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To define a canonical random geometry in two
dimensions (motivations from physics: 2D
quantum gravity)

Replace the sphere S2 by a discretization,
namely a graph drawn on the sphere
(= planar map).
Choose such a planar map uniformly at
random in a suitable class and equip its
vertex set with the graph distance.

Let the size of the graph tend to infinity and
pass to the limit after rescaling to get a
random metric space: the Brownian map.
This convergence is robust: it still holds if we
make local modifications of the graph
distance: Universality of the Brownian map.

Goal of the lecture: Present the Brownian map and related models (the
Brownian disk, the Brownian plane).
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1. The geometry of large random planar maps
Definition
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere). Loops and multiple edges allowed.

root
edge

root
vertex

A rooted triangulation
with 20 faces

Faces = connected components of
the complement of edges
p-angulation:

each face is incident to
p edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished
oriented edge
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A large triangulation of the sphere
Can we get a continuous model out of this ?
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Planar maps as metric spaces

M planar map
V (M) = set of vertices of M
dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space

0
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In blue : distances from root

Mp
n = {rooted p − angulations with n faces}

Mp
n is a finite set (finite number of possible “shapes”)

Choose Mn uniformly at random in Mp
n.

View (V (Mn),dgr) as a random variable with values in
K = {compact metric spaces, modulo isometries}

which is equipped with the Gromov-Hausdorff distance. (A sequence
(En) of compact metric spaces converges if one can embed all En’s
isometrically in the same big space E so that they converge for the
Hausdorff metric on compact subsets of E .)
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The Brownian map
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (LG 2013, Miermont 2013 for p=4)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp n−1/4 dgr)
(d)−→

n→∞
(m∞,D∗)

in the Gromov-Hausdorff sense. The limit (m∞,D∗) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian map (after Marckert-Mokkadem).

Remarks
• The case p = 3 (triangulations) solves a question of Schramm (2006)
• Extensions to other classes of random planar maps: Abraham,
Addario-Berry-Albenque, Beltran-LG, Bettinelli-Jacob-Miermont, etc.

Jean-François Le Gall (Université Paris-Sud) Random planar geometry Zürich December 2017 6 / 25



The Brownian map
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (LG 2013, Miermont 2013 for p=4)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp n−1/4 dgr)
(d)−→

n→∞
(m∞,D∗)

in the Gromov-Hausdorff sense. The limit (m∞,D∗) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian map (after Marckert-Mokkadem).

Remarks
• The case p = 3 (triangulations) solves a question of Schramm (2006)
• Extensions to other classes of random planar maps: Abraham,
Addario-Berry-Albenque, Beltran-LG, Bettinelli-Jacob-Miermont, etc.

Jean-François Le Gall (Université Paris-Sud) Random planar geometry Zürich December 2017 6 / 25



The Brownian map
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (LG 2013, Miermont 2013 for p=4)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp n−1/4 dgr)
(d)−→

n→∞
(m∞,D∗)

in the Gromov-Hausdorff sense. The limit (m∞,D∗) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian map (after Marckert-Mokkadem).

Remarks
• The case p = 3 (triangulations) solves a question of Schramm (2006)
• Extensions to other classes of random planar maps: Abraham,
Addario-Berry-Albenque, Beltran-LG, Bettinelli-Jacob-Miermont, etc.

Jean-François Le Gall (Université Paris-Sud) Random planar geometry Zürich December 2017 6 / 25



Two properties of the Brownian map

Theorem (Hausdorff dimension)

dim(m∞,D∗) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type)

Almost surely, (m∞,D∗) is homeomorphic to the 2-sphere S2.
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Constructions of the Brownian map
The Brownian map (m∞,D∗) is constructed as a quotient space of the
Brownian tree T (also called the CRT), for an equivalence relation
defined in terms of Brownian motion (Za)a∈T indexed by T (here Za is
viewed as a Brownian label assigned to the vertex a of the tree T ).

A simulation of the CRT

Two points a and b of the
CRT are glued if they have
the same label Za = Zb and
if one can go from a to b
around the tree (clockwise
or counterclockwise)
meeting only points with
greater label.

Recent work of Miller and Sheffield providing a new construction of the
Brownian map with conformal invariance properties, related to the
so-called Quantum Loewner Evolution QLE(8

3 ,0).
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Outline

2. Universality of the Brownian map
The Brownian map still appears in the limit if one performs “local

modifications” of the distance (universality property)

3. The Brownian disk
(“Brownian map with a boundary”)

4. The Brownian plane
(“Infinite volume Brownian map”)

Both the Brownian disk and the Brownian plane are variants of the
Brownian map that play an important role in the study of this random
metric space.
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2. Universality of the Brownian map

(joint work with Nicolas Curien, in revision for Ann. ENS)

Assign i.i.d. random weights (lengths) we to the edges of a (random)
planar map M.
Define the weight w(γ) of a path γ as the sum of the weights of the
edges it contains.
The first passage percolation distance dFPP is defined on the vertex set
V (M) by

dFPP(v , v ′) = inf{w(γ) : γ path from v to v ′}.

Goal: In large scales, dFPP behaves like the graph distance dgr
(asymptotically, balls for dFPP are close to balls for dgr).

This is not expected to be true in deterministic lattices such as Zd , but
random planar maps are in a sense more isotropic.

Consequence: The scaling limit of the metric space associated with
dFPP will again be the Brownian map! (Universality of the limit!)
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The Uniform Infinite Planar Triangulation (UIPT)
Let ∆n be uniformly distributed over {triangulations with n faces}.
For every r ≥ 1, let Br (∆n) be the ball of radius r in ∆n, defined as the
union of all faces incident to a vertex at distance strictly less than r
from the root vertex ρ (distinguished vertex of ∆n).
One can prove (Angel-Schramm 2003, Stephenson 2014) that

∆n
(d)−→

n→∞
∆∞

where ∆∞ is a (rooted) infinite random triangulation called the UIPT for
Uniform Infinite Planar Triangulation.

The convergence holds in the sense of local limits: for every r and for
every fixed planar map M,

P(Br (∆n) = M) −→
n→∞

P(Br (∆∞) = M).

This is very different from the Gromov-Hausdorff convergence: Here
we do no rescaling and thus the limit is a non-compact (infinite)
random lattice.
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An artistic representation of the UIPT (artist: N. Curien)
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First-passage percolation in the UIPT
Assign i.i.d. weights we with common distribution ν to the edges of the
UIPT ∆∞ and consider the associated first-passage percolation
distance dFPP. Assume ν is supported on [c,C], where 0 < c ≤ C <∞.

For every real r ≥ 0, let BFPP
r (∆∞) be the ball of radius r for dFPP.

Theorem
There exists a constant c0 with c ≤ c0 ≤ C, such that, for every ε > 0,
we have

lim
r→∞

P
(

sup
x ,y∈Br (∆∞)

∣∣dFPP(x , y)− c0 dgr(x , y)
∣∣ > εr

)
= 0.

In particular,
B(1−ε)r/c0

(∆∞) ⊂ BFPP
r (∆∞) ⊂ B(1+ε)r/c0

(∆∞)

with probability tending to 1 as r →∞.

The ball of radius r for the FPP distance is asymptotically close to the
ball of radius r/c0 for the graph distance.
Remark. In general one cannot compute the constant c0, except in
special cases.
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First-passage percolation in finite triangulations

∆n is uniformly distributed over {triangulations with n faces}

dFPP first-passage percolation distance on V (∆n) defined using
weights i.i.d. according to ν (same assumption on ν).

Theorem

(V (∆n),61/4 n−1/4 dFPP)
(d)−→

n→∞
(m∞, c0 D∗)

in the Gromov-Hausdorff sense. Here c0 is the same constant as in
the UIPT case, and (m∞,D∗) is the Brownian map.

Idea of the proof: Use absolute continuity arguments to relate large
(finite) triangulations to the UIPT, and then apply the theorem about
the UIPT.
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3. Brownian disks
Quadrangulations with a boundary

A quadrangulation
with a boundary of
size 14.
(All faces have
degree 4 except for
one face called the
outer face whose
degree is the
boundary size.)

For every fixed p ≥ 1, let Qp be a Boltzmann quadrangulation with
boundary size 2p, meaning that

P(Qp = Q) = cp 12−n if Q has n faces (and boundary size 2p)
(the number of faces is not fixed!)
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Convergence to the Brownian disk

Qp Boltzmann quadrangulation with boundary size 2p :
P(Qp = Q) = cp 12−n if Q has n faces (and boundary size 2p)

Equip the vertex set V (Qp) with the graph distance dgr. Then Bettinelli
and Miermont proved that(

V (Qp),p−1/2dgr
) (d)−→

p→∞

(
D,D∂

)
in the Gromov-Hausdorff sense. The limit (D,D∂) is a random compact
metric space homeomorphic to the disk, called the free Brownian disk
with perimeter 1. (One can also define the Brownian disk with
perimeter r and volume v .)

(See also Gwynne and Miller for the extension to the simple boundary
case)
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Constructing free Brownian disks

0

a

b

a

b
the interval
[a, b]

z(x)

d(ρ, x)

ρ

We start with a pair
(T •, (z(x))x∈T •), which is the
Brownian tree equipped with
Brownian labels, conditioned on
the event that labels stay
nonnegative.
The cyclic structure on T •
allows us to define “cyclic
intervals” [a,b] for every
a,b ∈ T •.

Labels (z(x))x∈T • . Tree T •

We set ∂T • = {x : z(x) = 0} and T ◦ = T •\∂T •.
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Constructing free Brownian disks

0

a

b

z(x)

d(ρ, x) We glue a,b ∈ T ◦ if
they have the same label z(a) = z(b) > 0
z(c) ≥ z(a) for every c belonging to the
cyclic interval [a,b].

The result of this gluing procedure is a Brownian
disk (D,D∂) (equipped with a volume measure
Vol(dx)), with the interpretation of labels:

z(c) = D∂(c, ∂D) coincides with the distance
from (the equivalence class of) c to ∂D.

One can use this to construct the uniform measure on the boundary.

Proposition

The formula 〈µ, ϕ〉 = lim
ε→0

ε−2
∫
D

Vol(dx)ϕ(x) 1{D∂(x ,∂D)<ε} defines a

finite measure on the boundary.
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Brownian disks in the Brownian map

Combining
the construction of the Brownian map from Brownian motion
indexed by the Brownian tree
excursion theory for the latter process (Abraham-LG, JEMS)
the preceding construction of Brownian disks

we can identify various subsets of the Brownian map as Brownian
disks.

Let (m∞,D∗) be the Brownian map. Then m∞ has a distinguished
point ρ (playing no special role: re-rooting invariance property).

For h > 0, let B(h) be the ball of radius h centered at the distinguished
point ρ. Then, the connected components of the complement of B(h)
are Brownian disks!
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Connected components of the complement of a ball

h

connected components
of m∞\B(h)

ρ

D(ρ, x)

For h > 0, let B(h) be the ball of
radius h centered at the
distinguished point ρ
Let Dj , j ∈ J be the connected
components of m∞\B(h). We can
equip each Dj with its intrinsic
metric D(j)

Write Vol for the volume measure
on m∞.

Theorem
The metric D(j) has a continuous extension to D̄j = Dj ∪ ∂Dj , and the
limit |∂Dj | := lim

ε→0
ε−2Vol{x ∈ Dj : D(j)(x , ∂Dj) < ε} exists, for every j.

Conditionally on (|∂Dj |,Vol(Dj))j∈J , the metric spaces (D̄j ,D(j)) are
independent Brownian disks with the prescribed volumes and
perimeters.
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4. The Brownian plane

(mostly joint work with N. Curien)

The Brownian plane (P,D∞) is an infinite volume version of the
Brownian map (again with a distinguished point ρ),

with scale invariance property: (P, λD∞)
(d)
= (P,D∞)

tangent cone of the Brownian map: (m∞, λD∗)
(d)−→

λ→∞
(P,D∞)

(in the sense of Gromov-Hausdorff for pointed metric spaces)
scaling limit of the Uniform Infinite Planar Triangulation (UIPT)
scaling limit of finite triangulations, with scaling factor εn >> n−1/4

Same local properties as the Brownian map: One can couple m∞ and
P so that, for some (random) r > 0, the balls of radius r in m∞ and in
P centered at the distinguished point are the same (as metric spaces).
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Convergence to the Brownian plane

Uniform
Triangulations

(∆n, dgr) (m∞, D
∗)

Brownian map

(∆∞, dgr) (P , D∞)

Brownian planeUIPT

scaling ·n−1/4

scaling ·λ→ 0

local local
scaling ·εn >> n−1/4

(Uniform infinite
planar triangulation)

·λ→∞
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Geometric properties of the Brownian plane

Scale invariance : λP (d)
= P

dim P = 4, P homeomorphic to the plane
Confluence of geodesic rays to infinity (g : [0,∞) −→ P is a
geodesic ray if D∞(g(s),g(t)) = |s − t | for all s, t)
Any two geodesic rays merge in finite time
The construction is based on an infinite Brownian tree T∞
equipped with Brownian labels Z∞. These labels Z∞ are
interpreted as “distances from infinity”:

Z∞x − Z∞y = lim
z→∞

(D∞(x , z)− D∞(y , z))

(similar to a result of Curien-Ménard-Miermont for UIPQ)
Estimates for lengths of separating cycles and isoperimetric
inequalities (work in progress of A. Riera)
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Separating cycles
distance

from

∞
ρ

ρ

ball of
radius

separating
cycle

1

1

Consider the Brownian
plane P.

Let L be the minimal
length of a cycle
separating the ball of
radius 1 centered at the
distinguished vertex ρ
from infinity.

Proposition (Riera)

c1ε
2 ≤ P(L ≤ ε) ≤ c2ε

2
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Isoperimetric inequalities in the Brownian plane
Let O be the class of all simply connected (bounded) open subsets of
P containing the distinguished point ρ.
For O ∈ O let |O| be the volume of O and let |∂O| be the length of the
boundary of O.

Proposition (Riera, Lehéricy-LG for the UIPQ)
For ε > 0,

inf
O∈O

|∂O|
|O|1/4 (1 + | log |O||)−

1
2−ε

> 0,

and
inf

O∈O

|∂O|
|O|1/4 (1 + | log |O||)−

1
2 +ε

= 0.

Similar results for the Brownian map (recall the Brownian map and the
Brownian plane have the same local properties).

(Work in progress!)
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