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Laplace Eigenfunctions: Chladni figures

Interest in the nodal lines of Laplace eigenfunctions has a very long
history and goes back to Hooke (XVII century) and Chladni (XVIII
century) who observed nodal lines on a vibrating plate.

Figure: Chladni figures (MIT Physiscs Demos)



Berry’s conjecture

In 1977 M. Berry conjectured that high energy eigenfunctions in
the chaotic case have statistically the same behaviour as random
plane waves. (Figures from Bogomolny-Schmit paper)

Figure: Nodal domains of an eigenfunction
of a stadium

Figure: Nodal domains of a
random plane wave



Random Ensembles
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Spherical ensembles

For sphere eigenfunctions are spherical harmonics. There are
2n + 1 spherical harmonics of degree n, eigenvalue n(n + 1).

Figure: Random spherical harmonic
of degree 80, ↵ = 1

Figure: Real Fubini-Study ensemble
of degree 80, ↵ = 0



Scaling limits of spherical ensembles

It is possible to pass to the (universal) local scaling limit as degree
(energy) goes to infinity.

Figure: The random plane wave is
the scaling limit of the random
spherical harmonic

Figure: The band-limited function is
the scaling limit of the real
Fubini-Study



Scaling Limit: Random Plane Wave

Two ways to (informally) think of the random plane wave

A “random” or “typical” solution of Helmholtz equation
�f + k2f = 0

A random superposition of all possible plane waves with the
same frequency k

Formal definition:

A Gaussian field f (z) with covariance kernel

K (z ,w) = E[f (w)f (w)] = J0(k |z � w |)

Random series
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Nodal Lines of Gaussian Spherical Harmonic

Theorem (Bérard, 1985)
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Theorem (Nazarov and Sodin, 2007)
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where C (✏) and c(✏) are positive constant depending on ✏ only.



Bogomolny-Schmit Percolation Model

They proposed that the nodal lines form a perturbed square lattice

Picture from Bogomolny-Schmit paper.



Bogomolny-Schmit Percolation Model

Using this analogy we can think of the nodal domains as
percolation clusters on the square lattice. This leads to the
conjecture that a = (3

p
3� 5)/⇡ ⇡ 0.0624

Picture from Bogomolny-Schmit paper.



Is It Really True?

Numerical results (Nastasescu (2011), Konrad (2012),
B.-Kereta (2013)) show that the number of nodal domains
per unit area is 0.0589 instead of 0.0624 predicted by
Bogomolny-Schmit.

Number of clusters per vertex is a non-universal quantity in
percolation, it is lattice dependent. Global properties should
be universal i.e. lattice independent.

Numerical evidence that many global ‘universal’ observables
(crossing probabilities, decay rate for the area of nodal
domains, one-arm exponent) match percolation predictions.



O↵-critical models

O↵-critical percolation is a model for excursion and level sets

Figure: Excursion sets for levels 0 (nodal domains) and level 0.1



O↵-critical models
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Figure: Excursion sets for levels 0 (nodal domains) and level 0.1



Kostlan ensemble

Figure: Kostlan ensemble
n = 300

Kostlan or complex Fubini-Study
ensemble of homogeneous
polynomials R3 (or S2)
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Natural measure on space
of homogeneous polynomials

Nodal domains is a natural model
for real projective curve



Bargmann-Fock Random Function

Theorem (Be↵ara-Gayet 2016)

Russo-Seymour-Welsh estimate for Bargmann-Fock random
function.

Figure: Nodal domains of
Bargmann-Fock function

Bargmann-Fock Gaussian function is
the scaling limit of Kostlan ensemble
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Important:
positive, symmetric, fast decaying



Russo-Seymour-Welsh for Kostlan Ensemble

Theorem (B.-Muirhead-Wigman)

There is RSW estimate for nodal domains and nodal lines of
Kostlan ensemble which is uniform in polynomial degree and
‘conformal type’ of a domain.
Also true for general symmetric fields with su�ciently fast decay of
correlation.



General result

Theorem (Abstract RSW)
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Then the nodal lines satisfy RSW on down to the scale s
n

and
nodal domains satisfy RSW on all scales.



Ingredients

For each field there is the minimal scale s
n

. All estimates
should be uniform

With high probability the nodal structure of a Gaussian field is
determined by its discretization

If correlation function decays fast enough then crossings event
are asymptotically independent

Tassion’s argument could be adapted to the spherical setting

Small perturbations of the kernel change probability only a
little bit
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ignore su�ciently small negative correlations
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