#### Topologies of the zero sets of random real projective hypersurfaces and monochromatic random waves

Peter Sarnak

Zurich, December 2017.

Joint work with I. Wigman and Y. Canzani

# Nodal portrait



## Setting

- Monochromatic random waves model the eigenfunctions of a quantization of a classically chaotic hamiltonian (M. Berry).
- Random Fubini-Study ensembles are a model for random real algebraic geometry.

Single variable:

$$egin{array}{ll} f(x) = \sum_{j=0}^t a_j x^j & a_j \in \mathbb{R} \ Z(f) = \{x: \ f(x) = 0\} \end{array}$$

Topology of Z(f) is |Z(f)|.

 $W_{1,t}$  = vector space of such polynomials f.

# What is random? (single variable)

We stick to centered Gaussian ensembles on a (finite) dimensional vector space W. This is **equivalent** to giving an inner product  $\langle , \rangle$  on W.

'Naive' ensemble:

$$\langle f,g
angle = \sum_{j=0}^t a_j b_j$$
 on  $W_{1,t}$ .

- equivalent to choosing the  $a'_i s$  as i.i.d. standard Gaussians.
- not natural since it singles out  $\pm 1$  as to where most the zeros locate themselves.

## What is random? (single variable)

**Real Fubini-Study ensemble:**  $f(x, y) = \sum_{j=0}^{t} a_j x^j y^{t-j}$ ,

with

$$\langle f,g\rangle = \int_{\mathbb{R}^2} f(x)g(x)e^{-\frac{|x|^2}{2}}dx = *\int_{\mathbb{P}^1(\mathbb{R})} f(\theta)g(\theta)d\theta$$

In this ensemble {x<sup>j</sup>y<sup>t-j</sup> : j = 0,...,t} are not orthogonal, rather sin(θk) and cos(θk) are.

Complex Fubini-Study ensemble on  $W_{1,t}$ :

$$\langle f,g
angle = \int_{\mathbb{P}^1(\mathbb{C})} \widetilde{f}(z)\overline{\widetilde{g}(z)}d\sigma(z).$$

- $\tilde{f}, \tilde{g}$  are complex extensions of f, g.
- In this ensemble  $\{x^j y^{t-j} : j = 0, ..., t\}$  are orthogonal.

# Kac-Rice formulas (single variable)

Kac-Rice formulas give asymptotically the number of zeros of  $f \in W_{1,t}$ 

- Naive ensemble:  $\frac{2}{\pi} \log(t)$
- Real Fubini-Study :  $t/\sqrt{3}$
- Complex Fubini-Study :  $\sqrt{t}$
- Monochromatic (harmonic): t

$$\operatorname{Cov}_{f_t}(x,y) = \mathbb{E}(f_t(x), f_t(y)) =: K_t(x,y).$$

$$\lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} |\{x : |f(x)| < \varepsilon\}| = \sum_{a \in Z(f)} \frac{1}{|f'(a)|}.$$
$$\mathbb{E}(|Z(f)|) = \mathbb{E}\left(\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{\{|f| < \varepsilon\}} |f'(y)| dy\right).$$

- This can be computed in terms of  $K_t(x, y)$ .
- Reduces problem to the asymptotics of  $K_t(x,y)$  as  $t \to \infty$ .

## What is random? (several variables)

 $W_{n,t}$ : space of  $f(x_0, x_1, \ldots, x_n)$  homogeneous of degree t.

- same definitions of the naive, real F-S, complex F-S, monochromatic.
- real F-S ( $\alpha = 0$ ):

$$\langle f,g\rangle = \int_{P^n(\mathbb{R})} f(x)g(x)d\sigma(x).$$

 monochromatic random waves (α = 1): same 〈 , 〉 but restricted to the subspace H<sub>n,t</sub> of W<sub>n,t</sub> consisting of harmonic polynomials.

Denote these two ensembles by  $\mathcal{E}_{n,\alpha}$  with  $\alpha = 0, 1$ .

### Zero set: $Z(f) = \{x \in \mathbb{P}^n(\mathbb{R}) : f(x) = 0\}$

- For a random f, Z(f) is smooth.
- Let C(f) be the connected components of Z(f). These are compact, (n-1)-dimensional manifolds.
- Let  $\tilde{H}(n-1)$  be the countable collection of compact, (n-1)-dimensional manifolds mod diffeos.

$$egin{aligned} Z(f) &= igcup_{c \in C(f)} c, \qquad c \in ilde{H}(n-1). \ && \mathbb{P}^n(\mathbb{R})ackslash Z(f) = igcup_{\omega \in \Omega(f)} \omega. \end{aligned}$$

the  $\omega$ 's are the nodal domains of f.

What can we say about the topologies of a random f as  $t \to \infty$ ?

## Nesting of nodal domains

- Nesting tree X(f) (Hilbert for ovals).
- The vertices of X(f) are the nodal domains ω ∈ Ω(f). Two vertices ω and ω' are joined if they have a common boundary c ∈ C(f).
- X(f) is a tree (Jordan-Brouwer).

$$|\Omega(f)| = |\mathcal{C}(f)| - 1.$$

 X(f) carries all the combinatorial information about the connectivities m(ω) for ω ∈ Ω(f).

# Nodal portrait: Fubini-Study ensemble ( $\alpha = 0$ )



Sum of random spherical harmonics of degree  $\leq$  80 (A. Barnett).

# Nodal portrait: Random spherical harmonic ( $\alpha = 1$ )



random spherical harmonic of degree = 80. (A. Barnett)

# Zero set



# Nesting tree



## Local and global quantities

For a Gaussian ensemble the Kac-Rice formula allows for the explicit computation of the expected values of **local** quantities.

- |Z(f)| the induced (n-1) dimensional volume of Z(f).
- The Euler number  $\chi(Z(f))$ .
- The number of critical points of *f*.

The question of **global** topology of Z(f) is much more difficult.

Nazarov and Sodin [NS] have introduced some powerful "soft" techniques to study the problem of the number of connected components of Z(f) for random f.

Their methods show that most of the components  $c \in C(f)$  are small occuring at a scale of 1/t and thus semi-localising this count.

### Nazarov-Sodin

Theorem (Nazarov-Sodin 2013,2016)

There are positive constants  $\beta_{n,\alpha}$  such that

 $|C(f)| \sim \beta_{n,\alpha} t^n$  as  $t \to \infty$ 

for the random f in  $\mathcal{E}_{n,\alpha}(t)$ , for  $\alpha = 0, 1$ .

- Their 'soft' proof offers no effective lower bounds for these N-S constants  $\beta_{n,\alpha}$ .
- Their barrier method (2008) can be made effective but the resulting bounds are extremely small.

  - $\begin{array}{ll} & \beta_{2,0} \geq 10^{-320} & {\rm Nastasescu,} \\ & \beta_{2,0} \geq 10^{-70} & {\rm deCourcy-Ireland,} \end{array}$
  - $\beta_{n,0} \ge e^{-e^{257n^3/2}}$  Gayet-Welschinger
- For a random f the set Z(f) has many components and we can ask about their topologies.

## **Topologies and Nestings**

For  $f \in \mathcal{E}_{n,lpha}(t)$  set

(A) 
$$\mu_{\mathcal{C}(f)} := \frac{1}{|\mathcal{C}(f)|} \sum_{c \in \mathcal{C}(f)} \delta_{t(c)}$$

where t(c) is the topological type of c in  $\tilde{H}(n-1)$  and  $\delta_{t(c)}$  is the point mass at t(c).

 $\mu_{\mathcal{C}(f)}$  is a probability measure on  $\tilde{H}(n-1)$ .

(B) 
$$\mu_{\mathcal{X}(f)} := \frac{1}{|\mathcal{C}(f)|} \sum_{c \in \mathcal{C}(f)} \delta_{e(c)}$$

where e(c) is the smallest of the two rooted trees that one gets from X(f) after removing the edge  $c \in C(f)$ .

 $\mu_{\mathcal{X}(f)}$  is a probability measure on  $\mathcal{T}$  (the space of finite rooted trees).

### Topologies and Nestings: main result

Theorem[Wigman-S 2015, Canzani-S 2017]

(i) There are **probability** measures  $\mu_{C,n,\alpha}$  on  $\tilde{H}(n-1)$  and  $\mu_{X,n,\alpha}$  on  $\mathcal{T}$  such that for random  $f \in \mathcal{E}_{n,\alpha}(t)$ 

 $\mu_{C(f)} \rightarrow \mu_{C,n,\alpha}, \qquad \qquad \mu_{X(f)} \rightarrow \mu_{X,n,\alpha}$ 

as  $t \to \infty$ , and the convergence is tight.

(ii)  $\operatorname{supp}(\mu_{C,n,\alpha}) = H(n-1)$  and  $\operatorname{supp}(\mu_{X,n,\alpha}) = \mathcal{T}$ .

**Obs.** H(n-1) is the subset of diffeomorphism types in  $\tilde{H}(n-1)$  that can be embedded into  $\mathbb{R}^n$ .

**Obs.** These give universal laws for the distributions of the topologies of the components of random real hypersurfaces ( $\alpha = 0$ ) and monochromatic waves ( $\alpha = 1$ ), as well as for nesting ends.

## Betti numbers and connectivities

The theorem implies universal laws for the distribution of the Betti numbers of the components as well as for the connectivities of the domains.

For  $f \in \mathcal{E}_{n, \alpha}(t)$  set

(A) 
$$\nu_{Betti(f)} := \frac{1}{|\mathcal{C}(f)|} \sum_{c \in \mathcal{C}(f)} \delta_{B(c)}$$

where  $B(c) = (b_1(c), \ldots, b_{n-2}(c))$  is the collection of Betti numbers.

(B) 
$$\nu_{con(f)} := \frac{1}{|\Omega(f)|} \sum_{\omega \in \Omega(f)} \delta_{m(\omega)}$$

where  $m(\omega)$  is the number of boundary components of  $\omega$ . The universal limits are

$$u_{{\sf Betti},n,lpha} ext{ on } (\mathbb{Z}_{\geq 0})^{n-2}, \qquad 
u_{{\sf con},n,lpha} ext{ on } \mathbb{N}.$$

## Remarks

- The existence of the universal measures follows the 'soft' methods of N-S. However, the tightness of the convergence (with the consequence that all universal measures are probability measures) and the determination of their supports (especially when  $\alpha = 1$ ) is a challenge.
- Gayet and Welschinger (2013) used the barrier method, in the context of the Kostlan distribution and its generalizations, to show that every topological type c ∈ H(n − 1) occurs with positive probability.
- Lelario-Lunderberg (2013) used the barrier method to give lower bounds for the number of connected components for random Fubini-Study ( $\alpha = 0$ ).

## How do the universal measures look like?

Barnett/Jin (2013, 2017) carried out Monte-Carlo simulations n = 2, 3.

- When n = 2 we have H(1) is a point.
- The connectivity measures  $\nu_{con(f)}$  satisfy

$$\mathbb{E}\left(\nu_{con(f)}\right) = \sum_{m=1}^{\infty} m \cdot \nu_{con(f)}(m) = \sum_{\omega \in \Omega(f)} \frac{m(\omega)}{|\Omega(f)|} = 2 + o(1).$$

 $\begin{vmatrix} m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \nu_{con,2,0} & 0.973 & 0.027 & 0.009 & 0.003 & 0.002 & 0.002 & 0.001 & 0.001 \end{vmatrix}$ 

| m               | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      |
|-----------------|-------|-------|-------|-------|-------|-------|-------|--------|
| $\nu_{con,2,1}$ | 0.906 | 0.055 | 0.010 | 0.006 | 0.003 | 0.002 | 0.001 | 0.0009 |

### Observations

• It appears that

$$\mathbb{E}(
u_{\textit{con},lpha,2}) < 2$$

corresponding to the persistence of many domains of large connectivity.

- The N-S constants β<sub>2,α</sub> are of order 10<sup>-2</sup> and for α = 2 the random plane curve is 4% Harnack (that is, it has 4% of the maximum number of ovals that such a curve can have). M. Natasescu(2012).
- When n = 3 we have H(2) is the set of compact orientable surfaces; determined by their genus g ∈ Z≥0. So μ<sub>C,3,α</sub> is a probability measure on Z≥0.

$$\mu_{\mathcal{C}(f)}$$

A Kac-Rice computation (Podkoytov 2001) gives

$$\mathbb{E}\left(|\chi(Z(f)|)\sim egin{cases} rac{t^3}{3^{3/2}}, & lpha=0\ rac{t^3}{5^{3/2}}, & lpha=1. \end{cases}
ight.$$

Thus,

$$\mathbb{E}\left(\mu_{\mathcal{C}(f)}\right) = \sum_{g=0}^{\infty} g \cdot \mu_{\mathcal{C}(f)}(g) \sim \begin{cases} 2 + \frac{1}{3^{3/2}\beta_{3,0}} = A_0, & \alpha = 0\\ 2 + \frac{1}{5^{3/2}\beta_{3,1}} = A_1, & \alpha = 1 \end{cases}$$

In particular,

$$\mathbb{E}\left(\mu_{\mathcal{C},\mathbf{3},\alpha}\right)\leq \mathcal{A}_{\alpha}.$$

What Barnett-Jin find for  $\mu_{\mathcal{C}(f)}$  is dramatic.

# Zero set



# Zero set







### Observations

- Apparently we are in a super critical regime with a unique giant percolating component π(f) ∈ C(f).
- The N-S constants  $\beta_{3,0}, \beta_{3,1}$  are very small ( $\approx 10^{-7}$ ) and the feasibility of observing  $\mu_{C,3,\alpha}, \mu_{X,3,\alpha}$  is problematic.
- A<sub>0</sub>, A<sub>1</sub> are very large so there is a dramatic loss of mean in going from the finite measures to their limits.
- In the main equidistribution theorems each topological component is counted with equal weight. So there is no contradiction as π(f) is treated as equal to others.
- Clearly, to complete the basic understanding of Z(f), the topology of π(f) needs to be examined.

## Speculations/Questions

- As an element of the discrete H(n − 1), π(f) → ∞ as t → ∞ for random f.
- Betti $(\pi(f))$ :

$$\lim_{t\to\infty}\frac{B(\pi(f))}{t^n} = \begin{cases} 0 \in (\mathbb{Z}_{\geq 0})^{n-2} & n-1 \text{ odd} \\ (0,\ldots,0,\delta_{\frac{n-1}{2}},0,\ldots,0) & n-1 \text{ even} \end{cases}$$

with  $\delta_{\frac{n-1}{2},\alpha} > 0.$ 

That is, for n-1 even the homology of the percolating component is  $\delta$ % of the homology of that of a complex hypersurface f = 0.

To explain the source of the super critical percolation we need to go into some of the analysis.

### Brief comments about proofs

Covariance:

$$K_{n,\alpha}(t;x,y) = \mathbb{E}_{f \in \mathcal{E}_{n,\alpha}(t)}(f(x)f(y)).$$

As  $t \to \infty$  one shows using well known asymptotics of special functions and micro-local analysis in the more general setting of 'band limited functions' on a manifold, Canzani-Hanin (2015)

$$\frac{\mathcal{K}_{n,\alpha}(t;x,y)}{\dim \mathcal{E}_{n,\alpha}(t)} = \begin{cases} B_{n,\alpha}(t\,d(x,y)) + O(1/t), & td(x,y) \leq 1, \\ O(1/t), & td(x,y) \geq 1, \end{cases}$$

where

$$B_{n,lpha}(\omega) = B_{n,lpha}(|\omega|) = rac{1}{|\Omega_{lpha}|} \int_{\Omega_{lpha}} e^{i\langle\omega,\xi
angle} d\xi$$

with  $\Omega_{lpha} = \{ \omega : \ lpha \leq |\omega| \leq 1 \}.$ 

## Brief comments about proofs

- Following N-S we show that our quantities can be studied semi locally, i.e. in neighborhoods of size 1/t.
- After scaling one arrives at a Gaussian translation invariant isotropic field on ℝ<sup>n</sup> (with slow decay of spatial correlations).
- The existence of the limiting measures, as well as the convergence in measure, follows from soft ergodic theory of the action of  $\mathbb{R}^n$ .
- The properties of the universal µ's, that of being probability measures (i.e. no escape of topology for them) and that they charge every admissible atom positively, is much harder earned.

### Brief comments about proofs

- To control the escape of topology, that is the tightness of the convergence, we show that most components of the scaled Gaussian are geometrically controlled (specifically their curvatures) and eventually apply a form of Cheeger finiteness.
- To show that the support is full in the case  $\alpha = 1$  requires one to prescribe topological configurations locally for "1-harmonic"" entire functions

$$\Delta \psi + \psi = 0$$
 on  $\mathbb{R}^n$ .

For this we prove versions of Runge type approximation/interpolation theorems for such  $\psi$ 's.

• The nesting prescription is the most challenging and is achieved in n = 3 by deformation

$$f = f_0 + \varepsilon f_1$$

 $f_0 = \sin(x)\sin(y)\sin(z)$  and  $f_1$  a suitable 1-harmonic function.

#### Percolating component

To end we explain the source of the dominant percolating  $\pi(f)$ . For  $\alpha = 1$  and n = 3 the scaling limit mean zero Gaussian field on  $\mathbb{R}^3$  has

$$\mathsf{Cov}(x,y) = \mathsf{K}(x,y) = * rac{\mathsf{sin}(|x-y|)}{|x-y|} \qquad x,y \in \mathbb{R}^3$$

for this field or any similar Gaussian field define the critical level  $h_*$  by:

- For h > h<sub>∗</sub> the set {x : f(x) ≥ h} has no infinite component with probability 1.
- For h < h<sub>∗</sub> the set {x : f(x) ≥ h} has an infinite component with probability 1.

 $h_*$  is a function of the field.

## Conjecture

**Conjecture:** If  $n \ge 3$ , then  $h_* > 0$ .

- In particular, the zero levels h = 0 are supercritical. Note that for n = 2 it is known that  $h_* = 0$  (Alexander '96).
- Evidence towards this conjecture is provided by the recent proof (Rodriguez, Drewitz, Prevost) of the 1987 conjecture of Brimont-Lebowitz-Maes, that for the discrete analogue on  $\mathbb{Z}^3$  of the Gaussian free field ( $K(x, y) = \frac{1}{|x-y|}$ ) one has  $h_* > 0$ .

### Some references

- Anantharaman. "Topologie de hypersurfaces nodales de fonctions aleatoires Gaussiannes". Sem. Bour, Exp 1116, 369-408 (2016)
- Barnett and Jin. "Statistics of random plane waves" (2015).
- Canzani and Hanin. "Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law". Anal Pde, 8, (2015) 1707–1731.
- Canzani and Sarnak. "Topology and nesting of the zero set components of monochromatic random waves". arXiv; 1701:00034.
- Drewitz and Prevost and Rodriguez. "The sign clusters of the massless Gaussian free field percolate on  $\mathbb{Z}^d$ ,  $d \ge 3^{"}$  (2017).
- Nazarov and Sodin. "Asymptotic laws for the spatial distribution and number of connected components of zero sets of Gaussian functions." Zh. Mat. Fiz. Anal. Geom. 12 (2016), 205–278.
- Sarnak-Wigman. "Topologies of nodal sets of band limited functions". ArXiv: 1510-08500.