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Motivation
2 BS and local (stochastic) vol models :

• Are useful because they provide a clear hedging rule
• Disregard frictions because do not work at high frequency
• Taking costs into account would lead to useless degenerate
prices/strategies (in theory) and is helpless

2 However :
• Do not take price impact and illiquidity into account
• Problematic when large positions (possibly shared) or illiquid
underlying (may run after the delta)

2 Question : Can we built a model which
• Takes price impact and illiquidity into account
• Leads to a clear hedging and pricing rule
• Does not have embedded hidden transaction costs (otherwise the
super-hedging price would be degenerate)
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Some references

2 Many works on hedging with illiquidity or impact : Sircar and
Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98, Liu and Yong 05,
Cetin, Jarrow and Protter 04, Cetin, Soner and Touzi 09, Almgren and Li
13, Millot and Abergel 11, Guéant and Pu 13,...

2 Illiquidity + impact + perfect hedging : Loeper 14 (updated in 16,
verification arguments).

2 Past and ongoing related works by T. Bilarev and D. Becherer.



Impact rule and continuous time trading dynamics



Impact rule

2 Basic rule (only permanent for the talk) : an order of δ units moves
the price by

Xt− −→ Xt = Xt− + δf (Xt−),

and costs
δXt− +

1
2
δ2f (Xt−) = δ

Xt− + Xt

2
.

2 We just model the curve around δ = 0 as will pass to continuous time
(infinitesimal) rebalancements (could be more general away from 0).

2 One could add a resilience effect in the following.



Trading signal and discrete trading dynamics

2 A trading signal is an Itô process of the form

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs .

2 Trade at times tn
i = iT/n the quantity δntni = Ytni − Ytni−1

.

2 The stock price evolves according to

X = Xtni +

∫ ·
tni

σ(Xs)dWs

between two trades (can add a drift or be multivariate).
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2 The corresponding dynamics are

Y n
t :=

n−1∑
i=0

Ytni 1{tni ≤t<tni+1} + YT1{t=T} , δ
n
tni

= Y n
tni
− Y n

tni−1

X n = X0 +

∫ ·
0
σ(X n

s )dWs +
n∑

i=1

1[tni ,T ]δ
n
tni

f (X n
tni −

),

V n = V0 +

∫ ·
0

Y n
s−dX n

s +
n∑

i=1

1[tni ,T ]
1
2

(δntni
)2f (X n

tni −
),

where
V n = cash part + Y nX n = “portfolio value” .



2 Passing to the limit n→∞, it converges in S2 to

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dYs +

∫ ·
0

as(σf ′)(Xs)ds︸ ︷︷ ︸
(Y n

tni
−Y n

tni−1
)f (Xn

tni −)

V = V0 +

∫ ·
0

YsdXs +
1
2

∫ ·
0

a2
s f (Xs)ds︸ ︷︷ ︸

(Y n
tni
−Y n

tni−1
)2f (Xn

tni −)

,

at a speed
√

n.



The case of covered options

2 The premium and payoff are paid in cash and stocks with a number of
stocks decided by the trader. Avoids any initial and final market impact.

2 Super-hedging price :

v(t, x) := inf{v = c + yx : c , ν = (a, b, y) s.t. V t,x,v ,ν
T ≥ g(X t,x,ν

T )},

2 See B., Loeper and Zou 2016 for the un-covered case : surprisingly ( ?)
the picture is very different !
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Let us assume that we use the delta-hedging rule (as in Black and
Scholes) :

V = v(·,X ) , Y = ∂xv(·,X ).

Then, equating the dt terms implies

1
2
a2f (X ) = ∂tv(·,X ) +

1
2

(σ + af )2(X )∂2
xxv(·,X ),

and applying Itô’s Lemma to Y − ∂xv(·,X ) leads to

a
σ + fa

= ∂2
xxv(·,X ).

By a little bit of algebra :[
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv
]

(·,X ) = 0.



The pricing pde should be

−∂tv −
1
2

σ2

(1− f ∂2
xxv)

∂2
xxv = 0 on [0,T )× R,

v(T−, ·) = g on R.

Singular pde : take care of 1 6= f ∂2
xxv

- One possibility : add a gamma constraint ∂2
xxv ≤ γ̄ with f γ̄ < 1.

- A constraint of the form f ∂2
xxv > 1 does not make sense.
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Hedging with a gamma contraint

Reformulation of the dynamics

dY = γa(X )dX + µa,b
Y (X )dt and dX = σa(X )dW + µa,b

X (X )dt.

2 We now define v with respect to the gamma constraint

γa(X ) ≤ γ̄(X )

with
f γ̄ ≤ 1− ε, ε > 0.



Pricing pde :

min
{
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv , γ̄ − ∂2

xxv
}

= 0 on [0,T )× R.

Propagation of the gamma contraint at the boundary :

v(T−, ·) = ĝ on R

with ĝ the smallest (viscosity) super-solution of

min
{
ϕ− g , γ̄ − ∂2

xxϕ
}

= 0.

2 Perfect hedging : Smooth solution under additional conditions, leading
to perfect hedging by following Y = ∂xv(·,X ).
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Super-solution property

Use a weak formulation approach and results on small time behavior of
double stochastic integrals, see Soner and Touzi 00 and Cheridito, Soner
and Touzi 05.

It is based on the Geometric DPP (Soner and Touzi) :
if

V0 > v(0,X0)

then we can find (a, b,Y0) such that

Vθ ≥ v(θ,Xθ)

for any stopping time θ with values in [0,T ].



Sub-solution property

2 Main difficulty : can not establish the reverse Geometric DPP, i.e.

If (a, b,Y0) are such that

Vθ > v(θ,Xθ)

at a stopping time θ with values in [0,T ], then

V0 ≥ v(0,X0).

2 Problem :
- at θ we have a position Yθ that may not match with the position Ŷθ
associated to v(θ,Xθ). Can not jump from Yθ to Ŷθ...
- can neither go smoothly to it as it will move X because of the impact,
and therefore Ŷ (sort of fixed point problem), compare with Cheridito,
Soner, and Touzi 2005.
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The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and
Nutz 13.

2 Assume f , σ, γ̄ are constant, and ĝ bounded and uniformly continuous,
for simplicity.

Step 1. Using Perron’s method + comparison, construct a (bounded)
viscosity solution wι of

min
{
−∂tϕ−

1
2

σ2

(1− f ∂2
xxϕ)

∂2
xxϕ , γ̄ − ∂2

xxϕ

}
= 0 on [0,T )× R,

with terminal condition

wι(T , ·) = ĝ + ι on R

with ι > 0.
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Step 2. Up to replacing wι by an approximating sequence of
quasi-concave functions (by quadratic inf-convolution), we can assume
that wι is quasi-concave

and then

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
≥ 0 a.e.

with ∂2
xxwι the density of the absolute continuous part of the second

order derivative measure

, and

wι(T , ·) ≥ ĝ + ι/2.

See Jensen 88.
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Step 3. Consider a (non-negative) smooth kernel ψ with support
[−1, 0]× [−1, 1], take a window size δ > 0, and set

ψδ = δ−1ψ(δ−1·)

and wιδ = wι ?ψδ :=

∫
wι(t ′, x ′)ψδ(t ′−·, x ′−·)dt ′dx ′.

The pde operator is concave decreasing, and ∂2
xxwιδ ≤ ∂2

xxwι ? ψδ (by
quasi-concavity),

0 ≤ min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
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≤ min
{
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1
2

σ2

(1− f ∂2
xxwι?ψδ)

∂2
xxw

ι?ψδ, γ̄ − ∂2
xxw

ι?ψδ

}
≤ min

{
−∂twιδ −

1
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ι
δ , γ̄ − ∂2

xxw
ι
δ

}

while, for δ small with respect to ι,

wιδ(T , ·) ≥ ĝ .
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Step 3. Consider a (non-negative) smooth kernel ψ with support
[−1, 0]× [−1, 1], take a window size δ > 0, and set

ψδ = δ−1ψ(δ−1·) and wιδ = wι ?ψδ :=

∫
wι(t ′, x ′)ψδ(t ′−·, x ′−·)dt ′dx ′.

The pde operator is concave decreasing, and ∂2
xxwιδ ≤ ∂2

xxwι ? ψδ (by
quasi-concavity),

0 ≤ min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
?ψδ

≤ min
{
−∂twι?ψδ −

1
2

σ2

(1− f ∂2
xxwι?ψδ)

∂2
xxw

ι?ψδ, γ̄ − ∂2
xxw

ι?ψδ

}
≤ min

{
−∂twιδ −

1
2

σ2

(1− f ∂2
xxwιδ)

∂2
xxw

ι
δ , γ̄ − ∂2

xxw
ι
δ

}
while, for δ small with respect to ι,

wιδ(T , ·) ≥ ĝ .
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Step 4. We have produced a smooth function satisfying
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Taking
V = wιδ(·,X ) and Y = ∂xwιδ(·,X ),

we obtain
VT ≥ ĝ(XT ) ≥ g(XT ).

This implies that v ≤ wιδ → wι, as δ → 0.
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Step 5. Since wι is solution of

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
= 0

with
wι(T , ·) = ĝ + ι,

wι → w where w is solution of

min
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= 0

with
w(T , ·) = ĝ .

It satisfies w← wι ≥ v.

Step 6. But v is a super-solution of the same equation : w ≤ v by
comparison, and therefore w = v by the above.
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wι → w where w is solution of

min
{
−∂tw −

1
2

σ2

(1− f ∂2
xxw)

∂2
xxw , γ̄ − ∂2

xxw
}

= 0

with
w(T , ·) = ĝ .
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To sum up :

v︸︷︷︸
super-solution

≥ w︸︷︷︸
solution

←−︸︷︷︸
δ,ι→0

wιδ︸︷︷︸
super-hedging

≥ v



Extensions with Mete



2 A general impact function :

X = x +

∫ ·
t
µ(s,Xs , γs , bs)ds +

∫ ·
t
σ(s,Xs , γs)dWs

Y = y +

∫ ·
t

bsds +

∫ ·
t
γsdXs

V = v +

∫ ·
t

F (s,Xs , γs)ds +

∫ ·
t

YsdXs

2 Relaxation of the gamma constraint. Can be as close as one wants to
the singularity :

min{−∂tv − F̄ (·, ∂2
xxv) , γ̄ − ∂2

xxv} = 0 on [0,T )× R,

where
F̄ (t, x , z) :=

1
2
σ(t, x , z)2z − F (t, x , z)

and
{F̄ <∞} = {F <∞} = {(t, x , z) : z < γ̄(t, x)}.
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Scheme of proof
2 Super-solution is obtained as before.

2 Sub-solution : Lack of concavity ⇒ the smoothing procedure does not
apply. In place, use of parabolic regularity for fully non-linear equations to
provide smooth (approximate) solutions - in place of smoothing.

2 For this, we need a-priori estimates : If u with ∂2
xxu < γ̄ solves the

PDE, then w := F̄ (·, ∂2
xxu) solves

∂tw + ∂z F̄ (·, ∂2
xxu)∂2

xxw =
∂t F̄ (·, ∂2

xxu)

F̄ (·, ∂2
xxu)

w .

Then,

w(t, x) = E[w(T , X̄ t,x
T )e−

∫ T
t (∂t F̄ (·,∂2

xxu)/F̄ (·,∂2
xxu))(s,X̄ t,x

s )ds ]

where X̄ = x +
∫ ·
t (2∂z F̄ (·, ∂2

xxu)(s, X̄s))
1
2 dWs .

Provides a uniform bound if ∂2
xxu(T , ·) ≤ γ̄ − ι with ι > 0.
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Expansion around 0 impact

2 Scaling :

X = x +

∫ ·
t
µ(s,Xs , εγs , bs)ds +

∫ ·
t
σ(s,Xs , εγs)dWs

V = v +

∫ ·
t
ε−1F (s,Xs , εγs)ds +

∫ ·
t

YsdXs

2 Expansion performed around the solution v0 of (∂z F̄ (·, 0) =: ∂z F̄0)

∂tv0 + ∂z F̄ (·, 0)∂2
xxv

0 = 0 on [0,T )× R and v0(T , ·) = ĝ on R.



Expansion around 0 impact

2 Scaling :

X = x +

∫ ·
t
µ(s,Xs , εγs , bs)ds +

∫ ·
t
σ(s,Xs , εγs)dWs

V = v +

∫ ·
t
ε−1F (s,Xs , εγs)ds +

∫ ·
t

YsdXs

2 Expansion performed around the solution v0 of (∂z F̄ (·, 0) =: ∂z F̄0)

∂tv0 + ∂z F̄ (·, 0)∂2
xxv

0 = 0 on [0,T )× R and v0(T , ·) = ĝ on R.



Expansion around 0 impact

2 Proposition :

vε(0, x) =v0(0, x) +
ε

2
E

[∫ T

0
[∂2

zz F̄0|∂2
xxv

0|2](s, X̃ 0
s )ds

]
+ o(ε)

=v0(0, x) +
ε

2
E
[
∂x ĝ(T , X̃ 0

T )ỸT

]
+ o(ε)

where

X̃ z = x +

∫ ·
t

(2∂z F̄ (·, z∂2
xxv

0))
1
2 (s, X̃ z

s )dWs ,

Ỹ =
1√
2

∫ ·
t

∂x∂z F̄0(s, X̃ 0
s )Ỹs + ∂2

zz F̄0∂
2
xxv0(s, X̃ 0

s )√
∂z F̄0(s, X̃ 0

s )
dWs .

2 The leading order term allows for super-hedging with L∞-error
controlled by ε2.
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Dual formulation

2 In the concave case :

v(t, x) = sup
s

E

[
ĝ(X t,x,s

T )−
∫ T

t
F̄ ∗(s,X t,x,s

s , s2s )ds

]

= sup
s

E

[
g(X t,x,s

T )−
∫ T

t
F̄ ∗(s,X t,x,s

s , s2s )ds

]

in which

X t,x,s = x +

∫ ·
t
ssdWs .

2 In the previous model :

F̄ ∗(t, x , s2) =
1
2

(s − σ◦(t, x))2

f (x)
, for s ≥ 0.
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2 Under additional smoothness, the optimum is achieved by

ŝt,x := (2∂z F̄ (·, ∂2
xv)(·,X t,x,ŝt,x ))

1
2

and
g(X t,x,ŝt,x

T ) = ĝ(X t,x,ŝt,x
T ).



Open problems :
No constraint at all on the gamma ?

Existence/stability of FBSDE with impact ?

Thank you !

B. Bouchard, G. Loeper, M. Soner and C. Zhou.

Second order stochastic target problems with generalized market impact.
forthcoming.

B. Bouchard, G. Loeper, and Y. Zou.

Almost-sure hedging with permanent price impact.
Finance and Stochastics, 20(3), 741-771, 2016.

B. Bouchard, G. Loeper, and Y. Zou.

Hedging of covered options with linear market impact and gamma constraint.
SIAM Journal on Control and Optimization, 55(5), 3319-3348, 2017.
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