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The second order master equation reads :

(M2)



































−∂t U − (1 + β)∆x U + H(x,Dx U,m)

−(1 + β)

∫

Rd
divy [DmU] dm(y) +

∫

Rd
DmU · Hp(y ,Dx U,m) dm(y)

−2β

∫

Rd
divx [DmU] dm(y) − β

∫

R2d
Tr
[

D2
mmU

]

dm ⊗ dm = 0

in [0,T ]× R
d ×P(Rd )

U(T , x,m) = G(x,m) in Rd × P(Rd )

where

β ≥ 0 is the level of common noise,

H = H(x, p,m) : Rd × Rd ×P(Rd ) → R is a standard Hamiltonian in (x, p), non local and
smoothing in m,

the coupling function G : Rd ×P(Rd ) → R is nonlocal and smoothing.

Some results on the master equation : Lasry-Lions (’13), Buckdahn-Li-Peng-Rainer (’14),
Gangbo-Swiech (’14), Bessi (’15), Chassagneux-Crisan-Delarue (’15), C.-Delarue-Lasry-Lions
(2015), Lacker-Webster (’15), Ahuja (’16), Carmona-Delarue’s monograph (2017),...

Aim of our work : Provide a new construction of solutions for (M2).
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Outline

1 Interpretation of the master equation

2 Construction of a solution for (M2)

3 Uniqueness

P. Cardaliaguet (Paris-Dauphine) Mean field games 4 / 33



Outline

1 Interpretation of the master equation

2 Construction of a solution for (M2)

3 Uniqueness

P. Cardaliaguet (Paris-Dauphine) Mean field games 4 / 33



Outline

1 Interpretation of the master equation

2 Construction of a solution for (M2)

3 Uniqueness

P. Cardaliaguet (Paris-Dauphine) Mean field games 4 / 33



Interpretation of the master equation

Outline

1 Interpretation of the master equation

2 Construction of a solution for (M2)

3 Uniqueness

P. Cardaliaguet (Paris-Dauphine) Mean field games 5 / 33



Interpretation of the master equation

Two approches :

As limit of Nash equilibria for symmetric N−player games,

Symmetric Nash equilibria in a game with infinitely many players.
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Interpretation of the master equation

First approach : Limit of N−player game

Let N ∈ N
∗ be the (large) number of players.

Player i ∈ {1, . . . ,N} controls a dynamics of the form

dX i
t = αi

t dt +
√

2dBi
t +
√

2βdWt , t ∈ [0,T ] X i
0 = X̄ i

0

where X̄ i
0

is fixed, (αi ) is her control and (Bi ) and W are i.i.d. BM. She aims at minimizing

J i (αi , (αj )j 6=i ) = E

[

∫ T

0

LN,i(X i
s , α

i
s , (X

j
s)j 6=i )ds + GN,i(X i

T , (X
j
T
)j 6=i )

]

.

The pair (ᾱ1, . . . , ᾱN ) is a Nash equilibrium if : ∀i ∈ {1, . . . ,N},

J i (αi , (ᾱj )j 6=i ) ≥ J i (ᾱi , (ᾱj )j 6=i )

for any control αi .
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Interpretation of the master equation

Limit of N−player game (continued)

A Verification Theorem. Assume that the maps vN,i : [0,T ]× (Rd )N → R solves



















































−∂t v
N,i(t, x)−

N
∑

j=1

∆xj
vN,i (t, x)− β

N
∑

j,k=1

TrD2
xj ,xk

vN,i (t, x)

+HN,i(xi ,Dxi
vN,i (t, x), (xj )−i )

+
∑

j 6=i

DpHN,i (xj ,Dxj
vN,j(t, x), (xk )−j ) · Dxj

vN,i (t, x) = 0 in [0,T ]× (Rd )N ,

vN,i(T , x) = GN,i(x) in (Rd )N .

where HN,i(x, p, z) = supα −α · p − LN,i(x, α, z). Then

(ᾱ1, . . . , ᾱN) := (−DpHN,1(x1,DvN,1, (xi )−1), . . . ,−DpHN,N(xN ,DvN,N , (xi )−N))

is a Nash equilibrium.
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Interpretation of the master equation

Limit of N−player game (continued)

Assume that the players are symmetric :

HN,i (xi , p, (xj )−i ) = H(xi , p,m
N,i
x

), GN,i(xi , (xj )−i ) = G(xi ,m
N,i
x

)

where m
N,i
x

=
1

N − 1

∑

j 6=i

δxj
.

Then vN,i(t, xi , (xj )−i ) = V N(t, xi ,m
N,i
x

) and, if V N → U, U formally solves

(M2)



































−∂t U − (1 + β)∆x U + H(x,Dx U,m)

−(1 + β)

∫

Rd
divy [DmU] dm(y) +

∫

Rd
DmU · Hp(y ,Dx U,m) dm(y)

−2β

∫

Rd
divx [DmU] dm(y) − β

∫

R2d
Tr
[

D2
mmU

]

dm ⊗ dm = 0

in [0,T ]× R
d × P(Rd )

U(T , x,m) = G(x, m) in Rd × P(Rd )
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Interpretation of the master equation

Limit of N−player game (continued)

Comparison between the Nash system :



















































−∂t v
N,i(t, x)−

N
∑

j=1

∆xj
vN,i (t, x)− β

N
∑

j,k=1

TrD2
xj ,xk

vN,i (t, x)

+HN,i(xi ,Dxi
vN,i(t, x), (xj )−i )

+
∑

j 6=i

DpHN,i(xj ,Dxj
vN,j (t, x), (xk )−j ) · Dxj

vN,i(t, x) = 0 in [0,T ]× (Rd )N ,

vN,i(T , x) = GN,i(x) in (Rd )N .

and the master equation (for vN,i(t, xi , (xj )−i ) ≃ U(t, xi ,m
N,i
x

)) :

(M2)



































−∂t U − (1 + β)∆x U + H(x,Dx U,m)

−(1 + β)

∫

Rd
divy [DmU] dm(y) +

∫

Rd
DmU · Hp(y ,Dx U,m) dm(y)

−2β

∫

Rd
divx [DmU] dm(y) − β

∫

R2d
Tr
[

D2
mmU

]

dm ⊗ dm = 0

in [0,T ]× R
d ×P(Rd )

U(T , x,m) = G(x,m) in R
d × P(Rd )
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Interpretation of the master equation

Limit of N−player game (end)

Key difficulty : Not enough estimates on the (vN,i ) to justify the limit.

Rigorous proof of the convergence : Build a solution to (M2) and use it to justify the limit
(C.-Delarue-Lasry-Lions)
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Interpretation of the master equation

Second approach : Nash equilibria in the infinite player game

We now directly consider a game with infinitely many (infinitesimal, symmetric) players.

The dynamics of each player is

dXt = αt dt +
√

2dBt +
√

2βdWt , t ∈ [0,T ] X0 = X̄0,

where B and W are indep. (B being the individual noise and W the common noise).
The individual cost is of the form

J(α, (mt )) = E

[

∫ T

0

L(Xs , αs ,ms)ds + G(XT ,mT )

]

,

where (mt ) is the (random) distribution of all players at time t (anticipated by the players
and adapted to W ).

The value function of the small player is

ut (x) = inf
α

E

[

∫ T

t

L(Xs , αs,ms)ds + G(XT ,mT ) | (Ws)s≤t

]

where
dXs = αsds +

√
2dBs +

√

2βdWs, s ∈ [t, T ] Xt = x.
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Interpretation of the master equation

The MFG system (continued)

The optimal feedback of each player is then

α∗(t, x) = −DpH(x,Dut (x),mt ),

so that the optimal dynamic of the player solves

dXs = −DpH(Xs ,Dut(Xs),ms)ds +
√

2dBs +
√

2βdWs, s ∈ [t,T ] X0 = X̄0.

(By mean field argument), the distribution of the players is then m̃t = [Xt |W ].

An equilibrium configuration is obtained when m̃ = m.
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Interpretation of the master equation

The MFG system (end)

The PDE formulation : The pair (u,m) formally solves

(MFGs)







































dt ut =
{

−(1 + β)∆ut + H(x,Dut ,mt )−
√

2βdiv(vt )
}

dt

+ vt · dWt in [0,T ]× R
d ,

dt mt =
[

(1 + β)∆mt + div
(

mt DpH(x, Dut ,mt)
)]

dt −
√

2βdiv(mt dWt

)

in [0,T ]× R
d

m0 = [X̄0], uT (x) = G(x,mT ) in R
d .

where (vt ) is a vector field which ensures (ut ) to be adapted to (Ws)s≤t .

Link with the master equation : Let U solves M2. Let m solve the stochastic
McKean-Vlasov equation :















dt mt =
[

(1 + β)∆mt + div
(

mt DpH(x, Dx U(t, x,mt ),mt )
)]

dt −
√

2βdiv(mt dWt

)

in [0,T ]× R
d

m0 = [X̄0] in R
d .

and ut(x) := U(t, x,mt ). Then the pair (u,m) solves (MFGs).
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Interpretation of the master equation

Motivations to study (M2)

Allows to pass to the limit in the N−player problem,

Allows to build easily a solution to the stochastic MFG system

Need of a new construction for the solution of (M2) :

So far the construction of solutions to (M2) relies on the method of characteristics...

... which are the solution to the stochastic MFG system.

But the stochastic MFG system is heavy to manipulate.
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Construction of a solution for (M2)

Outline

1 Interpretation of the master equation

2 Construction of a solution for (M2)

3 Uniqueness
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Construction of a solution for (M2)

Derivatives in the space of measures

We denote by P2(R
d ) the set of Borel probability measures on Rd with finite second order

moment, endowed for the Wasserstein distance

d2
2(m,m′) = inf

π

∫

Rd×Rd
|x − y |2 dπ(x, y),

where the infimum is taken over coupling between m and m′.

Derivatives

A map U : P2(R
d ) → R is C1 if there exists a continuous and bounded map

δU

δm
: P2(R

d )× R
d → R such that, for any m,m′ ∈ P1(R

d ),

U(m′)− U(m) =

∫ 1

0

∫

Rd

δU

δm
((1 − s)m + sm′, y)d(m′ − m)(y)ds.

We set

DmU(m, y) := Dy
δU

δm
(m, y).
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Construction of a solution for (M2)

Note that δU
δm

is defined up to an additive constant. We adopt the normalization convention

∫

Rd

δU

δm
(m, y)dm(y) = 0.

DmU corresponds to the derivative in the space of measures as introduced by
Ambrosio-Gigli-Savaré.

DmU controls the Lipschitz norm of U :

|U(m1)− U(m2)| ≤ sup
µ∈P1(R

d )

‖DmU(µ, ·)‖L2
µ

d2(m1,m2) ∀m1,m2 ∈ P1(R
d ).
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Construction of a solution for (M2)

Method of proof for the existence of a solution of (M2)

We see the second order master equation

(M2)



































−∂t U − (1 + β)∆x U + H(x,Dx U,m)

−(1 + β)

∫

Rd
divy [DmU] dm(y) +

∫

Rd
DmU · Hp(y ,Dx U,m) dm(y)

−2β

∫

Rd
divx [DmU] dm(y) − β

∫

Rd

∫

Rd
Tr
[

D2
mmU

]

dm ⊗ dm = 0

in [0,T ]× R
d × P1(R

d )
U(T , x,m) = G(x, m) in Rd × P1(R

d )
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Construction of a solution for (M2)

The first order master equation (M1)

It is the backward equation

(M1)



































−∂t U(t, x,m) −∆x U(t, x,m) + H
(

x,Dx U(t, x,m),m
)

−
∫

Rd
divy

[

DmU
](

t, x,m, y
)

dm(y)

+

∫

Rd
DmU

(

t, x,m, y
)

· DpH
(

y ,Dx U(t, y ,m), m
)

dm(y) = 0

U(T , x,m) = G(x, m), for (x,m) ∈ Rd ×P1(R
d )

Theorem (Chassagneux-Crisan-Delarue)

Under the suitable assumptions, there exists T > 0 such that the first order master equation
(M1) has a unique classical solution on [0,T ]× Rd × P2(R

d ).

See also C.-Delarue-Lasry-Lions for a PDE construction.
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Construction of a solution for (M2)

The proof of Theorem 1 relies on the method of characteristics in infinite dimension.

Given (t0,m0) ∈ [0,T )×P2(R
d ), let (u,m) = (u(t, x),m(t, x)) be the solution of the MFG

system :

(MFG)







−∂t u −∆u + H(x,Du,m(t)) = 0 in [t0,T ]× R
d

∂t m −∆m − div(mDpH(x,Du,m(t))) = 0 in [t0,T ]× R
d

u(T , x) = G(x,m(T )), m(t0, ·) = m0 in R
d

If T > 0 is small or under some monotonicity assumptions on F and G, the (MFG) system
is well-posed. (Lasry-Lions, 2007)

We define U by
U(t0, ·,m0) := u(t0, ·)

Claim : U is a solution to the first order master equation.
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Construction of a solution for (M2)

Note that, for any h ∈ [0,T − t0], u(t0 + h, x) = U(t0 + h, x,m(t0 + h)).

So

∂t u(t0, x) = ∂t U(t0, x,m0) +

∫

Rd

δU

δm
(t0, x,m0, y)∂t m(t0 , y)dy

= ∂t U(t0, x,m0) +

∫

Rd

δU

δm
(m0, y) (∆m0 + div(m0DpH(x,Du,m0))) dy

= ∂t U(t0, x,m0) +

∫

Rd
∆y

[

δU

δm

]

(m0, y)m0(y)dy

−
∫

Rd
Dy

[

δU

δm

]

(m0, y) · DpH(x, Du,m0))m0(y)dy

= ∂t U(t0, x,m0) +

∫

Rd
divy [DmU] (m0, y)m0(y)dy

−
∫

Rd
DmU(m0, y) · DpH(x,Du,m0)m0(y)dy

Then U satisfies (M1) because

∂t u(t0, x) = −∆u + H(x, Du,m0)
= −∆x U(t0, x,m0) + H(x,Dx U(t0, x,m0),m0).

In the actual proof, one has to show that U is regular in m : this relies on linearizations of
the MFG system.
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Construction of a solution for (M2)

Remarks for the second order master equation (M2) :

The same principle applies, but the system of characteristics becomes the stochastic MFG
system

(MFGs)







































dt ut =
{

−(1 + β)∆ut + H(x,Dut ,mt )−
√

2βdiv(vt )
}

dt

+ vt · dWt in [t0, T ]× R
d ,

dt mt =
[

(1 + β)∆mt + div
(

mt DpH(x, Dut ,mt)
)]

dt −
√

2βdiv(mt dWt

)

in [t0, T ]× R
d

mt0 = m0, uT (x) = G(x,mT ) in R
d .

where (vt ) is a vector field which ensures (ut ) to be adapted to the filtration (Ft )t∈[t0,T ]

generated by the M.B. (Wt )t∈[0,T ].

Intermediate result : well-posedness of (MFGs).

Proof much more difficult than for the case β = 0
(see C-Delarue-Lasry-Lions and Carmona-Delarue).
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Construction of a solution for (M2)

The linear second order equation (L2)

Let Γ = Γ(t, x) be the heat kernel. For a map G : Rd × P2(R
d ) → R of class C2, we set

U(t, x,m) =

∫

Rd
G(ξ, (id − x + ξ)♯m)Γ(T − t, x − ξ)dξ.

Proposition

The map U solves the second order equation

(L2)



















−∂t U −∆U −
∫

Rd
divy [DmU]dm − 2

∫

Rd
Tr[D2

xmU]dm

−
∫

R2d
Tr[D2

mmU]dmdm = 0 in (0, T )× R
d ×P1(R

d )

U(T , x,m) = G(x,m) in R
d ×P1(R

d )

Proof : Computation.
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Construction of a solution for (M2)

The short time existence for (M2)

Let

(S1
t ) be the backward semi-group associated with (M1) ,

(S2
t ) be the backward semi-group associated with (L2).

For h > 0 small and T − t = 2kh (k ∈ N), we set

Sh
T−t := (S1

h ◦ S2
h )

k .

Theorem

For M > 0 there exists TM > 0 such that, if T ≤ TM and

‖D2
xx G‖∞ ≤ M and ‖D2

xmG‖∞ ≤ M,

then (Sh
t G)t∈[0,T ] converges to a solution of (M2) on [0,T ]× R

d × P1(R
d ).

Remarks :

The above Theorem gives the existence of a solution on a short time interval.

The length of the interval depends on ‖D2
xx G‖∞ and ‖D2

xmG‖∞ only

P. Cardaliaguet (Paris-Dauphine) Mean field games 25 / 33



Construction of a solution for (M2)

Idea of proof : relies of the estimates.

- For (M1) : Fix M > 0 and n ≥ 2. There exists CM,n > 0 and TM,n > 0 such that, if

‖D2
xx G‖∞ ≤ M, ‖D2

xmG‖∞ ≤ M and T ∈ (0,TM,n],

then the solution U := (S1
t G)t∈[0,T ] to (M1) satisfies

sup
t∈[0,T ]



‖U(t)‖n+1 +

∥

∥

∥

∥

δU

δm
(t)

∥

∥

∥

∥

n

+

∥

∥

∥

∥

∥

δ2U

δm2
(t)

∥

∥

∥

∥

∥

n−1

+ Lipn−2

(

δ2U

δm2
(t)

)





≤



‖G‖n+1 +

∥

∥

∥

∥

δG

δm

∥

∥

∥

∥

n

+

∥

∥

∥

∥

∥

δ2G

δm2

∥

∥

∥

∥

∥

n−1

+ Lipn−2

(

δ2G

δm2

)



 (1 + CM,nT ) + CM,nT .

- For (L2) : Similar estimes for (L2) are straightforward.
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Uniqueness

Outline

1 Interpretation of the master equation

2 Construction of a solution for (M2)

3 Uniqueness

P. Cardaliaguet (Paris-Dauphine) Mean field games 27 / 33



Uniqueness

Goal : prove the uniqueness by PDE arguments,

by using a maximum principle.

Difficulty : (M2) is a nonlocal equation, without maximum principle.
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Uniqueness

Optimality conditions

Let U : ×P2(R
d ) → R be smooth and have a local maximum point at (x̂ , m̂) ∈ ×P2(R

d ). We
have

Dx U(x̂ , m̂) = 0,

δU

δm
(x̂ , m̂, y) ≤ 0, ∀y ∈ R

d , and
δU

δm
(x̂ , m̂, y) = 0, m̂ − a.e. y ∈ R

d ,

for any (v , φ) ∈ ×L2
m̂
(Rd , ),

D2
xx U(x̂, m̂)v · v + 2

∫

Rd
D2

xmU(x̂ , m̂, y)φ(y) · vdm̂(y)

+

∫

Rd

∫

Rd
D2

mmU(x̂ , m̂, y , z)φ(y) · φ(z)dm̂(y)dm̂(z) ≤ 0.

In particular :

DmU(x̂ , m̂, y) = 0, D2
ymU(x̂, m̂, y) ≤ 0 m̂ − a.e. y ∈ R

d ,

and

∆x U(x̂ , m̂) + 2

∫

Rd
Tr[D2

xmU](x̂, m̂, y)dm̂(y)

+

∫

Rd

∫

Rd
Tr[D2

mmU](x̂ , m̂, y , z)dm̂(y)dm̂(z) ≤ 0.
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Uniqueness

A maximum principle

Let W = W (t, x,m) satisfy in (0, T )× R
d × P2(R

d ) the backward inequality :

L(W ) := −∂t W − (1 + β)∆x W + v1(t, x,m) · Dx W

−(1 + β)

∫

Rd
divy [DmW ] m(dy) +

∫

Rd
DmW · v2(t, y ,m) m(dy)

−2β

∫

Rd
divx [DmW ] dm(y) − β

∫

R2d
Tr
[

D2
mmW

]

dm ⊗ dm ≤ f (t, x,m)

in [0,T ]× R
d × P2(R

d )

Proposition

Assume that v1 and v2 are continuous and bounded vector fields and f is continuous and
bounded. If W is bounded, then

W ≤ sup
x,m

|W (T , x,m)| + T‖f‖∞.
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Uniqueness

Uniqueness for (M2)

Theorem

(M2) has at most one classical solution.

Remarks

Standard maximum principle cannot work because of the nonlocal term

∫

Rd
DmU(t, x,m) · Hp(y ,Dx U(t, y ,m),m)m(dy)

Usual proof by methods of characteristics
(C.-Delarue-Lasry-Lions, Carmona-Delarue)

Sketch of proof : Let U1 and U2 be two solutions.

Key step : show that Dx U1 = Dx U2 by using Bernstein method.

Indeed, V = |Dx(U1 − U2)|2 satisfies L(V ) ≤ C‖V‖∞.

Equality U1 = U2 then follows again by maximum principle.
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Uniqueness

Conclusion

In this work :

We understood how to build a short time solution of the second order master equation with
general Hamiltonians,

obtained uniqueness results without the use of characteristics,

by purely PDE methods.

Extensions :

diffusions terms depending on (x,m),

major/minor MFG problem.

Open problem :

Existence on large time intervals.

Regularizing effects of the equation.
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Uniqueness

Thank you...

.... and Happy Birthday, Mete !
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