A new construction of the second order master equation in mean field games with common noise

P. Cardaliaguet

(Paris-Dauphine)

Work in progress with A. Porretta (U. Rome Tor Vergata)

METE - Mathematics and Economics: Trends and Explorations.
A conference celebrating Mete Soner's 60th birthday and his contributions to Analysis, Control, Finance and Probability 4 to 8 June 2018

A few works of Mete when I started...

- HM Soner (1986), Optimal control with state-space constraint, SIAM Journal on Control and Optimization 24 (3), 552-561
- LC Evans, HM Soner, PE Souganidis (1992), Phase transitions and generalized motion by mean curvature, Communications on Pure and Applied Mathematics 45 (9), 1097-1123
- HM Soner (1993), Motion of a set by the curvature of its boundary, Journal of Differential Equations, 101(2), 313-372.
- L. Ambrosio, P. Cannarsa, HM Soner (1993). On the propagation of singularities of semi-convex functions. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 20(4), 597-616.
- WH Fleming, HM Soner (1993), Controlled Markov processes and viscosity SOLUTIONS.

The second order master equation reads :

where

- $\beta \geq 0$ is the level of common noise,
- $H=H(x, p, m): \mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is a standard Hamiltonian in (x, p), non local and smoothing in m,
- the coupling function $G: \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is nonlocal and smoothing.

Some results on the master equation : Lasry-Lions ('13), Buckdahn-Li-Peng-Rainer ('14), Gangbo-Swiech ('14), Bessi ('15), Chassagneux-Crisan-Delarue ('15), C.-Delarue-Lasry-Lions (2015), Lacker-Webster ('15), Ahuja ('16), Carmona-Delarue's monograph (2017),...

Aim of our work : Provide a new construction of solutions for (M2).

Outline

(1) Interpretation of the master equation

(2) Construction of a solution for (M2)

Uniqueness

Outline

(1) Interpretation of the master equation
(2) Construction of a solution for (M2) Uniqueness

Outline

(1) Interpretation of the master equation
(2) Construction of a solution for (M2)

Outline

Interpretation of the master equation

(2) Construction of a solution for (M2)

(3) Uniqueness

Two approches :

- As limit of Nash equilibria for symmetric N-player games,
- Symmetric Nash equilibria in a game with infinitely many players.

First approach : Limit of N-player game

- Let $N \in \mathbb{N}^{*}$ be the (large) number of players.
- Player $i \in\{1, \ldots, N\}$ controls a dynamics of the form

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+\sqrt{2} d B_{t}^{i}+\sqrt{2 \beta} d W_{t}, t \in[0, T] \quad X_{0}^{i}=\bar{X}_{0}^{i}
$$

where \bar{X}_{0}^{i} is fixed, $\left(\alpha^{i}\right)$ is her control and $\left(B^{i}\right)$ and W are i.i.d. BM. She aims at minimizing

$$
J^{i}\left(\alpha^{i},\left(\alpha^{j}\right)_{j \neq i}\right)=\mathbb{E}\left[\int_{0}^{T} L^{N, i}\left(X_{s}^{i}, \alpha_{s}^{i},\left(X_{s}^{j}\right)_{j \neq i}\right) d s+G^{N, i}\left(X_{T}^{i},\left(X_{T}^{j}\right)_{j \neq i}\right)\right]
$$

- The pair $\left(\bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}\right)$ is a Nash equilibrium if: $\forall i \in\{1, \ldots, N\}$,

$$
J^{i}\left(\alpha^{i},\left(\bar{\alpha}^{j}\right)_{j \neq i}\right) \geq J^{i}\left(\bar{\alpha}^{i},\left(\bar{\alpha}^{j}\right)_{j \neq i}\right)
$$

for any control α^{i}.

Limit of N-player game (continued)

- A Verification Theorem. Assume that the maps $v^{N, i}:[0, T] \times\left(\mathbb{R}^{d}\right)^{N} \rightarrow \mathbb{R}$ solves

$$
\left\{\begin{array}{l}
-\partial_{t} v^{N, i}(t, \boldsymbol{x})-\sum_{j=1}^{N} \Delta_{x_{j}} v^{N, i}(t, \boldsymbol{x})-\beta \sum_{j, k=1}^{N} \operatorname{Tr}_{x_{j}, x_{k}}^{2} v^{N, i}(t, \boldsymbol{x}) \\
\quad+H^{N, i}\left(x_{i}, D_{x_{i}} v^{N, i}(t, \boldsymbol{x}),\left(x_{j}\right)_{-i}\right) \\
\quad+\sum_{j \neq i} D_{p} H^{N, i}\left(x_{j}, D_{x_{j}} v^{N, j}(t, \boldsymbol{x}),\left(x_{k}\right)_{-j}\right) \cdot D_{x_{j}} v^{N, i}(t, \boldsymbol{x})=0 \quad \text { in }[0, T] \times\left(\mathbb{R}^{d}\right)^{N}, \\
v^{N, i}(T, \boldsymbol{x})=G^{N, i}(x) \quad \text { in }\left(\mathbb{R}^{d}\right)^{N} .
\end{array}\right.
$$

where $H^{N, i}(x, p, z)=\sup _{\alpha}-\alpha \cdot p-L^{N, i}(x, \alpha, z)$. Then

$$
\left(\bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}\right):=\left(-D_{p} H^{N, 1}\left(x_{1}, D v^{N, 1},\left(x_{i}\right)_{-1}\right), \ldots,-D_{p} H^{N, N}\left(x_{N}, D v^{N, N},\left(x_{i}\right)_{-N}\right)\right)
$$

is a Nash equilibrium.

Limit of N-player game (continued)

- Assume that the players are symmetric:

$$
H^{N, i}\left(x_{i}, p,\left(x_{j}\right)_{-i}\right)=H\left(x_{i}, p, m_{\boldsymbol{x}}^{N, i}\right), \quad G^{N, i}\left(x_{i},\left(x_{j}\right)_{-i}\right)=G\left(x_{i}, m_{\boldsymbol{x}}^{N, i}\right)
$$

where $m_{\boldsymbol{x}}^{N, i}=\frac{1}{N-1} \sum_{j \neq i} \delta_{x_{j}}$.

- Then $v^{N, i}\left(t, x_{i},\left(x_{j}\right)_{-i}\right)=V^{N}\left(t, x_{i}, m_{x}^{N, i}\right)$ and, if $V^{N} \rightarrow U, U$ formally solves

$$
(\mathbf{M} 2)\left\{\begin{array}{l}
-\partial_{t} U-(1+\beta) \Delta_{x} U+H\left(x, D_{x} U, m\right) \\
-(1+\beta) \int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right] d m(y)+\int_{\mathbb{R}^{d}} D_{m} U \cdot H_{p}\left(y, D_{x} U, m\right) d m(y) \\
-2 \beta \int_{\mathbb{R}^{d}} \operatorname{div}_{x}\left[D_{m} U\right] d m(y)-\beta \int_{\mathbb{R}^{2 d}} \operatorname{Tr}\left[D_{m m}^{2} U\right] d m \otimes d m=0 \\
\text { in }[0, T] \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \\
U(T, x, m)=G(x, m) \quad \text { in } \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Limit of N-player game (continued)

Comparison between the Nash system :

$$
\left\{\begin{array}{l}
-\partial_{t} v^{N, i}(t, \boldsymbol{x})-\sum_{j=1}^{N} \Delta_{x_{j}} v^{N, i}(t, \boldsymbol{x})-\beta \sum_{j, k=1}^{N} \operatorname{Tr}_{2} D_{x_{j}, x_{k}}^{2} v^{N, i}(t, \boldsymbol{x}) \\
\quad+H^{N, i}\left(x_{i}, D_{x_{i}} v^{N, i}(t, \boldsymbol{x}),\left(x_{j}\right)_{-i}\right) \\
\quad+\sum_{j \neq i} D_{p} H^{N, i}\left(x_{j}, D_{x_{j}} v^{N, j}(t, \boldsymbol{x}),\left(x_{k}\right)_{-j}\right) \cdot D_{x_{j}} v^{N, i}(t, \boldsymbol{x})=0 \quad \text { in }[0, T] \times\left(\mathbb{R}^{d}\right)^{N}, \\
v^{N, i}(T, \boldsymbol{x})=G^{N, i}(x) \quad \text { in }\left(\mathbb{R}^{d}\right)^{N} .
\end{array}\right.
$$

and the master equation (for $\left.v^{N, i}\left(t, x_{i},\left(x_{j}\right)_{-i}\right) \simeq U\left(t, x_{i}, m_{\boldsymbol{x}}^{N, i}\right)\right)$:

$$
(\mathbf{M} 2)\left\{\begin{array}{l}
-\partial_{t} U-(1+\beta) \Delta_{x} U+H\left(x, D_{x} U, m\right) \\
-(1+\beta) \int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right] d m(y)+\int_{\mathbb{R}^{d}} D_{m} U \cdot H_{p}\left(y, D_{x} U, m\right) d m(y) \\
-2 \beta \int_{\mathbb{R}^{d}} \operatorname{div}_{x}\left[D_{m} U\right] d m(y)-\beta \int_{\mathbb{R}^{2 d}} \operatorname{Tr}\left[D_{m m}^{2} U\right] d m \otimes d m=0 \\
\quad \text { in }[0, T] \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \\
U(T, x, m)=G(x, m) \quad \text { in } \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Limit of N-player game (end)

- Key difficulty : Not enough estimates on the $\left(v^{N, i}\right)$ to justify the limit.
- Rigorous proof of the convergence : Build a solution to (M2) and use it to justify the limit (C.-Delarue-Lasry-Lions)

Second approach : Nash equilibria in the infinite player game

- We now directly consider a game with infinitely many (infinitesimal, symmetric) players.
- The dynamics of each player is

$$
d X_{t}=\alpha_{t} d t+\sqrt{2} d B_{t}+\sqrt{2 \beta} d W_{t}, t \in[0, T] \quad X_{0}=\bar{X}_{0}
$$

where B and W are indep. (B being the individual noise and W the common noise).
The individual cost is of the form

$$
J\left(\alpha,\left(m_{t}\right)\right)=\mathbb{E}\left[\int_{0}^{T} L\left(X_{s}, \alpha_{s}, m_{s}\right) d s+G\left(X_{T}, m_{T}\right)\right]
$$

where $\left(m_{t}\right)$ is the (random) distribution of all players at time t (anticipated by the players and adapted to W).

- The value function of the small player is

$$
u_{t}(x)=\inf _{\alpha} \mathbb{E}\left[\int_{t}^{T} L\left(X_{s}, \alpha_{s}, m_{s}\right) d s+G\left(X_{T}, m_{T}\right) \mid\left(W_{s}\right)_{s \leq t}\right]
$$

where

$$
d X_{s}=\alpha_{s} d s+\sqrt{2} d B_{s}+\sqrt{2 \beta} d W_{s}, s \in[t, T] \quad X_{t}=x
$$

The MFG system (continued)

- The optimal feedback of each player is then

$$
\alpha^{*}(t, x)=-D_{p} H\left(x, D u_{t}(x), m_{t}\right),
$$

so that the optimal dynamic of the player solves

$$
d X_{s}=-D_{p} H\left(X_{s}, D u_{t}\left(X_{s}\right), m_{s}\right) d s+\sqrt{2} d B_{s}+\sqrt{2 \beta} d W_{s}, s \in[t, T] \quad X_{0}=\bar{X}_{0}
$$

- (By mean field argument), the distribution of the players is then $\tilde{m}_{t}=\left[X_{t} \mid W\right]$.
- An equilibrium configuration is obtained when $\tilde{m}=m$.

The MFG system (end)

- The PDE formulation : The pair (u, m) formally solves

$$
(M F G s)\left\{\begin{array}{c}
d_{t} u_{t}=\left\{-(1+\beta) \Delta u_{t}+H\left(x, D u_{t}, m_{t}\right)-\sqrt{2 \beta} \operatorname{div}\left(v_{t}\right)\right\} d t \\
\quad+v_{t} \cdot d W_{t} \quad \text { in }[0, T] \times \mathbb{R}^{d}, \\
d_{t} m_{t}=\left[(1+\beta) \Delta m_{t}+\operatorname{div}\left(m_{t} D_{p} H\left(x, D u_{t}, m_{t}\right)\right)\right] d t-\sqrt{2 \beta} \operatorname{div}\left(m_{t} d W_{t}\right) \\
\\
m_{0}=\left[\bar{X}_{0}\right], u_{T}(x)=G\left(x, m_{T}\right) \quad \text { in } \mathbb{R}^{d} .
\end{array}\right.
$$

where $\left(v_{t}\right)$ is a vector field which ensures $\left(u_{t}\right)$ to be adapted to $\left(W_{s}\right)_{s \leq t}$.

- Link with the master equation: Let U solves M2. Let m solve the stochastic McKean-Vlasov equation :

$$
\left\{\begin{array}{c}
d_{t} m_{t}=\left[(1+\beta) \Delta m_{t}+\operatorname{div}\left(m_{t} D_{p} H\left(x, D_{x} U\left(t, x, m_{t}\right), m_{t}\right)\right)\right] d t-\sqrt{2 \beta} \operatorname{div}\left(m_{t} d W_{t}\right) \\
\text { in }[0, T] \times \mathbb{R}^{d}
\end{array}\right.
$$

and $u_{t}(x):=U\left(t, x, m_{t}\right)$. Then the pair (u, m) solves (MFGs).

Motivations to study (M2)

- Allows to pass to the limit in the N-player problem,
- Allows to build easily a solution to the stochastic MFG system

Need of a new construction for the solution of (M2) :

- So far the construction of solutions to (M2) relies on the method of characteristics...
- ... which are the solution to the stochastic MFG system.
- But the stochastic MFG system is heavy to manipulate.

Outline

Interpretation of the master equation

(2) Construction of a solution for (M2)

(3) Uniqueness

Derivatives in the space of measures

We denote by $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ the set of Borel probability measures on \mathbb{R}^{d} with finite second order moment, endowed for the Wasserstein distance

$$
\mathbf{d}_{2}^{2}\left(m, m^{\prime}\right)=\inf _{\pi} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \pi(x, y)
$$

where the infimum is taken over coupling between m and m^{\prime}.

Derivatives

A map $U: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is \mathcal{C}^{1} if there exists a continuous and bounded map $\frac{\delta U}{\delta m}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that, for any $m, m^{\prime} \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$,

$$
U\left(m^{\prime}\right)-U(m)=\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}\left((1-s) m+s m^{\prime}, y\right) d\left(m^{\prime}-m\right)(y) d s
$$

We set

$$
D_{m} U(m, y):=D_{y} \frac{\delta U}{\delta m}(m, y)
$$

- Note that $\frac{\delta U}{\delta m}$ is defined up to an additive constant. We adopt the normalization convention

$$
\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(m, y) d m(y)=0
$$

- $D_{m} U$ corresponds to the derivative in the space of measures as introduced by Ambrosio-Gigli-Savaré.
- $D_{m} U$ controls the Lipschitz norm of U :

$$
\left|U\left(m_{1}\right)-U\left(m_{2}\right)\right| \leq \sup _{\mu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)}\left\|D_{m} U(\mu, \cdot)\right\|_{L_{\mu}^{2}} \mathbf{d}_{2}\left(m_{1}, m_{2}\right) \quad \forall m_{1}, m_{2} \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)
$$

Method of proof for the existence of a solution of (M2)

- We see the second order master equation

- as the superposition of (M1) and (L2)

$$
\left(\text { M1) } \left\{\begin{array}{l}
-\partial_{t} U-(1+\beta) \Delta_{x} U+H\left(x, D_{x} U, m\right) \\
-(1+\beta) \int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right] d m(y)+\int_{\mathbb{R}^{d}} D_{m} U \cdot H_{p}\left(y, D_{x} U, m\right) d m(y) \\
-2 \beta \int_{\mathbb{R}^{d}} \operatorname{div}_{x}\left[D_{m} U\right] d m(y)-\beta \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{Tr}\left[D_{m m}^{2} U\right] d m \otimes d m=0 \\
\quad \text { in }[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \\
U(T, x, m)=G(x, m) \quad \text { in } \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)
\end{array}\right.\right.
$$

Method of proof for the existence of a solution of (M2)

- We see the second order master equation

- as the superposition of (M1) and (L2)

$$
\left\{\begin{array}{l}
-\partial_{t} U-(1+\beta) \Delta_{x} U+H\left(x, D_{x} U, m\right) \tag{L2}\\
-(1+\beta) \int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right] d m(y)+\int_{\mathbb{R}^{d}} D_{m} U \cdot H_{p}\left(y, D_{x} U, m\right) d m(y) \\
-2 \beta \int_{\mathbb{R}^{d}} \operatorname{div}_{x}\left[D_{m} U\right] d m(y)-\beta \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{Tr}\left[D_{m m}^{2} U\right] d m \otimes d m=0 \\
\text { in }[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \\
U(T, x, m)=G(x, m) \quad \text { in } \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

The first order master equation (M1)

It is the backward equation
(M1)

$$
\left\{\begin{array}{l}
-\partial_{t} U(t, x, m)-\Delta_{x} U(t, x, m)+H\left(x, D_{x} U(t, x, m), m\right) \\
\quad-\int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right](t, x, m, y) d m(y) \\
\quad+\int_{\mathbb{R}^{d}} D_{m} U(t, x, m, y) \cdot D_{p} H\left(y, D_{x} U(t, y, m), m\right) d m(y)=0 \\
U(T, x, m)=G(x, m), \quad \text { for }(x, m) \in \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Theorem (Chassagneux-Crisan-Delarue)

Under the suitable assumptions, there exists $T>0$ such that the first order master equation (M1) has a unique classical solution on $[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

See also C.-Delarue-Lasry-Lions for a PDE construction.

- The proof of Theorem 1 relies on the method of characteristics in infinite dimension.
- Given $\left(t_{0}, m_{0}\right) \in[0, T) \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, let $(u, m)=(u(t, x), m(t, x))$ be the solution of the MFG system :

$$
(M F G) \quad\left\{\begin{array}{l}
-\partial_{t} u-\Delta u+H(x, D u, m(t))=0 \text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d} \\
\partial_{t} m-\Delta m-\operatorname{div}\left(m D_{p} H(x, D u, m(t))\right)=0 \text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d} \\
u(T, x)=G(x, m(T)), m\left(t_{0}, \cdot\right)=m_{0} \text { in } \mathbb{R}^{d}
\end{array}\right.
$$

- If $T>0$ is small or under some monotonicity assumptions on F and G, the (MFG) system is well-posed. (Lasry-Lions, 2007)
- We define U by

$$
U\left(t_{0}, \cdot, m_{0}\right):=u\left(t_{0}, \cdot\right)
$$

Claim : U is a solution to the first order master equation.

- Note that, for any $h \in\left[0, T-t_{0}\right], u\left(t_{0}+h, x\right)=U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)$.
- So

$$
\begin{aligned}
\partial_{t} u\left(t_{0}, x\right)= & \partial_{t} U\left(t_{0}, x, m_{0}\right)+\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}\left(t_{0}, x, m_{0}, y\right) \partial_{t} m\left(t_{0}, y\right) d y \\
= & \partial_{t} U\left(t_{0}, x, m_{0}\right)+\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}\left(m_{0}, y\right)\left(\Delta m_{0}+\operatorname{div}\left(m_{0} D_{p} H\left(x, D u, m_{0}\right)\right)\right) d y \\
= & \partial_{t} U\left(t_{0}, x, m_{0}\right)+\int_{\mathbb{R}^{d}} \Delta_{y}\left[\frac{\delta U}{\delta m}\right]\left(m_{0}, y\right) m_{0}(y) d y \\
& \left.\quad-\int_{\mathbb{R}^{d}} D_{y}\left[\frac{\delta U}{\delta m}\right]\left(m_{0}, y\right) \cdot D_{p} H\left(x, D u, m_{0}\right)\right) m_{0}(y) d y \\
= & \partial_{t} U\left(t_{0}, x, m_{0}\right)+\int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right]\left(m_{0}, y\right) m_{0}(y) d y \\
& \quad-\int_{\mathbb{R}^{d}} D_{m} U\left(m_{0}, y\right) \cdot D_{p} H\left(x, D u, m_{0}\right) m_{0}(y) d y
\end{aligned}
$$

- Then U satisfies (M1) because

$$
\begin{aligned}
\partial_{t} u\left(t_{0}, x\right) & =-\Delta u+H\left(x, D u, m_{0}\right) \\
& =-\Delta_{x} U\left(t_{0}, x, m_{0}\right)+H\left(x, D_{x} U\left(t_{0}, x, m_{0}\right), m_{0}\right) .
\end{aligned}
$$

- In the actual proof, one has to show that U is regular in m : this relies on linearizations of the MFG system.

Remarks for the second order master equation (M2) :

- The same principle applies, but the system of characteristics becomes the stochastic MFG system

$$
(M F G s)\left\{\begin{array}{c}
d_{t} u_{t}=\left\{-(1+\beta) \Delta u_{t}+H\left(x, D u_{t}, m_{t}\right)-\sqrt{2 \beta} \operatorname{div}\left(v_{t}\right)\right\} d t \\
\quad+v_{t} \cdot d W_{t} \quad \text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d}, \\
d_{t} m_{t}=\left[(1+\beta) \Delta m_{t}+\operatorname{div}\left(m_{t} D_{p} H\left(x, D u_{t}, m_{t}\right)\right)\right] d t-\sqrt{2 \beta} \operatorname{div}\left(m_{t} d W_{t}\right) \\
\text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d} \\
m_{t_{0}}=m_{0}, u_{T}(x)=G\left(x, m_{T}\right) \quad \text { in } \mathbb{R}^{d} .
\end{array}\right.
$$

where $\left(v_{t}\right)$ is a vector field which ensures $\left(u_{t}\right)$ to be adapted to the filtration $\left(\mathcal{F}_{t}\right)_{t \in\left[t_{0}, T\right]}$ generated by the M.B. $\left(W_{t}\right)_{t \in[0, T]}$.

- Intermediate result : well-posedness of (MFGs).
- Proof much more difficult than for the case $\beta=0$ (see C-Delarue-Lasry-Lions and Carmona-Delarue).

The linear second order equation (L2)

Let $\Gamma=\Gamma(t, x)$ be the heat kernel. For a map $G: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ of class C^{2}, we set

$$
U(t, x, m)=\int_{\mathbb{R}^{d}} G(\xi,(i d-x+\xi) \sharp m) \Gamma(T-t, x-\xi) d \xi .
$$

Proposition

The map U solves the second order equation

$$
\text { (L2) }\left\{\begin{array}{l}
-\partial_{t} U-\Delta U-\int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} U\right] d m-2 \int_{\mathbb{R}^{d}} \operatorname{Tr}\left[D_{x m}^{2} U\right] d m \\
-\int_{\mathbb{R}^{2 d}} \operatorname{Tr}\left[D_{m m}^{2} U\right] d m d m=0 \quad \text { in }(0, T) \times \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \\
U(T, x, m)=G(x, m) \quad \text { in } \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Proof: Computation.

The short time existence for (M2)

Let

- $\left(\mathcal{S}_{t}^{1}\right)$ be the backward semi-group associated with (M1),
- $\left(\mathcal{S}_{t}^{2}\right)$ be the backward semi-group associated with (L2).

For $h>0$ small and $T-t=2 k h(k \in \mathbb{N})$, we set

$$
\mathcal{S}_{T-t}^{h}:=\left(\mathcal{S}_{h}^{1} \circ \mathcal{S}_{h}^{2}\right)^{k} .
$$

Theorem

For $M>0$ there exists $T_{M}>0$ such that, if $T \leq T_{M}$ and

$$
\left\|D_{x x}^{2} G\right\|_{\infty} \leq M \quad \text { and } \quad\left\|D_{x m}^{2} G\right\|_{\infty} \leq M
$$

then $\left(\mathcal{S}_{t}^{h} G\right)_{t \in[0, T]}$ converges to a solution of $(\mathbf{M} 2)$ on $[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$.

Remarks:

- The above Theorem gives the existence of a solution on a short time interval.
- The length of the interval depends on $\left\|D_{x x}^{2} G\right\|_{\infty}$ and $\left\|D_{x m}^{2} G\right\|_{\infty}$ only

Idea of proof : relies of the estimates.

- For (M1) : Fix $M>0$ and $n \geq 2$. There exists $C_{M, n}>0$ and $T_{M, n}>0$ such that, if

$$
\left\|D_{x x}^{2} G\right\|_{\infty} \leq M, \quad\left\|D_{x m}^{2} G\right\|_{\infty} \leq M \quad \text { and } \quad T \in\left(0, T_{M, n}\right]
$$

then the solution $U:=\left(\mathcal{S}_{t}^{1} G\right)_{t \in[0, T]}$ to (M1) satisfies

$$
\begin{aligned}
& \sup _{t \in[0, T]}\left(\|U(t)\|_{n+1}+\left\|\frac{\delta U}{\delta m}(t)\right\|_{n}+\left\|\frac{\delta^{2} U}{\delta m^{2}}(t)\right\|_{n-1}+\operatorname{Lip}_{n-2}\left(\frac{\delta^{2} U}{\delta m^{2}}(t)\right)\right) \\
& \quad \leq\left(\|G\|_{n+1}+\left\|\frac{\delta G}{\delta m}\right\|_{n}+\left\|\frac{\delta^{2} G}{\delta m^{2}}\right\|_{n-1}+\operatorname{Lip}_{n-2}\left(\frac{\delta^{2} G}{\delta m^{2}}\right)\right)\left(1+C_{M, n} T\right)+C_{M, n} T
\end{aligned}
$$

- For (L2) : Similar estimes for (L2) are straightforward.

Outline

Interpretation of the master equation

Construction of a solution for (M2)

(3) Uniqueness

- Goal : prove the uniqueness by PDE arguments,
- by using a maximum principle.
- Difficulty: (M2) is a nonlocal equation, without maximum principle.

Optimality conditions

Let $U: \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ be smooth and have a local maximum point at $(\hat{x}, \hat{m}) \in \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. We have

- $D_{x} U(\hat{x}, \hat{m})=0$,
- $\frac{\delta U}{\delta m}(\hat{x}, \hat{m}, y) \leq 0, \forall y \in \mathbb{R}^{d}, \quad$ and $\quad \frac{\delta U}{\delta m}(\hat{x}, \hat{m}, y)=0, \hat{m}-$ a.e. $y \in \mathbb{R}^{d}$,
- for any $(v, \phi) \in \times L_{\hat{m}}^{2}\left(\mathbb{R}^{d},\right)$,

$$
\begin{aligned}
& D_{x x}^{2} U(\hat{x}, \hat{m}) v \cdot v+2 \int_{\mathbb{R}^{d}} D_{x m}^{2} U(\hat{x}, \hat{m}, y) \phi(y) \cdot v d \hat{m}(y) \\
& \quad+\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} D_{m m}^{2} U(\hat{x}, \hat{m}, y, z) \phi(y) \cdot \phi(z) d \hat{m}(y) d \hat{m}(z) \leq 0 .
\end{aligned}
$$

In particular :

- $D_{m} U(\hat{x}, \hat{m}, y)=0, \quad D_{y m}^{2} U(\hat{x}, \hat{m}, y) \leq 0 \quad \hat{m}-$ a.e. $y \in \mathbb{R}^{d}$,
- and

$$
\begin{aligned}
& \Delta_{x} U(\hat{x}, \hat{m})+2 \int_{\mathbb{R}^{d}} \operatorname{Tr}\left[D_{x m}^{2} U\right](\hat{x}, \hat{m}, y) d \hat{m}(y) \\
& \quad+\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{Tr}\left[D_{m m}^{2} U\right](\hat{x}, \hat{m}, y, z) d \hat{m}(y) d \hat{m}(z) \leq 0 .
\end{aligned}
$$

A maximum principle

Let $W=W(t, x, m)$ satisfy in $(0, T) \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ the backward inequality :

$$
\begin{aligned}
& \mathcal{L}(W):=-\partial_{t} W-(1+\beta) \Delta_{x} W+v_{1}(t, x, m) \cdot D_{x} W \\
& \quad-(1+\beta) \int_{\mathbb{R}^{d}} \operatorname{div}_{y}\left[D_{m} W\right] m(d y)+\int_{\mathbb{R}^{d}} D_{m} W \cdot v_{2}(t, y, m) m(d y) \\
& -2 \beta \int_{\mathbb{R}^{d}} \operatorname{div}_{x}\left[D_{m} W\right] d m(y)-\beta \int_{\mathbb{R}^{2 d}} \operatorname{Tr}\left[D_{m m}^{2} W\right] d m \otimes d m \leq f(t, x, m) \\
& \quad \text { in }[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Proposition

Assume that v_{1} and v_{2} are continuous and bounded vector fields and f is continuous and bounded. If W is bounded, then

$$
W \leq \sup _{x, m}|W(T, x, m)|+T\|f\|_{\infty}
$$

Uniqueness for (M2)

Theorem

(M2) has at most one classical solution.

Remarks

- Standard maximum principle cannot work because of the nonlocal term

$$
\int_{\mathbb{R}^{d}} D_{m} U(t, x, m) \cdot H_{p}\left(y, D_{x} U(t, y, m), m\right) m(d y)
$$

- Usual proof by methods of characteristics
(C.-Delarue-Lasry-Lions, Carmona-Delarue)

Sketch of proof : Let U_{1} and U_{2} be two solutions.

- Key step : show that $D_{x} U_{1}=D_{x} U_{2}$ by using Bernstein method.
- Indeed, $V=\left|D_{x}\left(U_{1}-U_{2}\right)\right|^{2}$ satisfies $\mathcal{L}(V) \leq C\|V\|_{\infty}$.
- Equality $U_{1}=U_{2}$ then follows again by maximum principle.

Conclusion

In this work :

- We understood how to build a short time solution of the second order master equation with general Hamiltonians,
- obtained uniqueness results without the use of characteristics, by purely PDE methods.

Extensions:

- diffusions terms depending on (x, m),
- major/minor MFG problem.

Open problem :

- Existence on large time intervals.
- Regularizing effects of the equation.

Thank you...

.... and Happy Birthday, Mete!

