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N-player stochastic differential game

→ N players with private state processes evolving as
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→ Objective of player i: choose a control αi ∈ A that minimizes
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→ Statistically identical players: same functions b, σ, f , g
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N-player stochastic differential game

Problems:

search for equilibria: very difficult

even when they exist, difficult to characterize

Idea:

↪→ for large symmetric games, some averaging/independence
are expected when the number of players tends to infinity

↪→ use theory of propagation of chaos (Sznitman 1991):
approximation by asymptotic arguments

↪→ formulation of the problem for a representative agent

Some literature: Carmona-Delarue (2013), Fischer (2015),
Lacker (2015), Lacker (2016)
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Asymptotic argument

N-player game − − − − − − −− > N→ ∞

I. Nash equilibrium − − −− > Mean Field Game

(competitive)

II. Pareto equilibrium − − −− > McKean Vlasov

(cooperative - social planner)

→ I. Nash equilibrium: each agent chooses the control as best
answer to other agents’ actions

→ II. Pareto equilibrium: agents choose their controls so as to
minimize their average cost
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Problem Formulation
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Generalized McKean-Vlasov control problem

→ Asymptotic formulation of cooperative equilibria:
Generalized McKean-Vlasov control problem:

inf
α∈A
E

ñ∫ T

0
f (t, Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))

ô
s.t. dXt = b (t, Xt, αt,L(Xt, αt)) dt + σ (t, Xt, αt,L(Xt, αt)) dWt.

In the asymptotic formulation of competitive equilibria (MFG),
we would fix any flow of measures (ξt)0≤t≤T , and solve the
corresponding control problem, then check fixed point.

Under suitable conditions, the optimal controls are ε-optimal
for large systems of players (cf. Lacker 2016).

For simplicity from now on we remove the dependence on t
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Generalized McKean-Vlasov control problem

Classical approaches for MFG and MKV:

↪→ analytic (by PDEs) → HJB equation

↪→ probabilistic (by BSDEs) → stochastic maximum principle

Extensive literature on MFG and MKV:

• Lasry and Lions (2006, 2007)
• Huang, Caines, and Malhamé (2006, 2007)
• Cardaliaguet, Carmona, Delarue, Fischer, Fouque, Lachapelle,

Lacker, Lehalle, Pham, Basei, Wei ...

Our contribution: allow dependence on the law of the control and

↪→ probabilistic approach: develop appropriate Pontryagin
maximization principle (N&S) in this general framework;

↪→ optimal transport approach: use dynamic OT to study a weak
formulation of the MKV control problem
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Probabilistic approach
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Probabilistic approach

Core concepts:

Hamiltonian: H : Rd × Rk × P2(Rd × Rk) × Rd × Rd×d → R

H(x, a, ξ, y, z) = b(x, a, ξ) · y + σ(x, a, ξ) · z + f (x, a, ξ)

L-differentiability: differentiability w.r.t. laws via lifting functions
(u : P2(Rd × Rk)→ R L-differentiable at ξ if the lifting function
ũ : L2(Ω̃, F̃ , P̃;Rd × Rk) 3 (X̃, α̃) 7→ ũ(X̃, α̃) = u(L(X̃, α̃)) is
Fréchet differentiable at some (X̃, α̃) with L(X̃, α̃) = ξ)

for any admissible α ∈ A, with X = Xα the corresponding
controlled state process, the adjoint processes (Y,Z) satisfy:{

dYt = −
î
∂xH

(
θt,Yt,Zt

)
+ Ẽ

[
∂νH

(
θ̃t, Ỹt, Z̃t)(Xt, αt)

]ó
dt + ZtdWt,

YT = ∂xg
(
XT ,L(XT )

)
+ Ẽ

[
∂νg
(
X̃T ,L(XT )

)
(XT )

]
,

where θt = (Xt, αt,L(Xt, αt)), ∂ν, ∂η deriv. w.r.t. L(Xt),L(αt)
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Probabilistic approach

We need the “usual bunch” of regularity assumptions: roughly,
b, σ, f , g have continuous and bounded derivatives w.r.t. x, a, ξ.

More precisely:

I. b, σ, f , g differentiable w.r.t. (x, α), for ξ fixed, with ∂x, ∂α
continuous; and L-differentiable w.r.t. ξ, with ∂ν continuous.

II. ∂x(b, σ) and ∂α(b, σ) uniformly bounded and ∂ν(b, σ) has an
L2-norm uniformly bounded in (x, α, ξ). There exists a constant L
such that, for any R ≥ 0 and any (x, α, ξ) s.t. |x|, |α|,M2(ξ) ≤ R, it
holds that |∂x f (x, α, ξ)| ∨ |∂xg(x, ν)| ∨ |∂α f (x, α, ξ)| ≤ L(1 + R), and
the L2-norms of ∂ν f and ∂νg are bounded by L(1 + R).
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Pontryagin: necessary condition

A: convex set where admissible controls take values

Theorem
If α is optimal, with associated X,Y,Z, then ∀a ∈ A, Leb1 ⊗ P a.e.,(

∂aH(θt,Yt,Zt) + Ẽ
[
∂ηH(θ̃t, Ỹt, Z̃t)(Xt, αt)

])
· (αt − a) ≤ 0 (∗)

Assume

H(x, α′, ξ′,Y,Z) ≥ H(x, α, ξ, Y,Z) + ∂aH(x, α, ξ, Y,Z) · (α′ − α)

+ Ẽ
[
∂ηH(x, a, ξ,Y,Z)(X̃, α̃) · (α̃′ − α̃)

]
.

Theorem
Then, if α is optimal, for Leb1-a.e. t, αt is a minimizer of

inf
¶
E
[
H(Xt, β,L(Xt, β),Yt,Zt)

]
: β ∈ L2(Ω,Ft,P)

©
(∗∗)
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Pontryagin: necessary condition

Remark:

In the classical MKV control problem (without dependence on
L(α)), the necessary Pontryagin condition reads as

H(Xt, αt,L(Xt),Yt,Zt) ≤ H(Xt, a,L(Xt),Yt,Zt), ∀a ∈ A

Leb1 ⊗ P a.e..

In the generalized case, with dependence on L(α), condition
(∗∗) cannot be replaced by a pointwise condition.
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Pontryagin: sufficient condition

Assume

g(x′, ν′) ≥ g(x, ν) + ∂xg(x, ν) · (x′ − x) + Ẽ
[
∂νg(x, ν)(X̃) · (X̃′ − X̃)

]
and

H(x′, α′, ξ′,Y,Z) ≥ H(x, α, ξ, Y,Z) + ∂xH(x, α, ξ, Y,Z) · (x′ − x)

+ ∂aH(x, α, ξ, Y,Z) · (α′ − α)

+ Ẽ
[
∂νH(x, α, ξ, Y,Z)(X̃, α̃) · (X̃′ − X̃)

]
,

+ Ẽ
[
∂ηH(x, α, ξ, Y,Z)(X̃, α̃) · (α̃′ − α̃)

]
.

Theorem
Let α be any admissible control, with associated X,Y,Z.
If (∗) holds, then α is optimal.
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Example: Linear-Quadratic case

Linear drift: b(x, α, ξ) = b1x + b2α + b̄1 x̄ + b̄2ᾱ,

where

x̄ =

∫ ∫
xξ(dx, dα) and ᾱ =

∫ ∫
αξ(dx, dα).

Quadratic cost: g(x, ν) = 1
2γx2 + δ

2 (x − ρx̄)2 and

f (x, α, ξ) = 1
2

î
qx2 + q̄(x − sx̄)2 + rα2 + r̄(α − s̄ᾱ)2

ó
.

The optimal control is

αt = At + BtXt + CtE[Xt],

where At, Bt,Ct are solutions of scalar Riccati equations.
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Application: Optimal liquidation problem

Traders have to buy or sell a large amount of shares between
time 0 and time T (usually T = 1 or T = 5, 1 day or 1 week)

Trades of all market participants reflect on
→ temporary market impact, influencing the traders’ own

prices (“cost of liquidity”)
→ permanent market impact, influencing the public price

Optimal execution: tradeoff between trading fast to reduce the
risk of future uncertainty in prices, and trading slowly to
reduce market impact (or execution/liquidity cost).

Some literature: Almgren-Chriss (2000), Cartea-Jaimungal
(2015), Cardaliaguet-Lehalle (2017), Basei-Pham (2017)
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Application: Optimal liquidation problem

Model:

Inventory: dQi
t = αi

t dt, Qi
0 = qi

0 : initial inventory of agent i
trading speed

Asset: dS t = λ · 1
N
∑N

i=1 α
i
t dt + σdWt, S 0 = s0

permanent mk impact

Wealth: dU i
t = −αi

t(S t + k · αi
t) dt, U i

0 = 0
temporary mk impact

Cost to be minimized:

E

ñ
−
Ä
U i

T + Qi
T (S T − AQi

T )
ä

+ φ

∫ T

0
(Qi

t)
2dt
ô
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Application: Optimal liquidation problem

Asymptotic formulation:

Asset: dS t = λ E[αt] dt + σdWt, S 0 = s0

Inventory: dQt = αt dt, Q0 : random, initial inventory

Wealth: dUt = −αt(S t + kαt) dt, U0 = 0

Problem: inf
α∈A
E

ñ
− (UT + QT (S T − AQT )) + φ

∫ T

0
(Qt)2dt

ô
→ Even though this problem does not fall into the above

framework, we can still apply our arguments.

→ We can solve the problem and have an explicit formulation of
the optimal trading speed and the optimal inventory.
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Application: Optimal liquidation problem

Optimal trading speed:

αt = E[αt]+ϕt (Qt − E[Qt])︸               ︷︷               ︸,
↑

“follow the crowd” (ϕt ≤ 0) cf. my inventory
with average inventory -
“go against the crowd”

→ Cardaliaguet-Lehalle (2017) study the same problem from a
competitive point of view, obtaining a similar expression.

→ If agent’s position has opposite sign w.r.t. average population,
she trades faster; in the framework in [CL17] she trades slower.

→ E[Qt] de/increase slower in our case, i.e.
∣∣E[αt]

∣∣ is smaller:
buy/sell market orders arrive “at the same time” (smaller
permanent market impact in the cooperative framework).
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Optimal Transport approach
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Weak generalized MKV stochastic control problem

Weak generalized McKean-Vlasov stochastic control problem:

inf
P,α
EP
ñ∫ T

0
f (t, Xt, αt,LP(Xt, αt))dt + g(XT ,LP(XT ))

ô
subject to dXt = b (t, Xt, αt,LP(Xt)) dt + dWPt ,

→ Infimum over filtered probability spaces (Ω,F,P) supporting a
Wiener process WP, and over α progress. measurable on (Ω,F,P).

→ Two simplifications here: no dependence on L(α) in the drift,
and σ ≡ 1 (or deterministic).
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Weak generalized MKV stochastic control problem

Weak generalized McKean-Vlasov stochastic control problem:

inf
P,α
EP
ñ∫ T

0
f (t, Xt, αt,LP(Xt, αt))dt + g(XT ,LP(XT ))

ô
subject to dXt = b (t, Xt, αt,LP(Xt)) dt + dWPt ,

→ Infimum over filtered probability spaces (Ω,F,P) supporting a
Wiener process WP, and over α progress. measurable on (Ω,F,P).

→ Two simplifications here: no dependence on L(α) in the drift,
and σ ≡ 1 (or deterministic).

Idea: move mass: noise −→ state
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Monge-Kantorovich optimal transport

Classical Optimal Transport: (X, µ), (Y, ν) Polish, move the mass
from µ to ν minimizing the cost of transportation c : X×Y → [0,∞]:

inf
{
Eπ[c(x, y)] : π ∈ Π(µ, ν)

}
,

Π(µ, ν): probability measures on X ×Y with marginals µ and ν.

Extensive literature on OT:
• Monge (1781)
• Kantorovich (1942, 1948)
• Ambrosio, Brenier, Caffarelli, Figalli, Gigli, McCann, Otto,

Santabrogio, Sturm, Villani ...

→ We consider a dynamic setting: we have the time component
(mathematically: spaces X and Y endowed with filtrations)

→ Idea: move the mass in a non-anticipative way: what is
transported into the 2nd coordinate at time t, depends on the
1st coordinate only up to t (+ possibly on sth independent)
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Causal optimal transport

Definition (Causal transport plans)

π ∈ Π(µ, ν) s.t. ∀t, D ∈ F Yt , X 3 x 7→ πx(D) is F Xt -measurable.

(F X,F Y canonical filtrations, πx regular conditional kernel)

Some literature: Yamada-Watanabe (1971), Jacod (1980), Kurtz
(2014), Lassalle (2013), Backhoff-Beiglböck-Lin-Zalashko (2016),
Acciaio-Backhoff-Zalashko (2016)

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = b(Yt)dt + σ(Yt)dBt, b, σ Borel measurable.

Then L(B,Y) causal transport between (C0,L(B)) and (C0,L(Y)).

Here X = Y = C0 := C0[0,∞) continuous paths starting at zero
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McKean-Vlasov control problem and Causal Transport

→ Recall our weak McKean-Vlasov control problem:

inf
P,α
EP
ñ∫ T

0
f (t, Xt, αt,LP(Xt, αt))dt + g(XT ,LP(XT ))

ô
subject to dXt = b (t, Xt, αt,LP(Xt)) dt + dWPt ,

→ The joint distribution L(WP, X) is a causal transport plan

between (C0[0,T ], γ) and (C0[0,T ],L(X)), where

γ = Wiener measure on C0[0,T ]
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Assumptions

→We need some convexity assumptions:

b(x, ., ν) injective and convex

f bdd below, and f (x, b−1
t (x, ., ν)(y), ξ) convex in y

f (x, a, .) is ≺cm-monotone

In the case of linear drift:

dXt = (c1Xt + c2αt + c3E[Xt])dt + dWt,

ci ∈ R, c2 > 0, our assumptions reduce to: for all x, a, ξ:

• f is bounded from below

• f (x, ., ξ) is convex

• f (x, a, .) is ≺c-monotone



Problem formulation Probabilistic approach Transport approach Conclusions

Characterization via causal optimal transport

→ Here we consider transport problems with X = Y = C0[0,T ],
with (ω,ω) generic element on C0[0,T ] × C0[0,T ]

Theorem
The weak MKV problem is equivalent to the variational problem

inf
ν∈P

inf
π∈Πc(γ,ν)

Eπ
[
c(π, ω, ω)

]
P is a “good set of measures”, Πc(γ, ν) = {π ∈ Π(γ, ν) : π causal},

c(π, ω, ω) =
∫ T

0 f
Ä
ωt, uνt (ω,ω), pt

(
(ω, uν)#π

)ä
dt + g(ωT , νT ), with

uνt (ω,ω) = b−1
t (ωt, ., νt)

(
( ˙̆
ω − ω)t

)
and ω − ω =

∫ .
0 ( ˙̆
ω − ω)t dt

• when control = drift, and square integrable: P = {ν � γ}

• in general: P = {ν ∈ P(C0[0,T ]) : 〈ω〉 ∃ ν-a.s., with 〈ω〉t = t ∀ t},
where 〈ω〉 is the pathwise quadratic variation
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Characterization via causal optimal transport

’Equivalence’ means:

the above variational problem and the weak MKV problem
have the same value;

and the optimizers are related via:
• ν∗ = L(X∗)
• π∗ ←→ α∗, with π∗ = L(W∗, X∗)

Corollary (Weak closed loop)
1 The infimum can be taken over tuples s.t. α is F X-measurable

(weak closed loop).

2 If the infimum is attained, then the optimal control α is in weak
closed loop form.
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Characterization via causal optimal transport

→ How to exploit the above characterization?

Martingale verification result (analogous of (N) Pontryagin)

Discrete-time approximation: we can define transport
problems from Rn to Rn (via projection) such that their optimal
values converge to the original problem

New existence and uniqueness results based on tools from
optimal transport ...

Separable costs - Sanov type approximation results ...
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Conclusions

We study generalized McKean-Vlasov control problems, where the
mean-field dependence is on both state and control.

(I) By classical probabilistic approach:

→ Necessary and sufficient Pontryagin conditions in the
generalized framework

→ Explicitly solvable cases:

Linear-Quadratic case
Optimal liquidation problem

(II) By optimal transport approach:

→ Characterization of weak McKean-Vlasov solutions via
causal optimal transport

→ Exploitation of the characterization theorem
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Thank you for your attention!

&

Happy birthday, Mete!
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