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A quote

K. KHANIN & A. SOBOLEVSKI, On Dynamics of Lagrangian Trajectories for
Hamilton-Jacobi Equations, Arch. Rational Mech. Anal. 219 (2016)

The evolutionary Hamilton-Jacobi equation,

(HJ)
∂φ

∂t
+ H(t , x ,∇φ) = 0

appears in diverse mathematical models ranging from analytical
mechanics to combinatorics, condensed matter, turbulence, and
cosmology . . . In many of these applications the objects of interest
are described by singularities of solutions, which inevitably appear
for generic initial data after a finite time due to the nonlinearity of
(HJ). Therefore one of the central issues both for theory and
applications is to understand the behaviour of the system after
singularities form.
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Overview

Ω ⊂ Rn bounded H
(
x ,u,Du

)
= 0 a.e. in Ω

u : Ω→ R Lipschitz viscosity solution
p 7→ H(x ,u,p) is convex

The object of our study

Sing(u) =
{

x ∈ Ω | 6 ∃Du(x)
}

Examples
1 Hamilton-Jacobi equation{

ut + H(t , x ,Dxu) = 0 ]0,T [×Rn

u(0, x) = u0(x) x ∈ Rn

2 weak KAM theory 1
2 |c + Du|2 + V (x) = α[c] (x ∈ Tn)
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Characteristics

{
ut + H(t , x ,Dxu) = 0 ]0,T [×Rn

u(0, x) = u0(x) x ∈ Rn

by using characteristics:
on [0,T ]× Rn \ Sing(u)
u is as smooth as the data (maximal regularity)

{
ẋ(t) = DpH

(
t , x(t),p(t)

)
, x(0) = z

ṗ(t) = −DxH
(
t , x(t),p(t)

)
, p(0) = Du0(z)

-

6r(t , x)
t

x
0 z
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Calculus of Variations

Denote by L : [0,T ]× Rn × Rn → R the Legendre transform

L(t , x ,q) = max
p∈Rn

[
〈q,p〉 − H(t , x ,p)

]
The value function

u(t , x) = infξ(t)=x

{∫ t

0
L
(
s, ξ(s), ξ′(s)

)
dt + u0

(
ξ(0)

)}
gives the viscosity solution of{

ut (t , x) + H
(
t , x ,Dxu(t , x)

)
= 0

u(0, x) = u0(x)

∃Du(t , x) ⇐⇒ unique minimizer at (t , x)
-

6r(t , x)
t

x
0 ξ(0)
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Outline

1 The beginning

2 Use of (some) geometric measure theory

3 The discovery of singular dynamics

4 From local to global propagation

5 Beyond propagation of singularities

6 Concluding remarks
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beginning

How this story began

Figure: how, where, and whom with...
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beginning

The “discovery” of semiconcave functions

Ω ⊆ Rn open
u : Ω→ R semiconcave with modulus ω : [0,∞[→ [0,∞[ if

λu(x) + (1− λ)u(y)− u
(
λx + (1− λ)y

)
6 λ(1− λ)|x − y |ω

(
|x − y |

)
for all x , y such that [x , y ] ⊂ Ω and λ ∈ [0,1]

Special cases:
ω(s) ≡ 0 −→ concave
ω(s) = Cs (C > 0) −→ linearly semiconcave
In this case, there is a concave function v such that

u(x) = v(x) +
C
2
|x |2 (?)

ω(s) = Csα (C > 0,0 < α < 1) −→ fractionally semiconcave
In this case, (?) is no longer valid
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beginning

Further references on semiconcave functions

control theory and sensitivity analysis
Hrustalev 1978, C – Frankowska 1991
Fleming – McEneaney 2000
Rifford 2000, 2002
nonsmooth and variational analysis
Rockafellar 1982
Colombo – Marigonda 2006, Colombo – Nguyen 2010
differential geometry
Perelman 1995, Petrunin 2007
monographs
C – Sinestrari (Birkhäuser 2004)
Villani (Springer 2009)
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beginning

Semiconcavity & nonsmooth analysis

For any semiconcave u : Ω→ R

the superdifferential at x ∈ Ω coincides with Clarke’s gradient

D+u(x) = co D∗u(x) = ∂u(x)

where D∗u(x) =
{

limi→∞Du(xi)
∣∣ xi → x

}
reachable gradients

D+u(x) = {p} ⇐⇒ u differentiable
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beginning

Semiconcavity & Hamilton-Jacobi equations

For u : Ω→ R semiconcave and H ∈ C
(
Ω× R× Rn)

if u is a viscosity solution of H
(
x ,u,Du

)
= 0 in Ω, then

H(x ,u(x),p) = 0 ∀x ∈ Ω,p ∈ D∗u(x)

if H(x ,u, ·) convex, then

H
(
x ,u,Du

)
= 0 a.e. ⇐⇒ H

(
x ,u,Du

)
= 0 viscosity

if H(x ,u, ·) strictly quasi-convex, then

x ∈ Sing(u) ⇐⇒ min
p∈D+u(x)

H(x ,u(x),p) < 0

P. Cannarsa (Rome Tor Vergata) singularities of solutions to HJ 04/06/2018 12 / 39



 

beginning

Our first propagation result

ut + H
(
t , x ,Dxu

)
= 0 in (0,T )× Rn (HJ)

Theorem (C – Soner 1987)
Let

u be a semiconcave a viscosity solution of (HJ)

(t0, x0) ∈ (0,T )× Rn and τ > 0 be such that

u ∈ C1(]t0, t0 + τ [×Bτ (x0)
)

Then
u ∈ C1([t0, t0 + τ [×Bτ (x0)

)
This shows that (t0, x0) ∈ Sing(u) propagates along a discrete set
Problem: how to connect these singular points with a singular line?

x

t

(x0, t0)

(x(t), t)

P. Cannarsa (Rome Tor Vergata) singularities of solutions to HJ 04/06/2018 13 / 39



 

beginning

Towards the use of measure theory

PC & H. M. Soner, On the singularities of viscosity solutions to
Hamilton-Jacobi-Bellman equations, Indiana Univ. Math. J. 36 (1987),
pp.501–524.
PC & H. M. Soner, Generalized one-sided estimates for solutions of
Hamilton-Jacobi equations and applications, Nonlinear Analysis, Theory,
Methods & Applications, 13 (1989), pp.305– 323.
L. Ambrosio, PC & H. M. Soner, On the propagation of singularities of
semi-convex functions, Ann. Scuola Norm. Sup. Pisa 20 (1993), pp.597–616.
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measure theory

Semiconcave functions and rectifiability

Ω ⊆ Rn open u : Ω→ R semiconcave

Singular set

Sing(u) =
{

x ∈ Ω | 6 ∃Du(x)
}

=
{

x ∈ Ω | dim D+u(x) > 1
}

can be stratified by looking at singular magnitude

Sing(u) = ∪n
j=1Singj(u) with Singj(u) := {x ∈ Ω | dim D+u(x) = j}

Theorem
Singj(u) countably (n − j)-rectifiable
Sing(u) countably (n − 1)-rectifiable

Zajı́ček (1978), Veselý (1979)
concave functions
Alberti – Ambrosio – C (1992) general semiconcave functions
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measure theory

Singularities in the real world

The distance function from a set S ⊂ Rn

dS(x) = inf
y∈S
|x − y |

is locally semiconcave on Rn \ S
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measure theory

Closure of the singular set

u : (0,T )× Rn → R semiconcave{
ut (t , x) + H

(
t , x ,Dxu(t , x)

)
= 0 (t , x) ∈ (0,T )× Rn

u(0, x) = u0(x) x ∈ Rn (HJ)

where, for some k > 1,
H = H(t , x ,p) ∈ Ck+1 strictly convex and superlinear in p
u0 ∈ Ck+1(Rn)

Then Sing(u) countably n-rectifiable: what about Sing(u)?
By characteristics: u ∈ Ck+1([0,T ]× Rn \ Sing(u)

)
Fleming 1969 (by a Sard-type argument)

Sing(u) ⊆ Sing(u) ∪ Conj(u) and Hn+1/k(Conj(u)
)

= 0

This is not enough to derive n-rectifiability
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measure theory

Conjugate points

(
x(t , z)
p(t , z)

) {
ẋ(t) = DpH

(
t , x(t),p(t)

)
, x(0) = z

ṗ(t) = −DxH
(
t , x(t),p(t)

)
, p(0) = Du0(z)

-

6r(t0, x0)
t

x
0 z0

(t0, x0) ∈ Conj(u) ⇐⇒ ∃z0

such that
x0 = x(t0, z0)

x(·, z0) minimizer at (t0, x0)

det
∂x
∂z

(t0, z0) = 0
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measure theory

Rectifiability of the cut set

Theorem (C – Mennucci – Sinestrari 1997)

Sing(u) = Sing(u) ∪ Conj(u)

Conj(u) is countably Hn-rectifiable (and so is Sing(u))
Hn−1+2/k(Conj(u) \ Sing(u)

)
= 0 (k > 2)

H− dim
(
Conj(u) \ Sing(u)

)
6 n − 1 (k =∞)
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singular dynamics

A fresh look at propagation of singularities

Do singularities of lower magnitude propagate?

κ=1

κ=2

Σ(u)

Figure: singularities of magnitude 1 do propagate along straight lines

P. Cannarsa (Rome Tor Vergata) singularities of solutions to HJ 04/06/2018 20 / 39



 

singular dynamics

A counterexample

Σ(u)

κ(0)=1

Figure: an isolated singularity of magnitude 1 at the origin

u(x , y) = 3−
√( 3x

2

)2
+
(

2y
3

)4
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singular dynamics

A closer look at reachable gradients

=   limiting gradients

Figure: here D∗u(0,0) ( ∂D+u(0,0)
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singular dynamics

A crucial test

limiting gradients

Figure: here D∗u(0,0) = D+u(0,0)
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singular dynamics

The propagation principle

Ω ⊆ Rn open u : Ω→ R semiconcave

Theorem (Albano – C 1999)

Let x0 ∈ Sing(u) be such that ∂D+u(x0)\D∗u(x0) 6= ∅
Fix any p0 ∈ ∂D+u(x0)\D∗u(x0) and q0 ∈ Rn \ {0} such that

q0 · (p − p0) > 0 ∀p ∈ D+u(x0)

Then ∃ ξ(·) : [0, τ ]→ Ω Lipschitz such that{
ξ̇(t) ∈ q0 − p0 + D+u

(
x(t)

)
t ∈ [0, τ ] a.e.

ξ(0) = x0

ξ(t) ∈ Sing(u) ∀t ∈ [0, τ ]

ξ̇+(0) = q0
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singular dynamics

The role of generalized characteristics

ξ(·) : [0, τ [→ Ω (0 < τ 6∞) is a generalized characteristic for (u,H)

ξ̇(t) ∈ co DpH
(
ξ(t),u

(
ξ(t)

)
,D+u

(
ξ(t)

))
for a.e. t ∈ [0, τ [

Theorem (Albano – C 2000, Yu 2006, C – Yu 2009)

u : Ω→ R semiconcave solution H(x ,u,Du) = 0
x0 ∈ Sing(u) such that 0 /∈ DpH

(
x0,u(x0),D+u(x0)

)
Then ∃ξ : [0, τ [→ Ω generalized characteristic for (u,H) such that
ξ(0) = x0

ξ(t) ∈ Sing(u) ∀t ∈ [0, τ [

ξ̇+(0) = DpH
(
x0,u(x0),p0

)
with p0 = arg min

p∈D+u(x0)
H
(
x0,u(x0),p

)
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singular dynamics

Further references on propagation of singularities

Albano 2010, 2011, 2014
Bogaevsky 2006
Strömberg 2013
Khanin – Sobolevski 2014
Strömberg–Ahmadzdeh 2014
C – Cheng – Zhang 2014
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from local to global

The Euclidean distance function

Ω ⊂ Rn bounded open set dΩ(x) = miny∈∂Ω |x − y | (x ∈ Ω)

Sing(dΩ) =
{

x ∈ Ω | proj∂Ω(x) multivalued
}
6= ∅ medial axis'
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from local to global

Magic of the eikonal equation

Theorem (Albano – C – Khai T. Nguyen – Sinestrari 2013)

For any given x0 ∈ Ω let ξ : [0,∞)→ Ω be the unique solution of{
ξ̇(t) ∈ D+dΩ

(
ξ(t)

)
t ∈ [0,∞) a.e.

ξ(0) = x0

Then

x0 ∈ Sing(dΩ) =⇒ ξ(t) ∈ Sing(dΩ) ∀t ∈ [0,∞)
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beyond propagation

A first topological application

Theorem (A. Lieutier, Computer-Aided Design 2004)

Ω has the same homotopy type as Sing(dΩ)

F. Wolter (1993): deformation retract technique works if

Ω ⊂ Rn and ∂Ω ∈ C2

Ω ⊂ R2 and ∂Ω is piecewise C2

Proof.

Use generalized gradient flow ξ(t , x){
ξ̇(t) ∈ D+dΩ

(
ξ(t)

)
t ∈ [0,∞) a.e.

ξ(0) = x

to define homotopy H : Ω× [0,1]→ Ω by H(x , t) = ξ(tT , x)
where T > 0 is such that ξ(T , x) ∈ Sing(dΩ) ∀x ∈ Ω
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beyond propagation

Weak KAM solutions on manifolds

M compact connected manifold

u : M → R solution of

H
(
x ,Du(x)

)
= 0 (x ∈ M)

Figure: W. Cheng and A. Fathi

γ : [a,b]→ M is u-calibrating if

u(γ(b))− u(γ(a)) =

∫ b

a
L(γ(s), γ̇(s))ds
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beyond propagation

The Cut and Aubry sets

Cut(u) = cut set of u consists of all x ∈ M such that

x ∈ γ([a,b]) for some u-calibrating γ =⇒ x = γ(b)

I(u) = Aubry set of u consists of all x ∈ M such that

x = γ(0) for some u-calibrating γ : R→ M

Observe Sing(u) ⊆ Cut(u) ⊆ Sing(u) \ I(u) ⊆ M \ I(u)
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beyond propagation

Topology of singular sets

Theorem (C – Cheng – Fathi 2017)

u : M → R solution of H
(
x ,Du(x)

)
= 0

Then all the inclusions

Sing(u) ⊆ Cut(u) ⊆ Sing(u) \ I(u) ⊆ M \ I(u)

are homotopy equivalences

http://dx.doi.org/10.1016/j.crma.2016.12.004

Corollary

For every connected component C of M \ I(u) the sets

Sing(u) ∩ C, Cut(u) ∩ C, Sing(u) ∩ C

are path-connected
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beyond propagation

The role of Lax-Oleinik operators

Let At be the minimal action

At (x , y) = inf
ξ

{∫ t

0
L
(
ξ(s), ξ̇(s)

)
ds
∣∣ ξ(0) = x , ξ(t) = y

}
where L(x , v) = maxp∈T∗x M

{
〈p, v〉 − H(x ,p)

}
. Then

T−t u(x) = inf
y∈M

{
u(y) + At (x , y)

}
−→ weak KAM solution

T +
t u(x) = sup

y∈M

{
u(y)− At (x , y)

}
−→ propagation of Sing(u)
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beyond propagation

Three milestones towards global propagation

(a) ∃ t0 > 0 such that T +
t u ∈ C1(M) for all t ∈]0, t0]

[Bernard 2007]
(b) argmaxy∈M

{
u(y)− At (x , y)

}
= {yx (t)} ∀(t , x) ∈ [0, t0]×M

Proof. For any ξ : [0, t ]→ M action-minimizer with ξ(0) = x , ξ(t) = y

∂L
∂v

(x , ξ̇(0)) = D(T +
t u)(x) =⇒ maximizer y is unique �

(c) x ∈ Sing(u) =⇒ yx (t) ∈ Sing(u) for all t ∈ [0, t0]

Proof. For ξ : [0, t ]→ M as above ∂L
∂v (yx (t), ξ̇(t)) ∈ D+u(yx (t)). So

yx (t) /∈ Sing(u) =⇒ ∂L
∂v

(yx (t), ξ̇(t)) = Du(yx (t)) �

For u-calibrating γ :]−∞, 0]→ M with γ(0) = yx (t) we have

∂L
∂v

(yx (t), γ̇(0)) = Du(yx (t)) =
∂L
∂v

(yx (t), ξ̇(t)) =⇒ ξ(s) = γ(t − s) ∀s ∈ [0, t ]

Contradiction: x = ξ(0) and ξ is u-calibrating �
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conclusions

Higher dimensional singular manifolds

p0 ∈ D+u(x0) , Np0 =
{

q ∈ Rn
∣∣ |q| = 1 , q · (p − p0) ≥ 0 , ∀p ∈ D+u(x0)

}
Theorem

u : Ω→ R semiconcave x0 ∈ Sing(u)

∅ 6= ∂D+u(x0)\D∗u(x0) 3 p0

Then ∃τ > 0 & f : [0, τ ]× Np0 → Sing(u) Lipschitz such that
1 for all q ∈ Np0 , f (·, q) solves{

∂sf (s, q) ∈ q − p0 + D+u(f (s, q)) for a.e s ∈ [0, τ ]

f (0, q) = x0

2 ∂+
s f (0, q) = q

3 for ν = 1 + dimH Np0 = dim ND+u(x0)(p0) we have that

lim inf
r→0+

r−νHν
(

f
(
[0, τ ]× Np0

)
∩ Br (x0)

)
> 0
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conclusions
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conclusions

Singularities and critical points

For c ∈ RN let uc be a solution of

H
(
x , c + Du(x)

)
= α[c] (x ∈ TN)

where

H(x ,p) =
1
2
〈
A(x)p,p

〉
+ V (x) (A > 0 and max

Tn
V = 0)

Define
vc(x) = uc(x) + 〈c, x〉 (x ∈ Rn)

Theorem (C – Cheng 2018)

Any bounded connected component of Sing(vc) contains a critical
point of vc

Problem: asymptotic behaviour of singular characteristics in
connection with relevant invariant sets (Mather and Aubry)
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conclusions

Nonconvex Hamiltonians

It would be extremely interesting to extend part of this theory to
nonconvex Hamiltonians

L. C. EVANS, Envelopes and nonconvex Hamilton-Jacobi
equations, Calc. Var. Partial Differ. Equ. 50, No. 1-2, 257-282
(2014)
A. A. MELIKYAN, Generalized characteristics of first order PDEs.
Applications in optimal control and differential games, Boston, MA:
Birkhäuser (1998)

Thank you for your attention and. . .
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conclusions

Happy Birthday Mete!
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