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Financial markets with frictions: Mete’s contributions

Theorem

Mete LOVES frictions.
q.e.d.
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Frictions in financial modelling

I Classical Black-Scholes theory: dynamic trading of arbitrary
amounts, arbitrarily fast without affect on exogenously given
asset prices and without taxes, transaction fees, etc.

I How to account for these nonlinear effects? Formidable
challenges at the interfaces between financial modelling,
stochastic analysis, and stochastic optimal control

I “Equilibrium models” versus cost specifications

I Illiquidity due to differences in information (Glosten-Milgrom
’85, Kyle ’85) and/or due to inventory risk (Ho-Stoll ’81,
Grossman-Miller ’88): <= 3 period models

I Dynamic equilibrium type models: Back ’90,
Garleanu-Pedersen-Poteshman ’09, Kramkov-Pulido ’16,
B.-Kramkov ’15

I Cost specifications: Soner-Shreve ’94, Almgren-Chriss ’01,
Obizhaeva-Wang ’13, Roch-Soner ’13
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Dramatis personae

An FX desk’s business as a ménage a trois...:
I Dealers: compete quoting FX rates, supply currency to their

clients; transfer inventory to end-users at a finite rate at
fundamental exchange rate, thereby incurring search costs and
inventory risk

I Clients: demand currency positions from their dealers, get
served at their competitive rates

I “End-users”: accept positions at fundamental FX rates, can
only be contacted at search cost incurred by dealers

Questions:
I How do the dealers’ prices (FX rates) match demand with

supply? How are they related to fundamentals? What role is
played by the dealers’ search costs and inventory risk aversion?

I How should clients choose their demand to manage their
exogenously given risk? What if they internalize their impact?
Do they benefit from the dealers’ presence?

I Who are the end-users?
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The dealers’ problem

For FX quotes (St) and fundamental FX rates (Vt), the dealers
servicing their clients’ requested positions (Kt) and cumulatively
transferring Ut =

∫ t
0 us ds to the end-users at costs λ

2u
2
t dt in

t ∈ [0,T ], will generate proceeds∫ T

0
(−Kt)dSt − (VT − ST )KT +

∫ T

0
UtdVt −

λ

2

∫ T

0
u2t dt.

Assuming V is a martingale, i.e., ruling out speculation on FX
rates trends etc., we get the dealers’ expected proceeds to be

E
[∫ T

0
(−Kt)dSt − (VT − ST )KT −

λ

2

∫ T

0
u2t dt

]
.

The dealers’ inventory risk is determined by U − K :

1

2
E
[∫ T

0
(Kt − Ut)

2 dt

]
Peter Bank (TU Berlin) 6 / 20



The dealers’ problem

Dealers’ target functional with risk aversion γd > 0:

Jd(K , u;S) ,E
[∫ T

0
(−Kt)dSt − (VT − ST )KT −

λ

2

∫ T

0
u2t dt

]
− γd

2
E
[∫ T

0
(Kt − Ut)

2 dt

]
→ max

K ,u

Observe: Problem can be addressed in two stages.
Stage 1: Given K , maximization over u is a quadratic tracking
problem

E
[
γd
2

∫ T

0
(Kt − Ut)

2 dt +
λ

2

∫ T

0
u2t dt

]
→ min

u

as solved explicitly in Soner et al. ’17.
Stage 2: Given the optimal transfer policy uK for any K , optimize
over K .
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Quadratic tracking problem

Theorem (Soner et al. ’17)

The dealers’ optimal trading rate minimizing

E
[
γd
2

∫ T

0
(Kt − Ut)

2 dt +
λ

2

∫ T

0
u2t dt

]
is

uKt ,
d

dt
UK
t =

tanh((T − t)/
√
κ)√

κ
(K̂t − UK

t )

where

κ , λ/γd and K̂t , E
[∫ T

t
Ku

cosh((T − u)/
√
κ)√

κ sinh((T − t)/
√
κ)

du

∣∣∣∣Ft

]

 Dealers form a view K̂ on expected future demand and trade
with the end-users towards this ideal position.
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Quadratic tracking problem with terminal constraint

Theorem (Soner et al. ’17)

The dealers’ optimal trading rate minimizing

E
[
γd
2

∫ T

0
(Kt − Ut)

2 dt +
λ

2

∫ T

0
u2t dt

]
subject to UT = KT is

uKt ,
d

dt
UK
t =

coth((T − t)/
√
κ)√

κ
(K̂t − UK

t )

where, as before, κ , λ/γd , but now

K̂t =
1

cosh(T−t√
κ

)
E [KT |Ft ]

+

(
1− 1

cosh(T−t√
κ

)

)
E

[∫ T

t
Ks

sinh(T−s√
κ

)

(cosh(T−t√
κ

)− 1)
√
κ

∣∣∣∣∣Ft

]
.
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Illustration: Deterministic demand expanding midway
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Figure: Demand K with a jump at t = T/2 (blue)

, dealers’
unconstrained (orange, dashed) and constrained (green, dashed) target
K̂ , corresponding unconstrained (orange) and constrained (green)
transfer policy uK , and myopic transfer policy (red)
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More on quadratic tracking problem with terminal
constraint

Corollary (Soner et al. ’17)

A terminal position KT ∈ L2(Ω,F ,P) can be attained at finite
expected costs, i.e.,

KT = UT =

∫ T

0
ut dt for some progressive u with E

∫ T

0
u2t dt <∞

if and only if

KT becomes known sufficiently fast towards the end
in the sense that∫ T

0

E[(KT − E [KT |Ft ])
2]

(T − t)2
dt <∞.
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Equilibrium

Stage 2: Dealers’ target functional with risk aversion γd > 0:

Jd(K ; S) ,E
[∫ T

0
(−Kt)dSt − (VT − ST )KT

]
− E

[
γd
2

∫ T

0
(Kt − UK

t )2 dt +
λ

2

∫ T

0
(uKt )2 dt

]
→ max

K

FX quotes (St) will generate an equilibrium if at these quotes the
dealers’ optimal supply matches their clients’ demand K :

K ∈ argmax
K

J(K ;S)

Theorem
Given clients’ demand K , the unique equilibrium quotes SK are

SK
t , Vt + γdE

[∫ T

t
(Ks − UK

s ) ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ T ,

where UK describes the dealers’ optimal cumulative transfers to
the end-users as determined by Soner et al. ’17
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Equilibrium

SK
t = Vt + γdE

[∫ T

t
(Ks − UK

s ) ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ T ,

I fundamental value V adjusted for dealers’ effective risk
I adjustment in line with asymptotic expansion for small dealer

risk aversion in exponential utility setting by Kramkov-Pulido
’16 (who do not consider end-users)

I small search costs asymptotics of dealers’ surcharge depend
on demand regularity:

I absolutely continuous demand K =
∫ .

0
µK
t dt:∫ T

0

Ktd(Vt − SK
t ) = λ

∫ T

0

(µK
t )2dt + o(λ) in L1 as λ ↓ 0

I diffusive demand K =
∫ .

0
(µK

t dt + σK
t dWt):∫ T

0

Ktd(Vt−SK
t ) =

√
λγd

∫ T

0

(σK
t )2dt+o(

√
λ) in L1 as λ ↓ 0

I endogenous price impact model with resilience, in contrast to
B.-Kramkov ’15Peter Bank (TU Berlin) 13 / 20



The clients’ problem

How should the clients choose their demand K given quotes (St)?

Quadratic criterion: Facing exogenous FX exposure (ζt), the
clients seek to maximize

Jc(K ;S) , E
[∫ T

0
Kt dSt

]
− γc

2
E
[∫ T

0
(ζt −Kt)

2dt

]
→ max

K

If (St) has drift (µt), this amounts to

E
[∫ T

0

(
Ktµt −

γc
2

(ζt −Kt)
2
)
dt

]
→ max

K
, i.e. K ∗

t = ζt−µt/γc

Given demand K ∗, the equilibrium quotes’ SK ∗
drift is

µK ∗
t = −γd(K ∗

t − UK ∗
t )

which yields the equilibrium demand equation:

K ∗
t =

γd
γd + γc

UK ∗
t +

γc
γd + γc

ζt , t ∈ [0,T ],

where, again, UK ∗
is as in Soner et al. ’17.
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Equilibrium demand

The equilibrium demand equation:

K ∗
t =

γd
γd + γc

UK ∗
t +

γc
γd + γc

ζt , t ∈ [0,T ],

is an integral equation for K ∗.

With

kt , K ∗
t −

γc
γd + γc

ζt and Kt , E
[∫ T

t
K ∗

u

cosh((T − u)/
√
κ)√

κ cosh((T − t)/
√
κ)

du

∣∣∣∣Ft

]
it is equivalent to the linear forward backward stochastic
differential equation (FBSDE):

k0 = 0, dkt =

(
γd

γd + γc
Kt −

tanh((T − t)/
√
κ)√

κ
kt

)
dt,

KT = 0, dKt =

(
tanh((T − t)/

√
κ)√

κ
Kt −

1

κ
(kt +

γc
γd + γc

ζt)

)
dt + dMK

t ,

for a suitable martingale MK determined uniquely by the FBSDE.
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Equilibrium demand

Theorem
The unique equilibrium demand is given explicitly by

K ∗
t =

γc
γd + γc

ζt + Ũ
γd

γd+γc
ζ

t , t ∈ [0,T ]

where Ũ
γd

γd+γc
ζ

denotes the tracking portfolio from Soner et al.:

d

dt
Ũ

γd
γd+γc

ζ

t =
tanh((T − t)/

√
κ̃)√

κ̃

(
γd

γd + γc
ζt − Ũ

γd
γd+γc

ζ

t

)
,

for the aggregate risk tolerance 1/γ̃ = 1/γd + 1/γc , i.e.,

κ̃ , λ/γ̃ and ζ̃t , E

[∫ T

t
ζu

cosh((T − u)/
√
κ̃)√

κ̃ sinh((T − t)/
√
κ̃)

du

∣∣∣∣∣Ft

]
.

This balances the clients’ demand for immediacy with their
tolerance for risk, taking into account also their dealers’ risk
tolerance and ability of risk transfer to end-users: Ũζ = UK ∗

.
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When do the clients really need their dealers?

Example: Constant target position

0.05 0.10 0.15 0.20 0.25 0.30
Risk0.0

0.1

0.2

0.3

0.4

Costs

Figure: Risk vs. expected costs for clients’ targeting a constant position.
Trading through their dealers’ and Searching end-users themselves.
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When do the clients really need their dealers?

Example: Diffusively fluctuating target position
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Figure: Risk vs. expected costs for clients’ targeting a constant position.
Trading through their dealers’ and Searching end-users themselves.
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What if the clients are collectively aware of their impact?

In other words: What if the dealers are facing a large trader?

Quadratic criterion: Facing exogenous FX cash flow (ζt), the
large investor seeks to maximize

Jc(K ) , E
[∫ T

0
Kt dS

K
t

]
− γc

2
E
[∫ T

0
(ζt −Kt)

2dt

]
→ max

K

This is still concave in K since K 7→ −E
[∫ T

0 Kt dS
K
t

]
is the

dealers’ expected profit in equilibrium and thus nonnegative.
 no statistical arbitrage in this model with endogenously
derived market impact.
Remarkably, first order condition for optimality now reads

K ∗
t =

γd
γd + γc/2

UK ∗
t +

γc/2

γd + γc/2
ζt , t ∈ [0,T ],

i.e. the same equilibrium demand equation as before, albeit
with half the clients’ risk aversion.
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Conclusions

I analyzed dealer market with clients and end-users
I quadratic setting allows for explicit computations following

Soner et al.’s optimal tracking results
I equilibrium quotes for arbitrary demand take into account

legacy position and expected future positions
I optimization of demand with and without impact awareness
I dealers will be used if their search costs and risk aversion is

small compared to those of their clients
I harder to serve sophisticated clients aware of their impact
I endogenously derived impact model ruling out statistical

arbitrage
I asymptotic analysis for small search costs

Thank you very much!

Happy (60− ε1/8.3125)th birthday, METE!
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