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Random spherical harmonics:

Hn real Hilbert space of 2D spherical harmonics equipped with the
L2(S2)-norm, dimHn = 2n + 1

(Yk) orthonormal basis in Hn

(ξk) Gaussian IIDs, E|ξk |2 = 1
2n+1

fn =
∑n

k=−n ξkYk random spherical harmonic of degree n

The distribution of fn
I is independent of the choice of the ONB in Hn

I is invariant w.r.t. rotations of the sphere S2

Z (fn) = f −1{0} the zero set of fn

N(fn) the number of connected components of Z (fn)



Major difficulties:

I ”non-locality” of topological observables (contrary to the
length);

I slow off-diagonal decay of the covariance E[fn(x)fn(y)]

E[fn(x)fn(y)] = Pn(cos Θ(x , y)),

Pn Legendre polynomial of degree n, Pn(1) = 1,

Θ(x , y) angle between x , y ∈ S2.

Scaled covariance: Pn

(
cos zn

)
∼ J0(z), the 0-th Bessel function

It is more natural to think of fn as defined on the sphere nS2 of
radius n and of area ' n2. In this scale the covariance decays as
dist−1/2.



Bogomolny and Schmit percolation model

In 2001, Bogomolny and Schmit proposed a remarkable
percolation-like model for description of the topology of the zero
set Z (fn). Their model completely ignores slow decaying
correlations and is very far from being rigorous.

On the other hand, attempts to digest their work stimulated much
of the progress recently achieved in this area.



LLN + Exponential concentration:

THEOREM 1 (F.Nazarov, M.S., Amer. J. Math., 2009)

P
[∣∣N(fn)− νn2

∣∣ > εn2
]
< Ce−c(ε)n

with some ν > 0 and c(ε) & ε15.

The proof gives

ν = lim
n→∞

E
[ 1

area(Gn)

]
,

where Gn is a nodal domain of fn on n S2 that contains a marked point x .

Afterwards, we have shown that the Law of Large Numbers with a

positive limit (but without the exponential concentration) holds for rather

general classes of smooth Gaussian fields on Rd and of smooth Gaussian

ensembles on manifolds (J. Math. Phys., Analysis, Geometry, 2016).



Far-reaching extensions

:

I “derandomization” on the torus: Bourgain, Buckley-Wigman,
Ingremeau;

I other topological observables: Gayet-Welschinger,
Lerario-Lundberg (upper and lower bounds for mean values),
Sarnak-Wigman, Canzani-Sarnak (the Law of Large Numbers,
nesting configurations, especially, for so called monochromatic
waves);

I fields and ensembles with positive correlations: Malevich
(1972, sic!), Beffara-Gayet, Beliaev-Muirhead-Wigman,
Rivera-Vanneuville.



Do large nodal domains exist?

Gn nodal domain of fn on n S2 that contains a marked point

The only thing we know about the distribution of area(Gn) is that, for
some positive constants C , c ,

P
[
area(Gn) < C

]
> c

which yields positivity of the limiting constant ν = lim
n→∞

E
[ 1

area(Gn)

]
in

Theorem 1.

QUESTON 1 Is it true that lim
C→∞

lim sup
n→∞

P
[
area(Gn) > C

]
= 0?

We do not know the answer to a much weaker question:

QUESTON 1a Show that for any δ > 0, lim
n→∞

P
[
area(Gn) > δn2

]
= 0.

We also do not know anything about domains of a large diameter that

contain a given point.



Level sets:

Though the sets {fn > ε} and {fn < ε} have roughly the same
areas, topologically, the former one should look as a collection of
many small islands in ocean formed by the latter one.

Given ε, δ consider that event Xn(ε, δ) that the level set {fn > ε}
has a connected component of diameter at least δn.

QUESTION 2 Show that for any ε, δ > 0, lim
n→∞

P
[
Xn(ε, δ)

]
= 0.



A version of the Michael Berry prediction:

Consider high-energy Laplace eigenfunctions on the sphere
endowed with a generic smooth Riemannian metric close to the
constant one.

QUESTION 3 Do they (or at least some portion of them) behave
similarly to random spherical harmonics?

Instead of perturbing the round metric on the sphere S2, one can
add a small random potential to the Laplacian on the round
sphere. The question remains just as hard.



Size of fluctuations of N(fn):

N(fn) the number of connected components of the zero set Z (fn).

QUESTION 4 Estimate the variance of N(fn).

I Trivial bounds: 1 . Var[N(fn)] . n4.

I The Bogomolny and Schmit prediction says that Var[N(fn)]
grows as n2, that is, as E[N(fn)].

I The exponential concentration

P
[∣∣N(fn)− νn2

∣∣ > εn2
]
< Ce−cε

15n

yields the upper bound: Var[N(fn)] . n4−
2
15 .



Recent “little advance”:

THEOREM 2 (work in progress with Fedya Nazarov)

Var[N(fn)] & nσ

with some σ > 0

REMARK This lower bound holds for any non-degenerated
isotropic smooth Gaussian fields on n S2 with decay of correlations
& dist−c with some c > 0.

The proof upper bound Var[N(fn)] . n4−σ requires some additional
restrictions on the ensemble (which are, likely, unnecessary).

In what follows we will discuss main ideas from the proof of the
lower bound.



Saddle points with small critical values:

Heuristically, most of the fluctuations are caused by saddle points
of fn with small critical values that yield so called “avoided
crossings” of the zero set Z (fn).

I.e., switches in the topology of the zero set of fn are caused by a
point process that has a low intensity but strong long range
dependence, as illustrated on the following simulation produced by
Dima Beliaev.

Instead of random spherical harmonics Beliaev simulated so called
random plane waves (RPWs) but one may safely ignore the
difference (the RPW is a scaling limit of the our random spherical
harmonics on n S2 as n→∞).
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Blue lines are zero lines of a RPW F0, blue and red points are maxima

and minima of F0, and black points are saddle points of F0. Black lines

are zero lines of the sum F0 + 1
10F1, where F1 is another RPW,

equidistributed with F0 and independent of F0, green domains are

connected components of the set where this sum is positive.



Step 1: Low level critical points

f = fn random spherical harmonic of degree n on n S2, E|f |2 = 1

Cr(α) =
{
z ∈ n S2 : ∇f (z) = 0, |f (z)| 6 α

}
, α = n−2+ε

“With high probability” (w.h.p.) means except of an event of
probability O(n−c) with some c > 0.

Non-degeneracy: w.h.p., maxCr(α) |(∇2f )−1| . n3ε. That is, the
Hessian ∇2f does not degenerate on Cr(α).

LEMMA 1 W.h.p., the set Cr(α) is relatively large: |Cr(α)| & ncε,
and the points in this set are n1−Cε-separated.



Step 2: Introducing a small perturbation

fα =
√

1− α2f + αg , g is an independent copy of f

We condition on f and estimate from below the conditional
variance Var

[
N(fα)

∣∣f ]
LEMMA 2 W.h.p., topology of Z (fα) is determined by the
collection of signs of fα(z) at z ∈ Cr(α′). Here α′ = αnε = n−2+2ε.

This lemma allows us “to localize” the problem. Its proof needs a
caricature of a quantitative Morse theory.



Step 3: Reduction to independent percolation

Recall: α = n−2+ε, α′ = n−2+2ε, fα =
√

1− α2f + αg , g is an
independent copy of f

We replace g by its independent copy gz (some linear algebra with
estimates, cf. IMRN, 2011).

This step needs a good separation between the points of Cr(α′)
(Lemma 1).

Define a collection of independent random functions
f̃α =

√
1− α2f + αgz , z ∈ Cr(α′).

LEMMA 3 W.h.p., sgn(fα(z)) = sgn(f̃α(z)), z ∈ Cr(α′).

This reduces the problem to the independent percolation process on a
graph with the degree of each vertex either 4 (saddle points of f ) or 0
(maxima and minima of f ).

Discard the latter case and assume that the degree of each vertex is 4.



Step 4: Independent percolation on some graphs

G = G (V ,E ) a graph embedded in n S2

The degree of each vertex v ∈ V is 4.

In each vertex v , we independently replace the edges crossing by
one of two possible avoided crossing configuration, p(v), 1− p(v)
are the corresponding probabilities.

Γ random percolation configuration of loops,

N(Γ) the number of loops in Γ.

LEMMA 4 : For any p0 > 0,

Var[N(Γ)] > c(p0)|V (p0)|,

where V (p0) = {v ∈ V : p0 6 p(v) 6 1− p0}.



The End


