X}(x)\right)$ is also feasible with respect to Problem 2.2 and $\tilde{R}(X)$ has the same law as $R(X)$.

Quantile Formulation (Cont'd)

- Proposition 2.1 Under Assumption 2.1, for any feasible solution $R(\cdot)$ to Problem 2.2,
$\tilde{R}(x):=F_{R(X)}^{-1}\left(F_{X}(x)\right)$ is also feasible with
respect to Problem 2.2 and $\tilde{R}(X)$ has the same law as $R(X)$.
- For retention functions of the form
$R(x)=G\left(F_{X}(x)\right)$, the constraint
$0 \leq R(x) \leq x, x \in[0, M]$ is equivalent to
$0 \leq G(z) \leq F_{X}^{-1}(z), 0<z<1$.
- On the other hand, it is easy to see that $\mathbb{E}[R(X)] \geq \Delta$ is equivalent to

Quantile Formulation (Cont'd)

- Proposition 2.1 Under Assumption 2.1, for any feasible solution $R(\cdot)$ to Problem 2.2,
$\tilde{R}(x):=F_{R(X)}^{-1}\left(F_{X}(x)\right)$ is also feasible with
respect to Problem 2.2 and $\tilde{R}(X)$ has the same law as $R(X)$.
- For retention functions of the form
$R(x)=G\left(F_{X}(x)\right)$, the constraint
$0 \leq R(x) \leq x, x \in[0, M]$ is equivalent to
$0 \leq G(z) \leq F_{X}^{-1}(z), 0<z<1$.
- On the other hand, it is easy to see that $\mathbb{E}[R(X)] \geq \Delta$ is equivalent to $\int_{0}^{1} G(z) d z \geq \Delta$.

Quantile Formulation (Cont'd)

Proof Denote $Z:=F_{X}(X)$. Because X has no atom, Z is a uniform random variable on $[0,1]$. As a result, $\tilde{R}(X)=F_{R(X)}^{-1}(Z)$ has the same law as $R(X)$. Recalling that $R(x) \leq x, x \in[0, M]$, we immediately have

$$
\begin{array}{r}
F_{R(X)}^{-1}(z)=\inf \left\{s: F_{R(X)}(s) \geq z\right\}=\inf \{s: \operatorname{Pr}(R(X) \leq s) \geq z\} \\
\leq \inf \{s: \operatorname{Pr}(X \leq s) \geq z\}=F_{X}^{-1}(z)
\end{array}
$$

for any $z \in(0,1)$. It follows that $\tilde{R}(x) \leq F_{X}^{-1}\left(F_{X}(x)\right) \leq x, x \in[0, M]$.

- Hence, we can rewrite Problem 2.2 as the following problem, where the quantile function $G(\cdot)$ becomes the decision variable.

$$
\begin{aligned}
\underset{G(\cdot) \in \mathbb{G}}{\operatorname{Max}} V(G(\cdot)) & :=\int_{0}^{1} U\left(W_{0}-\pi-G(z)\right) T^{\prime}(z) d z, \\
\text { Subject to } & 0 \leq G(z) \leq F_{X}^{-1}(z), 0<z<1 \\
& \int_{0}^{1} G(z) d z \geq \Delta
\end{aligned}
$$

where \mathbb{G} is the set of all quantile functions.

Problem 2.4: Auxiliary Problem

- If G^{*} is the optimal quantile, then $R^{*}(X):=G^{*}\left(F_{X}(X)\right)$ is the optimal retention.
- We apply the Lagrange dual method to remove the second constraint in Problem 2.3.
problem

Problem 2.4: Auxiliary Problem

- If G^{*} is the optimal quantile, then $R^{*}(X):=G^{*}\left(F_{X}(X)\right)$ is the optimal retention.
- We apply the Lagrange dual method to remove the second constraint in Problem 2.3.
- Apply multiplier λ to the second constraint, leading to the following partially constrained problem
subject to
- If G^{*} is the optimal quantile, then
$R^{*}(X):=G^{*}\left(F_{X}(X)\right)$ is the optimal retention.
- We apply the Lagrange dual method to remove the second constraint in Problem 2.3.
- Apply multiplier λ to the second constraint, leading to the following partially constrained problem

$$
\begin{array}{cl}
\max _{G(\cdot) \in \mathbb{G}} V_{\lambda}(G(\cdot)) & :=\int_{0}^{1}\left[U\left(W_{0}-\pi-G(z)\right) T^{\prime}(z)+\lambda G(z)\right] d z-\lambda \Delta, \\
\text { subject to } & 0 \leq G(z) \leq F_{X}^{-1}(z), \quad 0<z<1 .
\end{array}
$$

- We first solve Problem 2.4 to find the optimal solution for any given multiplier λ.
- Ignoring all the constraints in Problem 2.4 for the present, we can derive the optimal solution to the problem by performing the pointwise optimization

max

for each fixed $0 \leq z \leq 1$.

Solving the Auxiliary Problem

- We first solve Problem 2.4 to find the optimal solution for any given multiplier λ.
- Ignoring all the constraints in Problem 2.4 for the present, we can derive the optimal solution to the problem by performing the pointwise optimization

$$
\max _{y}\left\{U\left(W_{0}-\pi-y\right) T^{\prime}(z)+\lambda(y-\Delta)\right\}
$$

for each fixed $0 \leq z \leq 1$.

Solving the Auxiliary Problem (Cont'd)

- The pointwise optimizer can be easily derived as follows:

$$
H_{\lambda}(z):=W_{0}-\pi-\left(U^{\prime}\right)^{-1}\left(\frac{\lambda}{T^{\prime}(z)}\right), \quad 0<z<1 .
$$

Here, we define $\left(U^{\prime}\right)^{-1}(y):=0$ for any $y>U^{\prime}(0+)$.

- Because of Assumption 2.2, $H_{\lambda}(\cdot)$ is strictly increasing on $\left(0, z_{0}\right)$ and strictly decreasing on $\left(z_{0}, 1\right)$

Solving the Auxiliary Problem (Cont'd)

- The pointwise optimizer can be easily derived as follows:

$$
H_{\lambda}(z):=W_{0}-\pi-\left(U^{\prime}\right)^{-1}\left(\frac{\lambda}{T^{\prime}(z)}\right), \quad 0<z<1 .
$$

Here, we define $\left(U^{\prime}\right)^{-1}(y):=0$ for any $y>U^{\prime}(0+)$.

- Because of Assumption 2.2, $H_{\lambda}(\cdot)$ is strictly increasing on $\left(0, z_{0}\right)$ and strictly decreasing on $\left(z_{0}, 1\right)$.
- If we take the constraint $0 \leq G(z) \leq F_{x}^{-1}(z), 0 \leq z \leq 1$ into account, we then need to consider the pointwise optimization:

$$
\max _{y \in\left[0, F_{x}^{-1}(z)\right]}\left\{U\left(W_{0}-\pi-y\right) T^{\prime}(z)+\lambda(y-\Delta)\right\}, 0<z<1,
$$

leading to the pointwise optimizer

$$
\widetilde{H}_{\lambda}(z):=\max \left(0, \min \left(H_{\lambda}(z), F_{X}^{-1}(z)\right)\right)
$$

- If $\widetilde{H}_{\lambda}(\cdot)$ were non-decreasing, then it would automatically become the optimal solution to Problem 2.4.
- However, $H_{\lambda}(\cdot)$ fails to be globally non-decreasing on $(0,1)$ because $H_{\lambda}(\cdot)$ is decreasing on $\left(z_{0}, 1\right)$. can modify a pointwise optimizer
- If $\widetilde{H}_{\lambda}(\cdot)$ were non-decreasing, then it would automatically become the optimal solution to Problem 2.4.
- However, $\widetilde{H}_{\lambda}(\cdot)$ fails to be globally non-decreasing on $(0,1)$ because $H_{\lambda}(\cdot)$ is decreasing on $\left(z_{0}, 1\right)$.
- Following the idea of He and Zhou (2012), we can modify a pointwise optimizer.
- If $\widetilde{H}_{\lambda}(\cdot)$ were non-decreasing, then it would automatically become the optimal solution to Problem 2.4.
- However, $\widetilde{H}_{\lambda}(\cdot)$ fails to be globally non-decreasing on $(0,1)$ because $H_{\lambda}(\cdot)$ is decreasing on $\left(z_{0}, 1\right)$.
- Following the idea of He and Zhou (2012), we can modify a pointwise optimizer.
- Because $H_{\lambda}(\cdot)$ is strictly decreasing and $F_{X}^{-1}(\cdot)$ is increasing on $\left(z_{0}, 1\right)$, the intersection point of $H_{\lambda}(\cdot)$ and $F_{X}^{-1}(\cdot)$ on $\left(z_{0}, 1\right)$, if it exists, is unique. Denote by $z_{2}(\lambda)$ this intersection point when it exists.
Otherw
$H_{\lambda}(z)$
$H_{\lambda}(z)$
- Because $H_{\lambda}(\cdot)$ is strictly decreasing and $F_{X}^{-1}(\cdot)$ is increasing on $\left(z_{0}, 1\right)$, the intersection point of $H_{\lambda}(\cdot)$ and $F_{X}^{-1}(\cdot)$ on $\left(z_{0}, 1\right)$, if it exists, is unique. Denote by $z_{2}(\lambda)$ this intersection point when it exists.
- Otherwise, define $z_{2}(\lambda)=1$ if

$$
\begin{aligned}
& H_{\lambda}(z)>F_{X}^{-1}(z), z_{0}<z<1 ; \text { and } z_{2}(\lambda)=z_{0} \text { if } \\
& H_{\lambda}(z)<F_{X}^{-1}(z), z_{0}<z<1 .
\end{aligned}
$$

- Because $H_{\lambda}(\cdot)$ is strictly decreasing and $F_{X}^{-1}(\cdot)$ is increasing on $\left(z_{0}, 1\right)$, the intersection point of $H_{\lambda}(\cdot)$ and $F_{X}^{-1}(\cdot)$ on $\left(z_{0}, 1\right)$, if it exists, is unique. Denote by $z_{2}(\lambda)$ this intersection point when it exists.
- Otherwise, define $z_{2}(\lambda)=1$ if

$$
\begin{aligned}
& H_{\lambda}(z)>F_{X}^{-1}(z), z_{0}<z<1 ; \text { and } z_{2}(\lambda)=z_{0} \text { if } \\
& H_{\lambda}(z)<F_{X}^{-1}(z), z_{0}<z<1
\end{aligned}
$$

- As a result, the pointwise optimizer $\widetilde{H}_{\lambda}(\cdot)$ is increasing on $\left(0, z_{2}(\lambda)\right)$ and decreasing on $\left(z_{2}(\lambda), 1\right)$.
- The following proposition is a key step toward the final result:
- Proposition 3.1 For any feasible solution $G(\cdot)$ of Problem 2.4, there exists $c \in\left(0, z_{2}(\lambda)\right]$ such that

satisfies (i) $V_{\lambda}(G(\cdot)) \leq V_{\lambda}\left(G^{c}(\cdot)\right)$; (ii) the equality holds if and only if $G(z)=G^{c}(z), 0<z<1$.
- The following proposition is a key step toward the final result:
- Proposition 3.1 For any feasible solution $G(\cdot)$ of Problem 2.4, there exists $c \in\left(0, z_{2}(\lambda)\right]$ such that

$$
G^{c}(z):=\widetilde{H}_{\lambda}(z) I_{z \leq c}+\widetilde{H}_{\lambda}(c) I_{z>c}, \quad 0<z<1
$$

satisfies (i) $V_{\lambda}(G(\cdot)) \leq V_{\lambda}\left(G^{c}(\cdot)\right)$; (ii) the equality holds if and only if
$G(z)=G^{c}(z), 0<z<1$.

- So any feasible solution to Problem 2.4 is dominated by a simple modification of H_{λ} parameterized by c.
- As a result, Problem 2.4 can be reduced to
where
- So any feasible solution to Problem 2.4 is dominated by a simple modification of \widetilde{H}_{λ} parameterized by c.
- As a result, Problem 2.4 can be reduced to

$$
\operatorname{Max}_{G(\cdot) \cdot \in \mathbb{S}_{\lambda}} V_{\lambda}(G(\cdot)):=\int_{0}^{1}\left[U\left(W_{0}-\pi-G(z)\right) T^{\prime}(z)+\lambda G(z)\right] d z-\lambda \Delta .
$$

where

$$
\begin{aligned}
\mathbb{S}_{\lambda}:= & \left\{G^{c}(\cdot) \mid G^{c}(z):=\widetilde{H}_{\lambda}(z) I_{z \leq c}+\widetilde{H}_{\lambda}(c) I_{z>c}, 0<z<1,\right. \text { for some } \\
& \left.c \in\left(0, z_{2}(\lambda)\right]\right\} .
\end{aligned}
$$

Graphic Demonstration

Graphic Demonstration (Cont'd)

A One-dimensional Optimization Problem

- For any $G^{c}(\cdot) \in \mathbb{S}_{\lambda}$, denote $f(c):=V_{\lambda}\left(G^{c}(\cdot)\right)$. Straightforward computation leads to

$$
f(c)=\int_{(0, c]} h(z) d \widetilde{H}_{\lambda}(z)+U\left(W_{0}-\pi-\widetilde{H}_{\lambda}(0+)\right)+\lambda \widetilde{H}_{\lambda}(0+)-\lambda \Delta,
$$

- where

A One-dimensional Optimization Problem

- For any $G^{c}(\cdot) \in \mathbb{S}_{\lambda}$, denote $f(c):=V_{\lambda}\left(G^{c}(\cdot)\right)$. Straightforward computation leads to

$$
f(c)=\int_{(0, c]} h(z) d \widetilde{H}_{\lambda}(z)+U\left(W_{0}-\pi-\widetilde{H}_{\lambda}(0+)\right)+\lambda \widetilde{H}_{\lambda}(0+)-\lambda \Delta,
$$

- where

$$
h(z):=\lambda(1-z)-(1-T(z)) U^{\prime}\left(W_{0}-\pi-\widetilde{H}_{\lambda}(z)\right), \quad 0<z<1 .
$$

- Because $\vec{H}_{\lambda}(z)$ is increasing in z when $\widetilde{H}_{\lambda}(z)>0$ and $z \leq z_{2}(\lambda)$, we can see that the optimal c^{*} for max $f(c)$ must be the root of $h(\cdot)$.

A One-dimensional Optimization Problem

- For any $G^{c}(\cdot) \in \mathbb{S}_{\lambda}$, denote $f(c):=V_{\lambda}\left(G^{c}(\cdot)\right)$. Straightforward computation leads to

$$
f(c)=\int_{(0, c]} h(z) d \widetilde{H}_{\lambda}(z)+U\left(W_{0}-\pi-\widetilde{H}_{\lambda}(0+)\right)+\lambda \widetilde{H}_{\lambda}(0+)-\lambda \Delta
$$

- where

$$
h(z):=\lambda(1-z)-(1-T(z)) U^{\prime}\left(W_{0}-\pi-\widetilde{H}_{\lambda}(z)\right), \quad 0<z<1 .
$$

- Because $\widetilde{H}_{\lambda}(z)$ is increasing in z when $\widetilde{H}_{\lambda}(z)>0$ and $z \leq z_{2}(\lambda)$, we can see that the optimal c^{*} for $\max _{0<c<z_{2}(\lambda)} f(c)$ must be the root of $h(\cdot)$.
- Explicit solutions (for three cases) can be found (illustrated graphically in the following).

- Explicit solutions (for three cases) can be found (illustrated graphically in the following).
- Case 1—Small $\lambda: \lambda \leq U^{\prime}\left(W_{0}-\pi\right) T^{\prime}(\hat{z})$.
- Explicit solutions (for three cases) can be found (illustrated graphically in the following).
- Case 1—Small $\lambda: \lambda \leq U^{\prime}\left(W_{0}-\pi\right) T^{\prime}(\hat{z})$.
- Case 2—Medium $\lambda: U^{\prime}\left(W_{0}-\pi\right) T^{\prime}(\hat{z})<\lambda<$ $U^{\prime}\left(W_{0}-\pi-F_{X}^{-1}(\hat{z})\right) T^{\prime}(\hat{z})$.
Case 3-Large
$\lambda \geq U^{\prime}\left(W_{0}-\pi-F_{X}^{-1}(\hat{z})\right) T^{\prime}(\hat{z})$.

A One-dimensional Optimization Problem (Cont'd)

- Explicit solutions (for three cases) can be found (illustrated graphically in the following).
- Case 1—Small $\lambda: \lambda \leq U^{\prime}\left(W_{0}-\pi\right) T^{\prime}(\hat{z})$.
- Case 2—Medium $\lambda: U^{\prime}\left(W_{0}-\pi\right) T^{\prime}(\hat{z})<\lambda<$ $U^{\prime}\left(W_{0}-\pi-F_{X}^{-1}(\hat{z})\right) T^{\prime}(\hat{z})$.
- Case 3-Large λ :
$\lambda \geq U^{\prime}\left(W_{0}-\pi-F_{X}^{-1}(\hat{z})\right) T^{\prime}(\hat{z})$.

Optimal Solution：Case 1—Small $\lambda($ Low $\pi)$

Optimal Solution：Case 2—Medium λ（Medium π ）

Optimal Solution：Case 3—Large λ（High π ）

Discussion and Comparisons

- Convex Distortions The optimal indemnity function is given by $I^{*}(x)=\left(x-F_{X}^{-1}\left(c^{*}\right)\right)_{+}$ where c^{*} is such that $\mathbb{E}\left[I^{*}(X)\right]=\frac{\pi}{1+\rho}$.
Concave Distortions The optimal indemnity function is given by

where $\lambda>0$ is such that $\mathbb{E}\left[I^{*}(X)\right]=\frac{\pi}{1+\rho}$.

Discussion and Comparisons

- Convex Distortions The optimal indemnity function is given by $I^{*}(x)=\left(x-F_{X}^{-1}\left(c^{*}\right)\right)_{+}$ where c^{*} is such that $\mathbb{E}\left[I^{*}(X)\right]=\frac{\pi}{1+\rho}$.
- Concave Distortions The optimal indemnity function is given by

$$
I^{*}(x)=\left[x-\max \left(W_{0}-\pi-\left(U^{\prime}\right)^{-1}\left(\frac{\lambda}{T^{\prime}\left(F_{X}(x)\right)}\right), 0\right)\right]_{+},
$$

where $\lambda>0$ is such that $\mathbb{E}\left[I^{*}(X)\right]=\frac{\pi}{1+\rho}$.

Discussion and Comparisons (Cont'd)

Table: Summary of the results when U is concave

	Convex Distortion	Concave Distortion	Reversed S-shaped Distortion
Indemnity	Deductible	Complex contract	Complex contract
Small losses	No insurance	Full insurance.	Full insurance.
Medium Losses	No insur. or FIAD	CC(PFI)	CC(PD)
Large Losses	FIAD	No insurance	FIAD

"CC(PD)" stands for "Complex Contract (possibly decreasing)". " CC(PFI)" stands for "Complex Contract (possibly full insurance)".
"FIAD" stands for "full insurance above a deductible".

- X follows a truncated exponential distribution with density $f(x)=\frac{m e^{-m x}}{1-e^{-m M}}, x \in[0, M]$, where $m=0.1$ and $M=10$.
- The utility function is exponential:

A Numerical Example: Parameter Specifications

- X follows a truncated exponential distribution with density $f(x)=\frac{m e^{-m x}}{1-e^{-m M}}, x \in[0, M]$, where $m=0.1$ and $M=10$.
- The utility function is exponential:
$U(x)=1-e^{-\gamma x}$ with $\gamma=0.2$.
Kahneman(1992))

We take three values for $a: 0.5,0.65$, and 0.8 .

A Numerical Example: Parameter Specifications

- X follows a truncated exponential distribution with density $f(x)=\frac{m e^{-m x}}{1-e^{-m M}}, x \in[0, M]$, where $m=0.1$ and $M=10$.
- The utility function is exponential:
$U(x)=1-e^{-\gamma x}$ with $\gamma=0.2$.
- Probability distortion function (Tversky and Kahneman(1992))

$$
T(z)=\frac{z^{a}}{\left(z^{a}+(1-z)^{a}\right)^{\frac{1}{a}}}, \quad 0<z<1 .
$$

We take three values for $a: 0.5,0.65$, and 0.8 .
The safety loading $\rho=0.2$.

A Numerical Example: Parameter Specifications

- X follows a truncated exponential distribution with density $f(x)=\frac{m e^{-m x}}{1-e^{-m M}}, x \in[0, M]$, where $m=0.1$ and $M=10$.
- The utility function is exponential:
$U(x)=1-e^{-\gamma x}$ with $\gamma=0.2$.
- Probability distortion function (Tversky and Kahneman(1992))

$$
T(z)=\frac{z^{a}}{\left(z^{a}+(1-z)^{a}\right)^{\frac{1}{a}}}, \quad 0<z<1 .
$$

We take three values for $a: 0.5,0.65$, and 0.8 .

- The safety loading $\rho=0.2$.
- The premium π is fixed at 3 .

A Numerical Example: Parameter Specifications

- X follows a truncated exponential distribution with density $f(x)=\frac{m e^{-m x}}{1-e^{-m M}}, x \in[0, M]$, where $m=0.1$ and $M=10$.
- The utility function is exponential:
$U(x)=1-e^{-\gamma x}$ with $\gamma=0.2$.
- Probability distortion function (Tversky and Kahneman(1992))

$$
T(z)=\frac{z^{a}}{\left(z^{a}+(1-z)^{a}\right)^{\frac{1}{a}}}, \quad 0<z<1 .
$$

We take three values for $a: 0.5,0.65$, and 0.8 .

- The safety loading $\rho=0.2$.
- The premium π is fixed at 3 .

A Numerical Example: Optimal Indemnity

To summarize, the contribution of our paper is threefold.

- First, we formulate and solve an optimal insurance problem in which the insured has RDEU preferences.
- Second, we work out the optimal indemnity explicitly. Third, we demonstrate that RDEU is able to explain the demand for insurance for small losses, which is consistent with observed hehaviors that FII fails to exnlain

To summarize, the contribution of our paper is threefold.

- First, we formulate and solve an optimal insurance problem in which the insured has RDEU preferences.
- Second, we work out the optimal indemnity explicitly.
- Third, we demonstrate that RDEU is able to explain the demand for insurance for small losses, which is consistent with observed behaviors that EU fails to explain.

To summarize, the contribution of our paper is threefold.

- First, we formulate and solve an optimal insurance problem in which the insured has RDEU preferences.
- Second, we work out the optimal indemnity explicitly.
- Third, we demonstrate that RDEU is able to explain the demand for insurance for small losses, which is consistent with observed behaviors that EU fails to explain.
- Carlier, G., and R.-A. Dana (2008):
"Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities," Economic Theory, 36(2), 189-223.
- Carlier, G., and R.-A. Dana (2011): "Optimal demand for contingent claims when agents have law-invariant utilities," Mathematical Finance, 21(2), 169-201.

- Carlier, G., and R.-A. Dana (2008):
"Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities," Economic Theory, 36(2), 189-223.
- Carlier, G., and R.-A. Dana (2011): "Optimal demand for contingent claims when agents have law-invariant utilities," Mathematical Finance, 21(2), 169-201.

Risk Sharing with
Economic Theory, 133(1), 152-176.

- Carlier, G., and R.-A. Dana (2008):
"Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities," Economic Theory, 36(2), 189-223.
- Carlier, G., and R.-A. Dana (2011): "Optimal demand for contingent claims when agents have law-invariant utilities," Mathematical Finance, 21(2), 169-201.
- Dana, R.-A., and M. Scarsini (2007): "Optimal Risk Sharing with Background Risk," Journal of Economic Theory, 133(1), 152-176.
- He, X. D., and X. Y. Zhou (2011): "Portfolio Choice via Quantiles," Mathematical Finance, 21(2), 203-231.

"Behavioral Optimal Insurance," Insurance: Mathematics and Fconomics forthcoming.
- He, X. D., and X. Y. Zhou (2011): "Portfolio Choice via Quantiles," Mathematical Finance, 21(2), 203-231.
- Sung, K., S. Yam, S. Yung, and J. Zhou (2011): "Behavioral Optimal Insurance," Insurance: Mathematics and Economics, forthcoming.

