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Nodal portrait



Setting

•
Monochromatic random waves model the eigenfunctions of a
quantization of a classically chaotic hamiltonian (M. Berry).

•
Random Fubini-Study ensembles are a model for random real
algebraic geometry.

Single variable:

f (x) =
tX

j=0

a
j

x j a
j

2 R

Z (f ) = {x : f (x) = 0}

Topology of Z (f ) is |Z (f )|.

W1,t = vector space of such polynomials f .



What is random? (single variable)

We stick to centered Gaussian ensembles on a (finite) dimensional vector
space W . This is equivalent to giving an inner product h , i on W .

’Naive’ ensemble:

hf , gi =
tX

j=0

a
j

b
j

on W1,t .

• equivalent to choosing the a0
j

s as i.i.d. standard Gaussians.
•

not natural since it singles out ±1 as to where most the zeros locate
themselves.



What is random? (single variable)

Real Fubini-Study ensemble: f (x , y) =
tX

j=0

a
j

x jy t�j ,

with
hf , gi =

Z

R2
f (x)g(x)e�

|x|2
2 dx = ⇤

Z

P1(R)
f (✓)g(✓)d✓.

• In this ensemble {x jy t�j : j = 0, . . . , t} are not orthogonal, rather
sin(✓k) and cos(✓k) are.

Complex Fubini-Study ensemble on W1,t :

hf , gi =

Z

P1(C)
f̃ (z)g̃(z)d�(z).

• f̃ , g̃ are complex extensions of f , g .
• In this ensemble {x jy t�j : j = 0, . . . , t} are orthogonal.



Kac-Rice formulas (single variable)

Kac-Rice formulas give asymptotically the number of zeros of f 2 W1,t

• Naive ensemble: 2
⇡ log(t)

• Real Fubini-Study : t/
p

3
• Complex Fubini-Study :

p
t

• Monochromatic (harmonic): t

Cov
f

t

(x , y) = E(f
t

(x), f
t

(y)) =: K
t

(x , y).

lim
"!0

1
2"

|{x : |f (x)| < "}| =
X

a2Z(f )

1
|f 0(a)| .

E(|Z (f )|) = E
 

lim
"!0

1
"

Z

{|f |<"}
|f 0(y)|dy

!
.

• This can be computed in terms of K
t

(x , y).
• Reduces problem to the asymptotics of K

t

(x , y) as t ! 1.



What is random? (several variables)

W
n,t : space of f (x0, x1, . . . , xn) homogeneous of degree t.

• same definitions of the naive, real F-S, complex F-S, monochromatic.

• real F-S (↵ = 0):

hf , gi =

Z

P

n(R)
f (x)g(x)d�(x).

• monochromatic random waves (↵ = 1): same h , i but restricted to
the subspace H

n,t of W
n,t consisting of harmonic polynomials.

Denote these two ensembles by E
n,↵ with ↵ = 0, 1.



Zero set: Z (f ) = {x 2 Pn(R) : f (x) = 0}

• For a random f , Z (f ) is smooth.

• Let C (f ) be the connected components of Z (f ). These are compact,
(n � 1)-dimensional manifolds.

• Let H̃(n � 1) be the countable collection of compact,
(n � 1)-dimensional manifolds mod diffeos.

Z (f ) =
[

c2C(f )

c , c 2 H̃(n � 1).

Pn(R)\Z (f ) =
[

!2⌦(f )

!.

the !’s are the nodal domains of f .

What can we say about the topologies of a random f as t ! 1?



Nesting of nodal domains

• Nesting tree X (f ) (Hilbert for ovals).

• The vertices of X (f ) are the nodal domains ! 2 ⌦(f ). Two vertices !
and !0 are joined if they have a common boundary c 2 C(f ) .

• X (f ) is a tree (Jordan-Brouwer).

|⌦(f )| = |C(f )|� 1.

• X (f ) carries all the combinatorial information about the connectivities
m(!) for ! 2 ⌦(f ).



Nodal portrait: Fubini-Study ensemble (↵ = 0)

Sum of random spherical harmonics of degree  80 (A. Barnett).



Nodal portrait: Random spherical harmonic (↵ = 1)

random spherical harmonic of degree = 80. (A. Barnett)



Zero set



Nesting tree



Local and global quantities

For a Gaussian ensemble the Kac-Rice formula allows for the explicit
computation of the expected values of local quantities.

• |Z (f )| the induced (n � 1) dimensional volume of Z (f ).
• The Euler number �(Z (f )).
• The number of critical points of f .

The question of global topology of Z (f ) is much more difficult.

Nazarov and Sodin [NS] have introduced some powerful “soft" techniques
to study the problem of the number of connected components of Z (f ) for
random f .

Their methods show that most of the components c 2 C (f ) are small
occuring at a scale of 1/t and thus semi-localising this count.



Nazarov-Sodin

Theorem (Nazarov-Sodin 2013,2016)

There are positive constants �
n,↵ such that

|C (f )| ⇠ �
n,↵tn as t ! 1

for the random f in E
n,↵(t), for ↵ = 0, 1.

• Their ’soft’ proof offers no effective lower bounds for these N-S
constants �

n,↵.
• Their barrier method (2008) can be made effective but the resulting

bounds are extremely small.
• �2,0 � 10�320 Nastasescu,
• �2,0 � 10�70 deCourcy-Ireland,
• �

n,0 � e�e

257n3/2
Gayet-Welschinger

• For a random f the set Z (f ) has many components and we can ask
about their topologies.



Topologies and Nestings

For f 2 E
n,↵(t) set

(A) µC(f ) :=
1

|C(f )|
X

c2C(f )

�
t(c)

where t(c) is the topological type of c in H̃(n � 1) and �
t(c) is the point

mass at t(c).

µC(f ) is a probability measure on H̃(n � 1).

(B) µX (f ) :=
1

|C(f )|
X

c2C(f )

�
e(c)

where e(c) is the smallest of the two rooted trees that one gets from X (f )
after removing the edge c 2 C(f ).

µX (f ) is a probability measure on T (the space of finite rooted trees).



Topologies and Nestings: main result

Theorem[Wigman-S 2015, Canzani-S 2017]

(i) There are probability measures µ
C ,n,↵ on H̃(n � 1) and µ

X ,n,↵ on T
such that for random f 2 E

n,↵(t)

µ
C(f ) ! µ

C ,n,↵, µ
X (f ) ! µ

X ,n,↵

as t ! 1, and the convergence is tight.

(ii) supp(µ
C ,n,↵) = H(n � 1) and supp(µ

X ,n,↵) = T .

Obs. H(n � 1) is the subset of diffeomorphism types in H̃(n � 1) that can be
embedded into Rn.

Obs. These give universal laws for the distributions of the topologies of the
components of random real hypersurfaces (↵ = 0) and monochromatic waves
(↵ = 1), as well as for nesting ends.



Betti numbers and connectivities

The theorem implies universal laws for the distribution of the Betti numbers
of the components as well as for the connectivities of the domains.

For f 2 E
n,↵(t) set

(A) ⌫
Betti(f ) :=

1
|C(f )|

X

c2C(f )

�
B(c)

where B(c) = (b1(c), . . . , b
n�2(c)) is the collection of Betti numbers.

(B) ⌫
con(f ) :=

1
|⌦(f )|

X

!2⌦(f )

�
m(!)

where m(!) is the number of boundary components of !.
The universal limits are

⌫
Betti ,n,↵ on (Z�0)

n�2, ⌫
con,n,↵ on N.



Remarks

• The existence of the universal measures follows the ’soft’ methods of
N-S. However, the tightness of the convergence (with the consequence
that all universal measures are probability measures) and the
determination of their supports (especially when ↵ = 1) is a challenge.

• Gayet and Welschinger (2013) used the barrier method, in the context
of the Kostlan distribution and its generalizations, to show that every
topological type c 2 H(n � 1) occurs with positive probability.

• Lelario-Lunderberg (2013) used the barrier method to give lower
bounds for the number of connected components for random
Fubini-Study (↵ = 0).



How do the universal measures look like?

Barnett/Jin (2013, 2017) carried out Monte-Carlo simulations n = 2, 3.

• When n = 2 we have H(1) is a point.
• The connectivity measures ⌫

con(f ) satisfy

E
�
⌫
con(f )

�
=

1X

m=1

m · ⌫
con(f )(m) =

X

!2⌦(f )

m(!)

|⌦(f )| = 2 + o(1).

m 1 2 3 4 5 6 7 8
⌫
con,2,0 0.973 0.027 0.009 0.003 0.002 0.002 0.001 0.001

m 1 2 3 4 5 6 7 8
⌫
con,2,1 0.906 0.055 0.010 0.006 0.003 0.002 0.001 0.0009



Observations

• It appears that
E(⌫

con,↵,2) < 2

corresponding to the persistence of many domains of large
connectivity.

• The N-S constants �2,↵ are of order 10�2 and for ↵ = 2 the random
plane curve is 4% Harnack (that is, it has 4% of the maximum
number of ovals that such a curve can have). M. Natasescu(2012).

• When n = 3 we have H(2) is the set of compact orientable surfaces;
determined by their genus g 2 Z�0. So µC,3,↵ is a probability measure
on Z�0.



µC(f )

A Kac-Rice computation (Podkoytov 2001) gives

E (|�(Z (f )|) ⇠
(

t

3

33/2 , ↵ = 0
t

3

53/2 , ↵ = 1.

Thus,

E
�
µC(f )

�
=

1X

g=0

g · µ
C(f )(g) ⇠

8
<

:
2 + 1

33/2�3,0
= A0, ↵ = 0

2 + 1
53/2�3,1

= A1, ↵ = 1.

In particular,
E (µ

C ,3,↵)  A↵.

What Barnett-Jin find for µC(f ) is dramatic.



Zero set
Z�� for n = 3



Zero set

Figure 11: One of the two primary components of a monochromatic 3D plane wave
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Zero set



Observations

• Apparently we are in a super critical regime with a unique giant
percolating component ⇡(f ) 2 C(f ).

• The N-S constants �3,0,�3,1 are very small (⇡ 10�7) and the
feasibility of observing µC,3,↵, µX ,3,↵ is problematic.

• A0,A1 are very large so there is a dramatic loss of mean in going from
the finite measures to their limits.

• In the main equidistribution theorems each topological component is
counted with equal weight. So there is no contradiction as ⇡(f ) is
treated as equal to others.

• Clearly, to complete the basic understanding of Z (f ), the topology of
⇡(f ) needs to be examined.



Speculations/Questions

• As an element of the discrete H(n � 1), ⇡(f ) ! 1 as t ! 1 for
random f .

• Betti(⇡(f )):

lim
t!1

B(⇡(f ))

tn
=

(
0 2 (Z�0)n�2 n � 1 odd
(0, . . . , 0, �

n�1
2
, 0, . . . , 0) n � 1 even

with �
n�1
2 ,↵ > 0.

That is, for n � 1 even the homology of the percolating component is �%
of the homology of that of a complex hypersurface f = 0.

To explain the source of the super critical percolation we need to go into
some of the analysis.



Brief comments about proofs

Covariance:
K
n,↵(t; x , y) = E

f 2E
n,↵(t)(f (x)f (y)).

As t ! 1 one shows using well known asymptotics of special functions
and micro-local analysis in the more general setting of ’band limited
functions’ on a manifold, Canzani-Hanin (2015)

K
n,↵(t; x , y)

dimE
n,↵(t)

=

(
B
n,↵(t d(x , y)) + O(1/t), td(x , y)  1,

O(1/t), td(x , y) � 1,

where
B
n,↵(!) = B

n,↵(|!|) =
1

|⌦↵|

Z

⌦↵

e ih!,⇠id⇠

with ⌦↵ = {! : ↵  |!|  1}.



Brief comments about proofs

• Following N-S we show that our quantities can be studied semi locally,
i.e. in neighborhoods of size 1/t.

• After scaling one arrives at a Gaussian translation invariant isotropic
field on Rn (with slow decay of spatial correlations).

• The existence of the limiting measures, as well as the convergence in
measure, follows from soft ergodic theory of the action of Rn.

• The properties of the universal µ’s, that of being probability measures
(i.e. no escape of topology for them) and that they charge every
admissible atom positively, is much harder earned.



Brief comments about proofs

• To control the escape of topology, that is the tightness of the
convergence, we show that most components of the scaled Gaussian
are geometrically controlled (specifically their curvatures) and
eventually apply a form of Cheeger finiteness.

• To show that the support is full in the case ↵ = 1 requires one to
prescribe topological configurations locally for “1-harmonic’" entire
functions

� +  = 0 on Rn.

For this we prove versions of Runge type approximation/interpolation
theorems for such  ’s.

• The nesting prescription is the most challenging and is achieved in
n = 3 by deformation

f = f0 + "f1

f0 = sin(x) sin(y) sin(z) and f1 a suitable 1-harmonic function.



Percolating component

To end we explain the source of the dominant percolating ⇡(f ). For ↵ = 1
and n = 3 the scaling limit mean zero Gaussian field on R3 has

Cov(x , y) = K (x , y) = ⇤sin(|x � y |)
|x � y | x , y 2 R3

for this field or any similar Gaussian field define the critical level h⇤ by:

• For h > h⇤ the set {x : f (x) � h} has no infinite component with
probability 1.

• For h < h⇤ the set {x : f (x) � h} has an infinite component with
probability 1.

h⇤ is a function of the field.



Conjecture

Conjecture: If n � 3, then h⇤ > 0.

• In particular, the zero levels h = 0 are supercritical. Note that for
n = 2 it is known that h⇤ = 0 (Alexander ’96).

• Evidence towards this conjecture is provided by the recent proof
(Rodriguez, Drewitz, Prevost) of the 1987 conjecture of
Brimont-Lebowitz-Maes, that for the discrete analogue on Z3 of the
Gaussian free field (K (x , y) = 1

|x�y |) one has h⇤ > 0.
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