Soner and Touzi's Stochastic Target Approach

Application to almost sure hedging with price impact

B. Bouchard

Ceremade - Univ. Paris-Dauphine, PSL University

Based on Soner and Touzi's discoveries and joint works with G. Loeper (Monash Univ.), M. Soner (ETH Zürich), C. Zou (NUS) and Y. Zou (ex Paris-Dauphine)

Motivation

$\square \mathrm{BS}$ and local (stochastic) vol models :

- Are useful because they provide a clear hedging rule
- Disregard frictions because do not work at high frequency
- Taking costs into account would lead to useless degenerate prices/strategies (in theory) and is helpless

Motivation

$\square \mathrm{BS}$ and local (stochastic) vol models :

- Are useful because they provide a clear hedging rule
- Disregard frictions because do not work at high frequency
- Taking costs into account would lead to useless degenerate prices/strategies (in theory) and is helpless
\square However :
- Do not take price impact and illiquidity into account
- Problematic when large positions (possibly shared) or illiquid underlying (may run after the delta)

Motivation

$\square \mathrm{BS}$ and local (stochastic) vol models :

- Are useful because they provide a clear hedging rule
- Disregard frictions because do not work at high frequency
- Taking costs into account would lead to useless degenerate prices/strategies (in theory) and is helpless
\square However :
- Do not take price impact and illiquidity into account
- Problematic when large positions (possibly shared) or illiquid underlying (may run after the delta)

Question: Can we built a model which

- Takes price impact and illiquidity into account
- Leads to a clear hedging and pricing rule
- Does not have embedded hidden transaction costs (otherwise the super-hedging price would be degenerate)

Some references

\square Many works on hedging with illiquidity or impact : Sircar and Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98, Liu and Yong 05, Cetin, Jarrow and Protter 04, Cetin, Soner and Touzi 09, Almgren and Li 13, Millot and Abergel 11, Guéant and Pu 13,...
\square Illiquidity + impact + perfect hedging : Loeper 14 (updated in 16 , verification arguments).
\square Past and ongoing related works by T. Bilarev and D. Becherer.

Impact rule and continuous time trading dynamics

Impact rule

\square Basic rule (only permanent for the talk) : an order of δ units moves the price by

$$
X_{t-} \longrightarrow X_{t}=X_{t-}+\delta f\left(X_{t-}\right)
$$

and costs

$$
\delta X_{t-}+\frac{1}{2} \delta^{2} f\left(X_{t-}\right)=\delta \frac{X_{t-}+X_{t}}{2}
$$

\square We just model the curve around $\delta=0$ as will pass to continuous time (infinitesimal) rebalancements (could be more general away from 0).
\square One could add a resilience effect in the following.

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process of the form

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}
$$

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process of the form

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}
$$

\square Trade at times $t_{i}^{n}=i T / n$ the quantity $\delta_{t_{i}^{n}}^{n}=Y_{t_{i}^{n}}-Y_{t_{i-1}^{n}}$.

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process of the form

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}
$$

\square Trade at times $t_{i}^{n}=i T / n$ the quantity $\delta_{t_{i}^{n}}^{n}=Y_{t_{i}^{n}}-Y_{t_{i-1}^{n}}$.The stock price evolves according to

$$
X=X_{t_{i}^{n}}+\int_{t_{i}^{n}} \sigma\left(X_{s}\right) d W_{s}
$$

between two trades (can add a drift or be multivariate).The corresponding dynamics are

$$
\begin{aligned}
Y_{t}^{n} & :=\sum_{i=0}^{n-1} Y_{t_{i}^{n}} \mathbf{1}_{\left\{t_{i}^{n} \leq t<t_{i+1}^{n}\right\}}+Y_{T} \mathbf{1}_{\{t=T\}}, \delta_{t_{i}^{n}}^{n}=Y_{t_{i}^{n}}^{n}-Y_{t_{i-1}^{n}}^{n} \\
X^{n} & =X_{0}+\int_{0} \sigma\left(X_{s}^{n}\right) d W_{s}+\sum_{i=1}^{n} \mathbf{1}_{\left[t_{i}^{n}, T\right]} \delta_{t_{i}^{n}}^{n} f\left(X_{t_{i}^{n}-}^{n}\right), \\
V^{n} & =V_{0}+\int_{0} Y_{s-}^{n} d X_{s}^{n}+\sum_{i=1}^{n} \mathbf{1}_{\left[t_{i}^{n}, T\right]} \frac{1}{2}\left(\delta_{t_{i}^{n}}^{n}\right)^{2} f\left(X_{t_{i}^{n-}}^{n}\right),
\end{aligned}
$$

where

$$
V^{n}=\text { cash part }+Y^{n} X^{n}=\text { "portfolio value". }
$$

\square Passing to the limit $n \rightarrow \infty$, it converges in \mathbf{S}_{2} to

$$
\begin{aligned}
& Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s} \\
& X=X_{0}+\int_{0}^{0} \sigma\left(X_{s}\right) d W_{s}+\underbrace{\int_{0}^{0} f\left(X_{s}\right) d Y_{s}+\int_{0} a_{s}\left(\sigma f^{\prime}\right)\left(X_{s}\right) d s}_{\left(Y_{t_{i}^{n}}^{n}-Y_{t_{i-1}^{n}}^{n}\right) f\left(X_{t_{i}^{\prime}-}^{n}\right)} \\
& V=V_{0}+\int_{0}^{0} Y_{s} d X_{s}+\frac{1}{2} \underbrace{\int_{0}^{r} a_{s}^{2} f\left(X_{s}\right) d s}_{\left(Y_{t_{i}^{n}}^{n}-Y_{t_{i-1}^{n}}^{n}\right)^{2} f\left(X_{t_{i}^{n_{-}}}^{n}\right)},
\end{aligned}
$$

at a speed \sqrt{n}.

The case of covered options

The premium and payoff are paid in cash and stocks with a number of stocks decided by the trader. Avoids any initial and final market impact.
The case of covered options

The premium and payoff are paid in cash and stocks with a number of stocks decided by the trader. Avoids any initial and final market impact.\square Super-hedging price :

$$
\mathrm{v}(t, x):=\inf \left\{v=c+y x: c, \nu=(a, b, y) \text { s.t. } V_{T}^{t, x, v, \nu} \geq g\left(X_{T}^{t, x, \nu}\right)\right\},
$$

The case of covered options

The premium and payoff are paid in cash and stocks with a number of stocks decided by the trader. Avoids any initial and final market impact.Super-hedging price :$$
\mathrm{v}(t, x):=\inf \left\{v=c+y x: c, \nu=(a, b, y) \text { s.t. } V_{T}^{t, x, v, \nu} \geq g\left(X_{T}^{t, x, \nu}\right)\right\},
$$

\square See B., Loeper and Zou 2016 for the un-covered case : surprisingly (?) the picture is very different!

Let us assume that we use the delta-hedging rule (as in Black and Scholes) :

$$
V=\mathrm{v}(\cdot, X) \quad, \quad Y=\partial_{\times} \mathrm{v}(\cdot, X)
$$

Then, equating the $d t$ terms implies

$$
\frac{1}{2} a^{2} f(X)=\partial_{t} \mathrm{v}(\cdot, X)+\frac{1}{2}(\sigma+a f)^{2}(X) \partial_{x x}^{2} \mathrm{v}(\cdot, X),
$$

and applying Itô's Lemma to $Y-\partial_{\times} \mathrm{v}(\cdot, X)$ leads to

$$
\frac{a}{\sigma+f_{a}}=\partial_{x x}^{2} v(\cdot, X)
$$

By a little bit of algebra:

$$
\left[-\partial_{t} v-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} v\right)} \partial_{x x}^{2} v\right](\cdot, X)=0
$$

The pricing pde should be

$$
\begin{aligned}
-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} v\right)} \partial_{x x}^{2} \mathrm{v} & =0 & & \text { on }[0, T) \times \mathbb{R}, \\
\mathrm{v}(T-, \cdot) & =g & & \text { on } \mathbb{R} .
\end{aligned}
$$

The pricing pde should be

$$
\begin{aligned}
-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} v\right)} \partial_{x x}^{2} \mathrm{v} & =0 & \text { on }[0, T) \times \mathbb{R}, \\
\mathrm{v}(T-, \cdot) & =g & \text { on } \mathbb{R} .
\end{aligned}
$$

Singular pde : take care of $1 \neq f \partial_{x x}^{2} v$

The pricing pde should be

$$
\begin{aligned}
-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} v\right)} \partial_{x x}^{2} \mathrm{v} & =0 & \text { on }[0, T) \times \mathbb{R}, \\
\mathrm{v}(T-, \cdot) & =g & \text { on } \mathbb{R} .
\end{aligned}
$$

Singular pde : take care of $1 \neq f \partial_{x x}^{2} v$

- One possibility : add a gamma constraint $\partial_{x x}^{2} \mathrm{v} \leq \bar{\gamma}$ with $f \bar{\gamma}<1$.

The pricing pde should be

$$
\begin{aligned}
-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} v\right)} \partial_{x x}^{2} \mathrm{v} & =0 & \text { on }[0, T) \times \mathbb{R}, \\
\mathrm{v}(T-, \cdot) & =g & \text { on } \mathbb{R} .
\end{aligned}
$$

Singular pde : take care of $1 \neq f \partial_{x x}^{2} v$

- One possibility : add a gamma constraint $\partial_{x x}^{2} \mathrm{v} \leq \bar{\gamma}$ with $f \bar{\gamma}<1$.
- A constraint of the form $f \partial_{x x}^{2} v>1$ does not make sense.

Hedging with a gamma contraint

Reformulation of the dynamics

$$
d Y=\gamma^{a}(X) d X+\mu_{Y}^{a, b}(X) d t \text { and } d X=\sigma^{a}(X) d W+\mu_{X}^{a, b}(X) d t
$$

We now define v with respect to the gamma constraint

$$
\gamma^{a}(X) \leq \bar{\gamma}(X)
$$

with

$$
f \bar{\gamma} \leq 1-\varepsilon, \quad \varepsilon>0 .
$$

Pricing pde:

$$
\min \left\{-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{v}\right)} \partial_{x x}^{2} \mathrm{v}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{v}\right\}=0 \quad \text { on }[0, T) \times \mathbb{R} .
$$

Propagation of the gamma contraint at the boundary:

$$
\mathrm{v}(T-, \cdot)=\hat{\mathrm{g}} \quad \text { on } \mathbb{R}
$$

with \hat{g} the smallest (viscosity) super-solution of

$$
\min \left\{\varphi-g, \bar{\gamma}-\partial_{x x}^{2} \varphi\right\}=0
$$

Pricing pde:

$$
\min \left\{-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{v}\right)} \partial_{x x}^{2} \mathrm{v}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{v}\right\}=0 \quad \text { on }[0, T) \times \mathbb{R}
$$

Propagation of the gamma contraint at the boundary :

$$
\mathrm{v}(T-, \cdot)=\hat{g} \quad \text { on } \mathbb{R}
$$

with \hat{g} the smallest (viscosity) super-solution of

$$
\min \left\{\varphi-g, \bar{\gamma}-\partial_{x x}^{2} \varphi\right\}=0
$$

\square Perfect hedging : Smooth solution under additional conditions, leading to perfect hedging by following $Y=\partial_{x} \mathrm{v}(\cdot, X)$.

Super-solution property

Use a weak formulation approach and results on small time behavior of double stochastic integrals, see Soner and Touzi 00 and Cheridito, Soner and Touzi 05.

It is based on the Geometric DPP (Soner and Touzi) : if

$$
V_{0}>\mathrm{v}\left(0, X_{0}\right)
$$

then we can find $\left(a, b, Y_{0}\right)$ such that

$$
V_{\theta} \geq \mathrm{v}\left(\theta, X_{\theta}\right)
$$

for any stopping time θ with values in $[0, T]$.

Sub-solution property

Main difficulty : can not establish the reverse Geometric DPP, i.e.If $\left(a, b, Y_{0}\right)$ are such that

$$
V_{\theta}>\mathrm{v}\left(\theta, X_{\theta}\right)
$$

at a stopping time θ with values in $[0, T]$, then

$$
V_{0} \geq \mathrm{v}\left(0, X_{0}\right)
$$

Sub-solution property

\square Main difficulty : can not establish the reverse Geometric DPP, i.e.
If $\left(a, b, Y_{0}\right)$ are such that

$$
V_{\theta}>\mathrm{v}\left(\theta, X_{\theta}\right)
$$

at a stopping time θ with values in $[0, T]$, then

$$
V_{0} \geq \mathrm{v}\left(0, X_{0}\right)
$$

\square Problem :

- at θ we have a position Y_{θ} that may not match with the position \hat{Y}_{θ} associated to $\mathrm{v}\left(\theta, X_{\theta}\right)$. Can not jump from Y_{θ} to $\hat{Y}_{\theta} \ldots$

Sub-solution property

\square Main difficulty : can not establish the reverse Geometric DPP, i.e.
If $\left(a, b, Y_{0}\right)$ are such that

$$
V_{\theta}>\mathrm{v}\left(\theta, X_{\theta}\right)
$$

at a stopping time θ with values in $[0, T]$, then

$$
V_{0} \geq \mathrm{v}\left(0, X_{0}\right)
$$

\square Problem :

- at θ we have a position Y_{θ} that may not match with the position \hat{Y}_{θ} associated to $\mathrm{v}\left(\theta, X_{\theta}\right)$. Can not jump from Y_{θ} to $\hat{Y}_{\theta} \ldots$
- can neither go smoothly to it as it will move X because of the impact, and therefore \hat{Y} (sort of fixed point problem), compare with Cheridito, Soner, and Touzi 2005.

The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and Nutz 13.

The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and Nutz 13.
\square Assume $f, \sigma, \bar{\gamma}$ are constant, and \hat{g} bounded and uniformly continuous, for simplicity.

The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and Nutz 13.
\square Assume $f, \sigma, \bar{\gamma}$ are constant, and \hat{g} bounded and uniformly continuous, for simplicity.

Step 1. Using Perron's method + comparison, construct a (bounded) viscosity solution w^{ℓ} of

$$
\min \left\{-\partial_{t} \varphi-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \varphi\right)} \partial_{x x}^{2} \varphi, \bar{\gamma}-\partial_{x x}^{2} \varphi\right\}=0 \quad \text { on }[0, T) \times \mathbb{R}
$$

with terminal condition

$$
\mathrm{w}^{\iota}(T, \cdot)=\hat{g}+\iota \quad \text { on } \mathbb{R}
$$

with $\iota>0$.

Step 2. Up to replacing w^{t} by an approximating sequence of quasi-concave functions (by quadratic inf-convolution), we can assume that w^{ι} is quasi-concave

Step 2. Up to replacing w^{ι} by an approximating sequence of quasi-concave functions (by quadratic inf-convolution), we can assume that w^{ι} is quasi-concave and then

$$
\min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\} \geq 0 \text { a.e. }
$$

with $\partial_{x x}^{2} w^{\iota}$ the density of the absolute continuous part of the second order derivative measure

See Jensen 88.

Step 2. Up to replacing w^{ι} by an approximating sequence of quasi-concave functions (by quadratic inf-convolution), we can assume that w^{ι} is quasi-concave and then

$$
\min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\} \geq 0 \text { a.e. }
$$

with $\partial_{x x}^{2} \mathrm{w}^{t}$ the density of the absolute continuous part of the second order derivative measure, and

$$
\mathrm{w}^{\iota}(T, \cdot) \geq \hat{\mathrm{g}}+\iota / 2
$$

See Jensen 88.

Step 3. Consider a (non-negative) smooth kernel ψ with support $[-1,0] \times[-1,1]$, take a window size $\delta>0$, and set

$$
\psi_{\delta}=\delta^{-1} \psi\left(\delta^{-1} \cdot\right)
$$

Step 3. Consider a (non-negative) smooth kernel ψ with support $[-1,0] \times[-1,1]$, take a window size $\delta>0$, and set $\psi_{\delta}=\delta^{-1} \psi\left(\delta^{-1} \cdot\right)$ and $\mathrm{w}_{\delta}^{\iota}=\mathrm{w}^{\iota} \star \psi_{\delta}:=\int \mathrm{w}^{\iota}\left(t^{\prime}, x^{\prime}\right) \psi_{\delta}\left(t^{\prime}-\cdot, x^{\prime}-\cdot\right) d t^{\prime} d x^{\prime}$.

Step 3. Consider a (non-negative) smooth kernel ψ with support $[-1,0] \times[-1,1]$, take a window size $\delta>0$, and set $\psi_{\delta}=\delta^{-1} \psi\left(\delta^{-1} \cdot\right)$ and $\mathrm{w}_{\delta}^{\iota}=\mathrm{w}^{\iota} \star \psi_{\delta}:=\int \mathrm{w}^{\iota}\left(t^{\prime}, x^{\prime}\right) \psi_{\delta}\left(t^{\prime}-\cdot, x^{\prime}-\cdot\right) d t^{\prime} d x^{\prime}$.

$$
0 \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\} \star \psi_{\delta}
$$

Step 3. Consider a (non-negative) smooth kernel ψ with support $[-1,0] \times[-1,1]$, take a window size $\delta>0$, and set $\psi_{\delta}=\delta^{-1} \psi\left(\delta^{-1} \cdot\right)$ and $\mathrm{w}_{\delta}^{\iota}=\mathrm{w}^{\iota} \star \psi_{\delta}:=\int \mathrm{w}^{\iota}\left(t^{\prime}, x^{\prime}\right) \psi_{\delta}\left(t^{\prime}-\cdot, x^{\prime}-\cdot\right) d t^{\prime} d x^{\prime}$.

The pde operator is concave

$$
\begin{aligned}
0 & \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\} \star \psi_{\delta} \\
& \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota} \star \psi_{\delta}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}\right\}
\end{aligned}
$$

Step 3. Consider a (non-negative) smooth kernel ψ with support $[-1,0] \times[-1,1]$, take a window size $\delta>0$, and set $\psi_{\delta}=\delta^{-1} \psi\left(\delta^{-1} \cdot\right)$ and $\mathrm{w}_{\delta}^{\iota}=\mathrm{w}^{\iota} \star \psi_{\delta}:=\int \mathrm{w}^{\iota}\left(t^{\prime}, x^{\prime}\right) \psi_{\delta}\left(t^{\prime}-\cdot, x^{\prime}-\cdot\right) d t^{\prime} d x^{\prime}$.

The pde operator is concave decreasing, and $\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota} \leq \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}$ (by quasi-concavity),

$$
\begin{aligned}
0 & \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\} \star \psi_{\delta} \\
& \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota} \star \psi_{\delta}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}\right\} \\
& \leq \min \left\{-\partial_{t} \mathrm{w}_{\delta}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right\}
\end{aligned}
$$

Step 3. Consider a (non-negative) smooth kernel ψ with support $[-1,0] \times[-1,1]$, take a window size $\delta>0$, and set $\psi_{\delta}=\delta^{-1} \psi\left(\delta^{-1} \cdot\right)$ and $\mathrm{w}_{\delta}^{\iota}=\mathrm{w}^{\iota} \star \psi_{\delta}:=\int \mathrm{w}^{\iota}\left(t^{\prime}, x^{\prime}\right) \psi_{\delta}\left(t^{\prime}-\cdot, x^{\prime}-\cdot\right) d t^{\prime} d x^{\prime}$.

The pde operator is concave decreasing, and $\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota} \leq \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}$ (by quasi-concavity),

$$
\begin{aligned}
0 & \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\} \star \psi_{\delta} \\
& \leq \min \left\{-\partial_{t} \mathrm{w}^{\iota} \star \psi_{\delta}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota} \star \psi_{\delta}\right\} \\
& \leq \min \left\{-\partial_{t} \mathrm{w}_{\delta}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right\}
\end{aligned}
$$

while, for δ small with respect to ι,

$$
\mathrm{w}_{\delta}^{\iota}(T, \cdot) \geq \hat{\mathrm{g}} .
$$

Step 4. We have produced a smooth function satisfying

$$
\min \left\{-\partial_{t} \mathrm{w}_{\delta}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right\} \geq 0
$$

and

$$
\mathrm{w}_{\delta}^{\iota}(T, \cdot) \geq \hat{\mathrm{g}}
$$

Step 4. We have produced a smooth function satisfying

$$
\min \left\{-\partial_{t} \mathrm{w}_{\delta}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right\} \geq 0
$$

and

$$
\mathrm{w}_{\delta}^{\iota}(T, \cdot) \geq \hat{\mathrm{g}} .
$$

Taking

$$
V=\mathrm{w}_{\delta}^{\iota}(\cdot, X) \quad \text { and } \quad Y=\partial_{\times} \mathrm{w}_{\delta}^{\iota}(\cdot, X)
$$

we obtain

$$
V_{T} \geq \hat{g}\left(X_{T}\right) \geq g\left(X_{T}\right)
$$

Step 4. We have produced a smooth function satisfying

$$
\min \left\{-\partial_{t} \mathrm{w}_{\delta}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}_{\delta}^{\iota}\right\} \geq 0
$$

and

$$
\mathrm{w}_{\delta}^{\iota}(T, \cdot) \geq \hat{\mathrm{g}} .
$$

Taking

$$
V=\mathrm{w}_{\delta}^{\iota}(\cdot, X) \quad \text { and } \quad Y=\partial_{\times} \mathrm{w}_{\delta}^{\iota}(\cdot, X)
$$

we obtain

$$
V_{T} \geq \hat{g}\left(X_{T}\right) \geq g\left(X_{T}\right)
$$

This implies that $\mathrm{v} \leq \mathrm{w}_{\delta}^{\ell} \rightarrow \mathrm{w}^{\iota}$, as $\delta \rightarrow 0$.

Step 5. Since w^{ι} is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\}=0
$$

with

$$
\mathrm{w}^{\iota}(T, \cdot)=\hat{\mathrm{g}}+\iota,
$$

Step 5. Since w^{ι} is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\}=0
$$

with

$$
\mathrm{w}^{\iota}(T, \cdot)=\hat{\mathrm{g}}+\iota,
$$

$\mathrm{w}^{\iota} \rightarrow \mathrm{w}$ where w is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}\right)} \partial_{x x}^{2} \mathrm{w}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}\right\}=0
$$

with

$$
\mathrm{w}(T, \cdot)=\hat{\mathrm{g}} .
$$

Step 5. Since w^{ι} is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\}=0
$$

with

$$
\mathrm{w}^{\iota}(T, \cdot)=\hat{\mathrm{g}}+\iota,
$$

$\mathrm{w}^{\iota} \rightarrow \mathrm{w}$ where w is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}\right)} \partial_{x x}^{2} \mathrm{w}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}\right\}=0
$$

with

$$
\mathrm{w}(T, \cdot)=\hat{\mathrm{g}} .
$$

It satisfies $\mathrm{w} \leftarrow \mathrm{w}^{\iota} \geq \mathrm{v}$.

Step 5. Since w^{ι} is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}^{\iota}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}^{\iota}\right)} \partial_{x x}^{2} \mathrm{w}^{\iota}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}^{\iota}\right\}=0
$$

with

$$
\mathrm{w}^{\iota}(T, \cdot)=\hat{\mathrm{g}}+\iota,
$$

$\mathrm{w}^{\iota} \rightarrow \mathrm{w}$ where w is solution of

$$
\min \left\{-\partial_{t} \mathrm{w}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{w}\right)} \partial_{x x}^{2} \mathrm{w}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{w}\right\}=0
$$

with

$$
\mathrm{w}(T, \cdot)=\hat{\mathrm{g}} .
$$

It satisfies $\mathrm{w} \leftarrow \mathrm{w}^{\iota} \geq \mathrm{v}$.
Step 6. But v is a super-solution of the same equation : $\mathrm{w} \leq \mathrm{v}$ by comparison, and therefore $\mathrm{w}=\mathrm{v}$ by the above.

To sum up :

$$
\underbrace{\mathrm{v}}_{\text {super-solution }} \geq \underbrace{\mathrm{w}}_{\text {solution }} \underbrace{\longleftarrow}_{\delta, \iota \rightarrow 0} \underbrace{\mathrm{w}_{\delta}^{\iota}}_{\text {super-hedging }} \geq \mathrm{v}
$$

Extensions with Mete

\square A general impact function :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \gamma_{s}\right) d W_{s} \\
& Y=y+\int_{t} b_{s} d s+\int_{t} \gamma_{s} d X_{s} \\
& V=v+\int_{t} F\left(s, X_{s}, \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

\square A general impact function :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \gamma_{s}\right) d W_{s} \\
& Y=y+\int_{t} b_{s} d s+\int_{t} \gamma_{s} d X_{s} \\
& V=v+\int_{t} F\left(s, X_{s}, \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

Relaxation of the gamma constraint. Can be as close as one wants to the singularity :

$$
\min \left\{-\partial_{t} \mathrm{v}-\bar{F}\left(\cdot, \partial_{x x}^{2} \mathrm{v}\right), \bar{\gamma}-\partial_{x x}^{2} \mathrm{v}\right\}=0 \text { on }[0, T) \times \mathbb{R},
$$

where

$$
\bar{F}(t, x, z):=\frac{1}{2} \sigma(t, x, z)^{2} z-F(t, x, z)
$$

and

$$
\{\bar{F}<\infty\}=\{F<\infty\}=\{(t, x, z): z<\bar{\gamma}(t, x)\} .
$$

Scheme of proof

\square Super-solution is obtained as before.

Scheme of proof

\square Super-solution is obtained as before.
\square Sub-solution: Lack of concavity \Rightarrow the smoothing procedure does not apply. In place, use of parabolic regularity for fully non-linear equations to provide smooth (approximate) solutions - in place of smoothing.

Scheme of proof

\square Super-solution is obtained as before.
\square Sub-solution: Lack of concavity \Rightarrow the smoothing procedure does not apply. In place, use of parabolic regularity for fully non-linear equations to provide smooth (approximate) solutions - in place of smoothing.
\square For this, we need a-priori estimates: If u with $\partial_{x x}^{2} u<\bar{\gamma}$ solves the PDE, then $w:=\bar{F}\left(\cdot, \partial_{x x}^{2} u\right)$ solves

$$
\partial_{t} w+\partial_{z} \bar{F}\left(\cdot, \partial_{x x}^{2} u\right) \partial_{x x}^{2} w=\frac{\partial_{t} \bar{F}\left(\cdot, \partial_{x x}^{2} u\right)}{\bar{F}\left(\cdot, \partial_{x x}^{2} u\right)} w .
$$

Scheme of proof

\square Super-solution is obtained as before.
\square Sub-solution: Lack of concavity \Rightarrow the smoothing procedure does not apply. In place, use of parabolic regularity for fully non-linear equations to provide smooth (approximate) solutions - in place of smoothing.
\square For this, we need a-priori estimates: If u with $\partial_{x x}^{2} u<\bar{\gamma}$ solves the PDE, then $w:=\bar{F}\left(\cdot, \partial_{x x}^{2} u\right)$ solves

$$
\partial_{t} w+\partial_{z} \bar{F}\left(\cdot, \partial_{x x}^{2} u\right) \partial_{x x}^{2} w=\frac{\partial_{t} \bar{F}\left(\cdot, \partial_{x x}^{2} u\right)}{\bar{F}\left(\cdot, \partial_{x x}^{2} u\right)} w .
$$

Then,

$$
w(t, x)=\mathbb{E}\left[w\left(T, \bar{X}_{T}^{t, x}\right) e^{-\int_{t}^{T}\left(\partial_{t} \bar{F}\left(\cdot, \partial_{x x}^{2} u\right) / \bar{F}\left(\cdot, \partial_{x x}^{2} u\right)\right)\left(s, \bar{X}_{s}^{t, x}\right) d s}\right]
$$

where $\bar{X}=x+\int_{t}\left(2 \partial_{z} \bar{F}\left(\cdot, \partial_{x x}^{2} u\right)\left(s, \bar{X}_{s}\right)\right)^{\frac{1}{2}} d W_{s}$.
Provides a uniform bound if $\partial_{x x}^{2} u(T, \cdot) \leq \bar{\gamma}-\iota$ with $\iota>0$.

Expansion around 0 impact

\square Scaling :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \epsilon \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \epsilon \gamma_{s}\right) d W_{s} \\
& V=v+\int_{t} \epsilon^{-1} F\left(s, X_{s}, \epsilon \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

Expansion around 0 impact

\square Scaling :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \epsilon \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \epsilon \gamma_{s}\right) d W_{s} \\
& V=v+\int_{t} \epsilon^{-1} F\left(s, X_{s}, \epsilon \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

\square Expansion performed around the solution v^{0} of $\left(\partial_{z} \bar{F}(\cdot, 0)=: \partial_{z} \bar{F}_{0}\right)$

$$
\partial_{t} \mathrm{v}^{0}+\partial_{z} \bar{F}(\cdot, 0) \partial_{x x}^{2} \mathrm{v}^{0}=0 \text { on }[0, T) \times \mathbb{R} \text { and } \mathrm{v}^{0}(T, \cdot)=\hat{\mathrm{g}} \text { on } \mathbb{R} .
$$

Expansion around 0 impact

\square Proposition :

$$
\begin{aligned}
\mathrm{v}^{\epsilon}(0, x) & =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\int_{0}^{T}\left[\partial_{z z}^{2} \bar{F}_{0}\left|\partial_{x x}^{2} \mathrm{v}^{0}\right|^{2}\right]\left(s, \tilde{X}_{s}^{0}\right) d s\right]+o(\epsilon) \\
& =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\partial_{x} \hat{g}\left(T, \tilde{X}_{T}^{0}\right) \tilde{Y}_{T}\right]+o(\epsilon)
\end{aligned}
$$

where

$$
\begin{aligned}
\tilde{X}^{z} & =x+\int_{t}\left(2 \partial_{z} \bar{F}\left(\cdot, z \partial_{x x}^{2} v^{0}\right)\right)^{\frac{1}{2}}\left(s, \tilde{X}_{s}^{z}\right) d W_{s}, \\
\tilde{Y} & =\frac{1}{\sqrt{2}} \int_{t} \frac{\partial_{x} \partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right) \tilde{Y}_{s}+\partial_{z z}^{2} \bar{F}_{0} \partial_{x x}^{2} v^{0}\left(s, \tilde{X}_{s}^{0}\right)}{\sqrt{\partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right)}} d W_{s} .
\end{aligned}
$$

Expansion around 0 impact

\square Proposition :

$$
\begin{aligned}
\mathrm{v}^{\epsilon}(0, x) & =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\int_{0}^{T}\left[\partial_{z z}^{2} \bar{F}_{0}\left|\partial_{x x}^{2} \mathrm{v}^{0}\right|^{2}\right]\left(s, \tilde{X}_{s}^{0}\right) d s\right]+o(\epsilon) \\
& =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\partial_{x} \hat{g}\left(T, \tilde{X}_{T}^{0}\right) \tilde{Y}_{T}\right]+o(\epsilon)
\end{aligned}
$$

where

$$
\begin{aligned}
\tilde{X}^{z} & =x+\int_{t}\left(2 \partial_{z} \bar{F}\left(\cdot, z \partial_{x x}^{2} v^{0}\right)\right)^{\frac{1}{2}}\left(s, \tilde{X}_{s}^{z}\right) d W_{s}, \\
\tilde{Y} & =\frac{1}{\sqrt{2}} \int_{t} \frac{\partial_{x} \partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right) \tilde{Y}_{s}+\partial_{z z}^{2} \bar{F}_{0} \partial_{x x}^{2} \mathrm{v}^{0}\left(s, \tilde{X}_{s}^{0}\right)}{\sqrt{\partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right)}} d W_{s} .
\end{aligned}
$$

\square The leading order term allows for super-hedging with \mathbf{L}^{∞}-error controlled by ϵ^{2}.

Dual formulation

\square In the concave case :

$$
\begin{aligned}
\mathrm{v}(t, x) & =\sup _{\mathfrak{s}} \mathbb{E}\left[\hat{g}\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right] \\
& =\sup _{\mathfrak{s}} \mathbb{E}\left[g\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right]
\end{aligned}
$$

in which

$$
X^{t, x, \mathfrak{s}}=x+\int_{t} \mathfrak{w}_{s} d W_{s}
$$

Dual formulation

\square In the concave case :

$$
\begin{aligned}
\mathrm{v}(t, x) & =\sup _{\mathfrak{s}} \mathbb{E}\left[\hat{g}\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right] \\
& =\sup _{\mathfrak{s}} \mathbb{E}\left[g\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right]
\end{aligned}
$$

in which

$$
X^{t, x, \mathfrak{s}}=x+\int_{t} \mathfrak{w}_{s} d W_{s}
$$

\square In the previous model :

$$
\bar{F}^{*}\left(t, x, s^{2}\right)=\frac{1}{2} \frac{\left(s-\sigma_{\circ}(t, x)\right)^{2}}{f(x)}, \quad \text { for } s \geq 0
$$

\square Under additional smoothness, the optimum is achieved by

$$
\hat{\mathfrak{s}}_{t, x}:=\left(2 \partial_{z} \bar{F}\left(\cdot, \partial_{x}^{2} \mathrm{v}\right)\left(\cdot, X^{t, x, \hat{\mathfrak{s}}_{\mathbf{t}}, x}\right)\right)^{\frac{1}{2}}
$$

and

$$
g\left(X_{T}^{t, x, \hat{\mathfrak{s}}_{\mathbf{t}, x}}\right)=\hat{g}\left(X_{T}^{t, x, \hat{\mathfrak{\hat { k }}}_{\mathbf{t}, x}}\right) .
$$

Open problems :

No constraint at all on the gamma? Existence/stability of FBSDE with impact?

Open problems :
 No constraint at all on the gamma? Existence/stability of FBSDE with impact?

Thank you!

B. Bouchard, G. Loeper, M. Soner and C. Zhou.

Second order stochastic target problems with generalized market impact.
forthcoming.
B. Bouchard, G. Loeper, and Y. Zou.

Almost-sure hedging with permanent price impact.
Finance and Stochastics, 20(3), 741-771, 2016.
B. Bouchard, G. Loeper, and Y. Zou.

Hedging of covered options with linear market impact and gamma constraint.
SIAM Journal on Control and Optimization, 55(5), 3319-3348, 2017.

