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Insurance Design under Rank Dependent Expected Utility

An insured faces a random loss X . He can

purchase an insurance contract from an
insurance company (i.e. insurer). He pays a
premium π and obtains an indemnity Y = I (X ),

where I is so-called indemnity function with
0 ≤ I (x) ≤ x .

Example (deductible insurance contract):
I (X ) = (X − C )+ for some constant level

C > 0.
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Insurance Design under RDEU (Cont’d)

The insured chooses premium π and indemnity

function I to maximizes the rank-dependent
expected utility (RDEU) of his final wealth W :

V rdeu(W ) = (T ◦ P)(U(W )),

where W = W0 −X + I (X )−π, W0 is the initial
wealth; U is a utility function, T is a probability

distortion function, and T ◦ P(U(W )) is the

Choquet integral of U(W ) w.r.t. T ◦ P.
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Insurance Design under RDEU (Cont’d)

It can be written explicitly as

V rdu(W ) =

∫
U(x)d [−T (1 − FW (x))]

Empirical evidence supports a concave utility

function and a reversed S-shaped probability
distortion function: large and small payoffs

occurring with small probability are
overweighted.
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A Reversed S-shaped Distortion Function
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Problem 2.1: Optimal Indemnity Design

To solve the problem, we first fixe a premium π

and find the optimal indemnity function I , and
then find the optimal premium π∗. As the

second step is easy, we focus on the first step.

Denote by I the set of all indemnity functions.
For a fixed premium π§the insured’s

optimization problem can be written as

max
I (·)∈I

V rdu(W0 − X + I (X ) − π)

subject to (1 + ρ)E[I (X )] ≤ π,

where ρ > 0 is the insurer’s safety loading.
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Retention Functions

We assume the insured’s loss is bounded by M .

In order to apply the quantile formulation

technique, we consider the retention,
R(X ) := X − I (X ), i.e., the part of loss retained

by the insured, where
R(x) = x − I (x), x ∈ [0, M ] is the so-called
retention function.

We denote by R, the set of all retention
functions.
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Problem 2.2: Optimal Retention Design

We then reformulate Optimal Indemnity Design

in terms of the retention function:

max
R(·)∈R

V rdu(W0 − R(X ) − π)

subject to E[R(X )] ≥ ∆,

where

∆ := E[X ] −
π

1 + ρ
.



Assumptions

Assumption 2.1 The loss X has no atom, i.e.,
the CDF of X is continuous. Moreover, its

quantile function F−1
X : (0, 1) → R+ is

continuous.

Assumption 2.2 [Concave Utility] U is strictly
increasing and is continuously differentiable on
(0,∞). Furthermore, U ′(·) is strictly decreasing

on (0,∞).

Assumption 2.3 [Reversed S-shaped Distortion]

The distortion function T is continuously
differentiable in the interior, and there exists
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Assumptions (Cont’d)

z0 ∈ (0, 1) such that T ′ is strictly decreasing on
(0, z0) and strictly increasing on (z0, 1).

Furthermore, T ′(0+) := limz↓0 T ′(z) > 1 and
T ′(1−) := limz↑1 T ′(z) = +∞.

The first part of Assumption 2.1 is crucial in

order to use quantile formulation. The second
part of Assumption 2.1 is of purely technical

importance. Assumptions 2.2 and 2.3 lead to
RDEU framework.
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Quantile Formulation

First of all, we make a change-of-variable

V rdu(W0 − R(X ) − π) =

∫
U(x)d

[
−T (1 − FW0−R(X )−π(x))

]

=

∫ 1

0

U(F−1
W0−R(X )−π

(z))T ′(1 − z)dz

=

∫ 1

0

U(W0 − π − F−1
R(X )(1 − z))T ′(1 − z)dz

=

∫ 1

0

U
(
W0 − π − F−1

R(X )(z)
)

T ′(z)dz



Quantile Formulation (Cont’d)

Let us denote G := F−1
R(X ), the quantile function

of R(X ). The previous calculations show that

one can express the objective functional of the
insured as a functional of G , which is concave in
G , because the utility function U is concave.

Intuitively, a reasonable retention functions
should be non-decreasing. The following

proposition shows that we can restrict ourselves
to the retention functions in the form of

R(x) = G (FX (x)) where G (·) is a quantile
function.
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Quantile Formulation (Cont’d)

Proposition 2.1 Under Assumption 2.1, for any

feasible solution R(·) to Problem 2.2,
R̃(x) := F−1

R(X )(FX (x)) is also feasible with

respect to Problem 2.2 and R̃(X ) has the same

law as R(X ).

For retention functions of the form
R(x) = G (FX (x)), the constraint

0 ≤ R(x) ≤ x , x ∈ [0, M ] is equivalent to
0 ≤ G (z) ≤ F−1

X (z), 0 < z < 1.

On the other hand, it is easy to see that
E[R(X )] ≥ ∆ is equivalent to

∫ 1

0 G (z)dz ≥ ∆.
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Quantile Formulation (Cont’d)

Proof Denote Z := FX (X ). Because X has no
atom, Z is a uniform random variable on [0, 1]. As
a result, R̃(X ) = F−1

R(X )(Z ) has the same law as

R(X ). Recalling that R(x) ≤ x , x ∈ [0, M ], we
immediately have

F−1
R(X )(z) = inf{s : FR(X )(s) ≥ z} = inf{s : Pr(R(X ) ≤ s) ≥ z}

≤ inf{s : Pr(X ≤ s) ≥ z} = F−1
X (z)

for any z ∈ (0, 1). It follows that

R̃(x) ≤ F−1
X (FX (x)) ≤ x , x ∈ [0, M ].



Problem 2.3: Optimal Quantile of Retention

Hence, we can rewrite Problem 2.2 as the
following problem, where the quantile function

G (·) becomes the decision variable.

Max
G(·)∈G

V (G (·)) :=
∫ 1

0 U(W0 − π − G (z))T ′(z)dz ,

Subject to 0 ≤ G (z) ≤ F−1
X (z), 0 < z < 1,∫ 1

0 G (z)dz ≥ ∆,

where G is the set of all quantile functions.



Problem 2.4: Auxiliary Problem

If G ∗ is the optimal quantile, then

R∗(X ) := G ∗(FX (X )) is the optimal retention.

We apply the Lagrange dual method to remove
the second constraint in Problem 2.3.

Apply multiplier λ to the second constraint,
leading to the following partially constrained

problem

max
G(·)∈G

Vλ(G(·)) :=
∫ 1

0 [U(W0 − π − G(z))T ′(z) + λG(z)] dz − λ∆,

subject to 0 ≤ G(z) ≤ F−1
X (z), 0 < z < 1.
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Solving the Auxiliary Problem

We first solve Problem 2.4 to find the optimal

solution for any given multiplier λ.

Ignoring all the constraints in Problem 2.4 for

the present, we can derive the optimal solution
to the problem by performing the pointwise
optimization

max
y

{U(W0 − π − y)T ′(z) + λ(y − ∆)}

for each fixed 0 ≤ z ≤ 1.
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Solving the Auxiliary Problem (Cont’d)

The pointwise optimizer can be easily derived as
follows:

Hλ(z) := W0 − π − (U ′)−1

(
λ

T ′(z)

)
, 0 < z < 1.

Here, we define (U ′)−1(y) := 0 for any

y > U ′(0+).

Because of Assumption 2.2, Hλ(·) is strictly

increasing on (0, z0) and strictly decreasing on
(z0, 1).



Solving the Auxiliary Problem (Cont’d)

The pointwise optimizer can be easily derived as
follows:

Hλ(z) := W0 − π − (U ′)−1

(
λ

T ′(z)

)
, 0 < z < 1.

Here, we define (U ′)−1(y) := 0 for any

y > U ′(0+).

Because of Assumption 2.2, Hλ(·) is strictly

increasing on (0, z0) and strictly decreasing on
(z0, 1).



Solving the Auxiliary Problem (Cont’d)

If we take the constraint 0 ≤ G(z) ≤ F−1
X (z), 0 ≤ z ≤ 1

into account, we then need to consider the
pointwise optimization:

max
y∈[0,F

−1
X

(z)]
{U(W0 − π − y)T ′(z) + λ(y − ∆)} , 0 < z < 1,

leading to the pointwise optimizer

H̃λ(z) := max(0, min(Hλ(z), F−1
X (z))).



Solving the Auxiliary Problem (Cont’d)

If H̃λ(·) were non-decreasing, then it would

automatically become the optimal solution to
Problem 2.4.

However, H̃λ(·) fails to be globally

non-decreasing on (0, 1) because Hλ(·) is
decreasing on (z0, 1).

Following the idea of He and Zhou (2012), we
can modify a pointwise optimizer.
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Solving the Auxiliary Problem (Cont’d)

Because Hλ(·) is strictly decreasing and F−1
X (·)

is increasing on (z0, 1), the intersection point of
Hλ(·) and F−1

X (·) on (z0, 1), if it exists, is

unique. Denote by z2(λ) this intersection point
when it exists.

Otherwise, define z2(λ) = 1 if
Hλ(z) > F−1

X (z), z0 < z < 1; and z2(λ) = z0 if

Hλ(z) < F−1
X (z), z0 < z < 1.

As a result, the pointwise optimizer H̃λ(·) is

increasing on (0, z2(λ)) and decreasing on
(z2(λ), 1).
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Solving the Auxiliary Problem (Cont’d)

The following proposition is a key step toward

the final result:

Proposition 3.1 For any feasible solution G (·)
of Problem 2.4, there exists c ∈ (0, z2(λ)] such

that

G c(z) := H̃λ(z)Iz≤c + H̃λ(c)Iz>c , 0 < z < 1

satisfies (i) Vλ(G (·)) ≤ Vλ(G
c(·)); (ii) the

equality holds if and only if
G (z) = G c(z), 0 < z < 1.
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Solving the Auxiliary Problem (Cont’d)

So any feasible solution to Problem 2.4 is
dominated by a simple modification of H̃λ

parameterized by c .

As a result, Problem 2.4 can be reduced to

Max
G(·)∈Sλ

Vλ(G(·)) :=
∫ 1

0
[U(W0 − π − G(z))T ′(z) + λG(z)] dz − λ∆.

where

Sλ := {G c(·) | G c(z) := H̃λ(z)Iz≤c + H̃λ(c)Iz>c , 0 < z < 1, for some
c ∈ (0, z2(λ)]}.
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A One-dimensional Optimization Problem

For any G c(·) ∈ Sλ, denote f (c) := Vλ(G
c(·)).

Straightforward computation leads to

f (c) =

∫

(0,c]

h(z)dH̃λ(z)+U(W0−π−H̃λ(0+))+λH̃λ(0+)−λ∆,

where

h(z) := λ(1−z)−(1−T (z))U ′(W0−π−H̃λ(z)), 0 < z < 1.

Because H̃λ(z) is increasing in z when

H̃λ(z) > 0 and z ≤ z2(λ), we can see that the
optimal c∗ for max

0<c≤z2(λ)
f (c) must be the root of

h(·).
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A One-dimensional Optimization Problem (Cont’d)

Explicit solutions (for three cases) can be found

(illustrated graphically in the following).

Case 1—Small λ: λ ≤ U ′(W0 − π)T ′(ẑ).

Case 2—Medium λ: U ′(W0 − π)T ′(ẑ) < λ <

U ′(W0 − π − F−1
X (ẑ))T ′(ẑ).

Case 3—Large λ:

λ ≥ U ′(W0 − π − F−1
X (ẑ))T ′(ẑ).
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Optimal Solution: Case 1—Small λ (Low π)
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Optimal Solution: Case 3—Large λ (High π)
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Discussion and Comparisons

Convex Distortions The optimal indemnity
function is given by I ∗(x) = (x − F−1

X (c∗))+

where c∗ is such that E[I ∗(X )] = π
1+ρ

.

Concave Distortions The optimal indemnity
function is given by

I ∗(x) =

[
x − max

(
W0 − π − (U ′)−1

(
λ

T ′(FX (x))

)
, 0

)]

+

,

where λ > 0 is such that E[I ∗(X )] = π
1+ρ

.
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Discussion and Comparisons (Cont’d)

Table: Summary of the results when U is concave

Convex
Distortion

Concave
Distortion

Reversed S-shaped
Distortion

Indemnity Deductible Complex contract Complex contract
Small
losses No insurance Full insurance. Full insurance.

Medium

Losses
No insur. or

FIAD
CC(PFI) CC(PD)

Large
Losses FIAD No insurance FIAD

“CC(PD)” stands for “Complex Contract (possibly decreasing)”.
“ CC(PFI)” stands for “Complex Contract (possibly full insurance)”.
“FIAD” stands for “full insurance above a deductible”.



A Numerical Example: Parameter Specifications

X follows a truncated exponential distribution
with density f (x) = me−mx

1−e−mM , x ∈ [0, M ], where

m = 0.1 and M = 10.

The utility function is exponential:

U(x) = 1 − e−γx with γ = 0.2.

Probability distortion function (Tversky and
Kahneman(1992))

T (z) =
za

(za + (1 − z)a)
1
a

, 0 < z < 1.

We take three values for a: 0.5, 0.65, and 0.8.

The safety loading ρ = 0.2.

The premium π is fixed at 3.
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A Numerical Example: Distortion Function
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A Numerical Example: Optimal Indemnity
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Conclusion

To summarize, the contribution of our paper is

threefold.

First, we formulate and solve an optimal
insurance problem in which the insured has

RDEU preferences.

Second, we work out the optimal indemnity

explicitly.

Third, we demonstrate that RDEU is able to
explain the demand for insurance for small

losses, which is consistent with observed
behaviors that EU fails to explain.



Conclusion

To summarize, the contribution of our paper is

threefold.

First, we formulate and solve an optimal
insurance problem in which the insured has

RDEU preferences.

Second, we work out the optimal indemnity

explicitly.

Third, we demonstrate that RDEU is able to
explain the demand for insurance for small

losses, which is consistent with observed
behaviors that EU fails to explain.



Conclusion

To summarize, the contribution of our paper is

threefold.

First, we formulate and solve an optimal
insurance problem in which the insured has

RDEU preferences.

Second, we work out the optimal indemnity

explicitly.

Third, we demonstrate that RDEU is able to
explain the demand for insurance for small

losses, which is consistent with observed
behaviors that EU fails to explain.



Reference

Carlier, G., and R.-A. Dana (2008):

“Two-persons efficient risk-sharing and equilibria
for concave law-invariant utilities,” Economic

Theory, 36(2), 189–223.

Carlier, G., and R.-A. Dana (2011): “Optimal
demand for contingent claims when agents have

law-invariant utilities,” Mathematical Finance,
21(2), 169–201.

Dana, R.-A., and M. Scarsini (2007): “Optimal
Risk Sharing with Background Risk,” Journal of

Economic Theory, 133(1), 152–176.



Reference

Carlier, G., and R.-A. Dana (2008):

“Two-persons efficient risk-sharing and equilibria
for concave law-invariant utilities,” Economic

Theory, 36(2), 189–223.

Carlier, G., and R.-A. Dana (2011): “Optimal
demand for contingent claims when agents have

law-invariant utilities,” Mathematical Finance,
21(2), 169–201.

Dana, R.-A., and M. Scarsini (2007): “Optimal
Risk Sharing with Background Risk,” Journal of

Economic Theory, 133(1), 152–176.



Reference

Carlier, G., and R.-A. Dana (2008):

“Two-persons efficient risk-sharing and equilibria
for concave law-invariant utilities,” Economic

Theory, 36(2), 189–223.

Carlier, G., and R.-A. Dana (2011): “Optimal
demand for contingent claims when agents have

law-invariant utilities,” Mathematical Finance,
21(2), 169–201.

Dana, R.-A., and M. Scarsini (2007): “Optimal
Risk Sharing with Background Risk,” Journal of

Economic Theory, 133(1), 152–176.



Reference (Cont’d)

He, X. D., and X. Y. Zhou (2011): “Portfolio
Choice via Quantiles,” Mathematical Finance,

21(2), 203–231.

Sung, K., S. Yam, S. Yung, and J. Zhou (2011):

“Behavioral Optimal Insurance,” Insurance:

Mathematics and Economics, forthcoming.



Reference (Cont’d)

He, X. D., and X. Y. Zhou (2011): “Portfolio
Choice via Quantiles,” Mathematical Finance,

21(2), 203–231.

Sung, K., S. Yam, S. Yung, and J. Zhou (2011):

“Behavioral Optimal Insurance,” Insurance:

Mathematics and Economics, forthcoming.


