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Financial markets with frictions: Mete's contributions

Theorem

Mete LOVES frictions.

g.e.d.
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Frictions in financial modelling

» Classical Black-Scholes theory: dynamic trading of arbitrary
amounts, arbitrarily fast without affect on exogenously given
asset prices and without taxes, transaction fees, etc.

» How to account for these nonlinear effects? Formidable
challenges at the interfaces between financial modelling,
stochastic analysis, and stochastic optimal control

» “Equilibrium models” versus cost specifications

» llliquidity due to differences in information (Glosten-Milgrom
'85, Kyle '85) and/or due to inventory risk (Ho-Stoll '81,
Grossman-Miller '88): <= 3 period models

» Dynamic equilibrium type models: Back '90,
Garleanu-Pedersen-Poteshman '09, Kramkov-Pulido '16,
B.-Kramkov '15

» Cost specifications: Soner-Shreve '94, Almgren-Chriss '01,
Obizhaeva-Wang '13, Roch-Soner '13
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Frictions in financial modelling

» Classical Black-Scholes theory: dynamic trading of arbitrary
amounts, arbitrarily fast without affect on exogenously given
asset prices and without taxes, transaction fees, etc.

» How to account for these nonlinear effects? Formidable
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Dramatis personae

An FX desk’s business as a ménage a trois...:

» Dealers: compete quoting FX rates, supply currency to their
clients; transfer inventory to end-users at a finite rate at
fundamental exchange rate, thereby incurring search costs and
inventory risk

» Clients: demand currency positions from their dealers, get
served at their competitive rates

> “End-users”: accept positions at fundamental FX rates, can
only be contacted at search cost incurred by dealers
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An FX desk’s business as a ménage a trois...:

» Dealers: compete quoting FX rates, supply currency to their
clients; transfer inventory to end-users at a finite rate at
fundamental exchange rate, thereby incurring search costs and
inventory risk

» Clients: demand currency positions from their dealers, get
served at their competitive rates

> “End-users”: accept positions at fundamental FX rates, can
only be contacted at search cost incurred by dealers

Questions:

» How do the dealers’ prices (FX rates) match demand with
supply? How are they related to fundamentals? What role is
played by the dealers’ search costs and inventory risk aversion?

» How should clients choose their demand to manage their
exogenously given risk? What if they internalize their impact?
Do they benefit from the dealers’ presence?

» Who are the end-users?
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The dealers’ problem

For FX quotes (S;¢) and fundamental FX rates (V;), the dealers
servicing their clients’ requested positions (K:) and cumulatively
transferring Uy = fot us ds to the end-users at costs %ufdt in

t € [0, T], will generate proceeds

T T A T
/ (—Kt)dSt—(VT—ST)KT—i—/ Utht—z/ u? dt.
0 0 0

Assuming V is a martingale, i.e., ruling out speculation on FX
rates trends etc., we get the dealers’ expected proceeds to be

E [/OT(Kt)dSt — (V1 — ST)KT — ;/OT u? dt} :

The dealers’ inventory risk is determined by U — K:

%E [/OT(Kt — U,)? dt}
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The dealers’ problem

Dealers’ target functional with risk aversion 4 > 0:
T A T
Jo(K,u;S) 2E U (—K:)dS; — (V1 — ST)KT — 2/ u? dt]
0 0

5 T
= ?dE {/ (K — Up)? dt] — max
0

K,u
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The dealers’ problem

Dealers’ target functional with risk aversion 4 > 0:

T A T
Jo(K,u;S) 2E UO (—K:)dS; — (V1 — ST)KT — 2/0 u? dt]

Yo [ [T

Observe: Problem can be addressed in two stages.
Stage 1: Given K, maximization over u is a quadratic tracking
problem

Yo [T AT
E{/ (Kt—Ut)zdt—ir/ ufdt] — min
2 Jo 2 Jo u

as solved explicitly in Soner et al. '17.
Stage 2: Given the optimal transfer policy u< for any K, optimize
over K.
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Quadratic tracking problem

Theorem (Soner et al. '17)
The dealers’ optimal trading rate minimizing

Yo [T AT
E[/ (KtUt)2dt+/ ufdt]
2 Jo 2 Jo

s d _ tanh((T —t)/VE)
pe Sy = BT OV gy

is

where

N N T cosh((T — u)/v/K)
%= 1a and K, ‘E[ o P snh(T = 1)/ V) d'g]

~~ Dealers form a view K on expected future demand and trade

with the end-users towards this ideal position.
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Quadratic tracking problem with terminal constraint

Theorem (Soner et al. '17)

The dealers’ optimal trading rate minimizing

Yo [T AT
E[/ (KtUt)2dt+/ ufdt}
2 Jo 2 Jo

subject to U = K1 is

where, as before, k = \/74, but now

=——FE[Kr | Z
cosh(TT) (K| 7]

1
+(1-————|E
( cosh(L=h) )
Peter Bank (TU Berlin)

in T—s
/T Ks : Th(tﬁ )
t (COSh(W) -k
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lllustration: Deterministic demand expanding midway
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Figure: Demand K with a jump at t = T /2 (blue)
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More on quadratic tracking problem with terminal
constraint

Corollary (Soner et al. '17)
A terminal position KT € L?(Q,.7,P) can be attained at finite
expected costs, i.e.,

T T
Kr=Ur= / uy dt for some progressive u with E/ u?dt < 00
0 0

if and only if
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More on quadratic tracking problem with terminal
constraint

Corollary (Soner et al. '17)

A terminal position KT € L?(Q,.7,P) can be attained at finite
expected costs, i.e.,

T T
Kr=Ur= / uy dt for some progressive u with E/ u?dt < 00
0 0

if and only if K+ becomes known sufficiently fast towards the end
in the sense that

/T E[(KT —E[K7|7:])’]
0

(T — 1) dt < 0.

Peter Bank (TU Berlin) 11/ 20



Equilibrium
Stage 2: Dealers’ target functional with risk aversion 4 > 0:

Ja(K; S) 2E [/OT(—Kt)dSt — (V1 — ST)KT}

va [T AT
E[/ (KtUtK)zdt+/ (uf)2dt] — max
2 Jo 2 Jo K
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Equilibrium

Stage 2: Dealers’ target functional with risk aversion 4 > 0:
T

Jo(K; S) 2E [/
0
Yo T A T
—-E [/ (K: — UtK)zdt+/ (uf)2dt} — max
2 Jo 2 Jo K

FX quotes (S:) will generate an equilibrium if at these quotes the
dealers’ optimal supply matches their clients’ demand 7":

€ argmax J(K; S)
K

(—Ke)dS; — (V7 — sT)KT}
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Equilibrium

Stage 2: Dealers’ target functional with risk aversion 4 > 0:
T

Jo(K; S) 2E [/
0

Yo T A T

—-E [/ (K: — UtK)zdt+/ (uf)2dt} — max

2 Jo 2 Jo K

FX quotes (S:) will generate an equilibrium if at these quotes the
dealers’ optimal supply matches their clients’ demand 7":

€ argmax J(K; S)
K

(—Ke)dS; — (V7 — sT)KT}

Theorem
Given clients’ demand ¢, the unique equilibrium quotes S are

.
S¢ & Vet B [/ (s — U ds
t

,%], 0<t<T,

where U describes the dealers’ optimal cumulative transfers to
beter Banm% gethr{;users as determined by Soner et al. '17 2%



Equilibrium

.
5%:vt+wdEU (s — US) ds

t

9}], 0<t<T,

» fundamental value V adjusted for dealers’ effective risk
» adjustment in line with asymptotic expansion for small dealer
risk aversion in exponential utility setting by Kramkov-Pulido

'16 (who do not consider end-users)
» small search costs asymptotics of dealers’ surcharge depend
on demand regularity:
> absolutely continuous demand ¢ = [, 1 dt:

T T
/ Ked(V: — S7%) = /\/ (u)2dt +o(N)in L as A ] 0
0 0
> diffusive demand .7 = [/ (pf" dt + o/ dW,):
T
/ Hd(Vi—S7) = \/Aw/ )2dt+o(VA) in LY as A |0
0

» endogenous price impact model with resilience, in contrast to
Peter Bank (TU BBIimKramkov '15 13 /20



The clients’ problem

How should the clients choose their demand .Z given quotes (S5;)?
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The clients’ problem

How should the clients choose their demand .Z given quotes (S5;)?
Quadratic criterion: Facing exogenous FX exposure ((;), the
clients seek to maximize

T T
J (A S) L E U Ky dSt] - %E [/ (= yf,/t)?dt] — max
0 0 s

If (S¢) has drift (1), this amounts to

;
E [/ (%Mt - %(Ct - e%/r)Z) df} — max, i.e. = Ce—fie/ Ve
0 H
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The clients’ problem

How should the clients choose their demand .Z given quotes (S5;)?
Quadratic criterion: Facing exogenous FX exposure ((;), the
clients seek to maximize

o) 25 [ [ ias)] - e8] [Nt - o] -+ ma

If (S¢) has drift (1), this amounts to

E[/OT (%@Mt**(@ ))df} Hm/ax ie. A= Ce—pue/ Ve

Given demand .7 *, the equilibrium quotes’ S” " drift is
pl" = —ya( - U7
which yields the equilibrium demand equation:

sk Vd )f/*
HF = U . telo, Tl
E T g et 7 + CCt [0, 7]

where, again, U7 is as in Soner et al. '’
Peter Bank (TU Berlin)
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Equilibrium demand

The equilibrium demand equation:

(%//t* o Yd U/* + Ve

Vet t Yd + Ve

¢t, te]o,T],

is an integral equation for JZ*.
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Equilibrium demand

The equilibrium demand equation:

Ak Vd A
Hy = ——U , tel0,T],
C= U TG e T

is an integral equation for JZ*. With

G and K, = [/ e (T

it is equivalent to the linear forward backward stochastic
differential equation (FBSDE):

ko = 0, dk; — (W K, — (T — 8)/v/r) kt> dt,
Yd + Ve VE

tanh((T — ¢ K 1 c

oo th:( ( - W) Ly e

for a suitable martingale MX determined uniquely by the FBSDE.

Peter Bank (TU Berlin) 15 /20
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Equilibrium demand

Theorem
The unique equilibrium demand is given explicitly by

¢
A= G G e
C

~_d
where (J74'7<¢ denotes the tracking portfolio from Soner et al.:

iuvdld%g tanh((T — t)/\/z) ( Vd Ce — dehfwc>
Vd + Ve ! 7

dt NG

for the aggregate risk tolerance 1/5 = 1/v, + 1/, ie.,

/ ¢, ol ”)/ V) u%].

/ismh — t)/VER)
This balances the clients’ demand for immediacy with their
tolerance for risk, taking into account also their dealers’ risk

tolerance and ability of risk transfer to end-users: s = ur.
Peter Bank (TU Berlin) 16 / 20
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When do the clients really need their dealers?

Example: Constant target position

Costs
0.4+

0.3 %

0.2

0.0 1 1 1 1 1 1 Risk
0.05 0.10 0.15 0.20 0.25 0.30

Figure: Risk vs. expected costs for clients' targeting a constant position.
Trading through their dealers’ and Searching end-users themselves.
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When do the clients really need their dealers?

Example: Diffusively fluctuating target position

Costs

0.30

0.25

0.20

0.15

0.10

0.05

0.00

\"\ ..
0.30

I . .
0.05 0.10 0.15 0.20 0.25

Figure: Risk vs. expected costs for clients' targeting a constant position.
Trading through their dealers’ and Searching end-users themselves.
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What if the clients are collectively aware of their impact?

In other words: What if the dealers are facing a large trader?
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What if the clients are collectively aware of their impact?

In other words: What if the dealers are facing a large trader?
Quadratic criterion: Facing exogenous FX cash flow ((;), the
large investor seeks to maximize

U e dS{ ] — —E [/T(Ct—f%ft)%t] — max
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In other words: What if the dealers are facing a large trader?
Quadratic criterion: Facing exogenous FX cash flow ((;), the
large investor seeks to maximize

U Hy dS{” ] - —E UOT(Q—%@)%] — max

This is still concave in % since % — —E UOT Ky dS,g%/} is the

dealers’ expected profit in equilibrium and thus nonnegative.
~+ no statistical arbitrage in this model with endogenously
derived market impact.
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What if the clients are collectively aware of their impact?

In other words: What if the dealers are facing a large trader?
Quadratic criterion: Facing exogenous FX cash flow ((;), the
large investor seeks to maximize

U Hy dS{” ] - —E UOT(Q—%@)%] — max

This is still concave in % since % — —E UOT Ky dS,g%/} is the

dealers’ expected profit in equilibrium and thus nonnegative.
~+ no statistical arbitrage in this model with endogenously
derived market impact.

Remarkably, first order condition for optimality now reads

gk Yd H* 75/2
A L B R TSRS ()
L va /2t w+%/2<t 0. 7]

i.e. the same equilibrium demand equation as before, albeit

with half the clients’ risk aversion.
Peter Bank (TU Berlin) 19 / 20



Conclusions

» analyzed dealer market with clients and end-users

» quadratic setting allows for explicit computations following
Soner et al.’s optimal tracking results

» equilibrium quotes for arbitrary demand take into account
legacy position and expected future positions

» optimization of demand with and without impact awareness

> dealers will be used if their search costs and risk aversion is
small compared to those of their clients

» harder to serve sophisticated clients aware of their impact

» endogenously derived impact model ruling out statistical
arbitrage

» asymptotic analysis for small search costs
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Happy (60 — £!/831%)th birthday, METE!
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