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Setup

I Financial market with one risky asset S = {St}Tt=0.

I Linear price impact:

S → S + 2Λν.

I Wealth process:

Vt = V0 +

∫ t

0
γudSu − Λ〈γ〉t .
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Bank and Baum Density Result

I Theorem: Let S be a continuous semi–martingale. For any
ε > 0 and γ = {γt}Tt=0 there exists a continuous process of
bounded variation δ = {δt}Tt=0 such that

sup
0≤t≤T

|
∫ t

0
γudSu −

∫ t

0
δudSu| < ε a.s.

I In particular
〈δ〉 ≡ 0.

I Corollary: In continuous time there is no liquidity
premium.
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Two Approaches two deal with this ”Paradox”

I First approach: (Cetin, Soner and Touzi 2010). Putting
Gamma constraints on portfolio strategies.

I Second approach: (Gokay and Soner 2012). Consider
binomial models with quadratic costs and no constraints on
the trading strategies.

I Both approaches lead to the same liquidity premium and were
solved for Markovian payoffs by using PDE techniques.

I

φt(t, s) +
σ2s2

2
(1 + 4Λφss(t, s))φss(t, s) = 0.
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The Stochastic Control Problem

I

φ(0, s) = sup
ν≥0

E
(
f (S

(ν)
T )− 1

16Λσ2

∫ 1

0
[(ν2 − σ2)S

(ν)
t ]2dt

)
where the above control problem defined on a Brownian
probability space and supremum is taken over all adapted
processes, and bounded processes ν ≥ 0. The process S (ν) is
the Doleans–Dade exponential

S
(ν)
t = s exp

(∫ t

0
νudWu −

1

2

∫ t

0
ν2
udu

)
.
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Binomial Model

I Time horizon: T = 1.

I Number of time steps: n ∈ N.

I Market active at times 0, 1
n , ..., 1.

I Risky asset given by

S
(n)
k = s exp

(
σ√
n

k∑
i=1

ξi

)

where ξ1, ..., ξn = ±1.
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Super–replication with Quadratic Costs

I Portfolio value at maturity:

V γ
n = V0 +

n−1∑
i=0

γi (Si+1 − Si )− Λ
n∑

i=1

|γi − γi−1|2

where γn = γ0 ≡ 0.

I The super–replication price of a European contingent claim

X = f (S1, ...,Sn)

defined by

V0 = inf{V0 : ∃γsuch that V γ
n ≥ X}.
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Duality

I Theorem: (Soner & D)
The super–replication price given by

P = sup
(Q,M)

EQ

(
X − 1

4Λ

n∑
k=0

|Mk − Sk |2
)

where M = (M0, ...,Mn) is martingale with respect to Q and
the filtration generated by S .

I M can be viewed as a shadow price.
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Asymptotic Behaviour

I In the n–step model we consider a European claim

Xn = F (Wn(S0, ...,Sn))

where F : C [0, 1]→ R+ is a continuous function and

Wn : Rn+1 → C [0, 1]

is the linear interpolation operator.
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Main Result

I Theorem: (Soner & D)

lim inf Vn ≥ sup
ν≥0

E
(
F (S (ν))− 1

16Λσ2

∫ 1

0
[(ν2 − σ2)S

(ν)
t ]2dt

)
where the above control problem defined on a Brownian
probability space and supremum is taken over all adapted
processes, and bounded processes ν ≥ 0. The process S (ν) is
the Doleans–Dade exponential

S
(ν)
t = s exp

(∫ t

0
νudWu −

1

2

∫ t

0
ν2
udu

)
.

I In fact for the case where F satisfy some growth conditions
we can prove that the above right hand side is also the upper
bound.
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Intuition

I Main idea goes back to Kusuoka 1995.
I Shadow price:

M
(n)
k =

1√
n

k∑
i=1

ξi +
αξk√
n
.

Martingale measure: (α > −1/2)

EQ [ξk |ξ1, ..., ξk−1] =
α

1 + α
ξk−1.

EQ

(
(Mk+1 −Mk)2|ξ1, ...., ξk

)
=

1 + 2α

n
.

1√
n

[nt]∑
i=1

⇒
√

1 + 2αW .
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The Setup

I Volatility uncertainty interval

I = [σ, σ].

I Time horizon: T = 1.
I Number of time steps: n ∈ N.
I Market active at times 0, 1

n , ..., 1.
I Risky asset give by

S
(n)
k = s exp

(
1√
n

k∑
i=1

Xi

)
where X1, ...,Xn random variables such that

|Xi | ∈ I .
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Super–replication with Quadratic Costs

I Portfolio value at maturity:

V γ
n = V0 +

n−1∑
i=0

γi (Si+1 − Si )− Λ
n∑

i=1

|γi − γi−1|2

where γn = γ0 ≡ 0.

I The super–replication price of a European contingent claim

X = f (S1, ...,Sn)

defined by

V0 = inf{V0 : ∃γ such that V γ
n ≥ X for all X1, ...,Xn}.
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Duality Result

I Let
K = {(x1, ..., xn) : |xi | ∈ I} ⊂ Rn.

I Theorem: (Bank, D & Gokay)
The super–replication price given by

P = sup
(Q,M)

EQ

(
X − 1

4Λ

n∑
k=0

|Mk − Sk |2
)

where M = (M0, ...,Mn) is martingale with respect to Q and
the filtration generated by S .

I M can be viewed as the shadow price.

I There is no a reference measure.
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Asymptotic Behaviour

I In the n–step model we consider a European claim

Xn = F (Wn(S0, ...,Sn))

where F : C [0, 1]→ R+ is a continuous function and

Wn : Rn+1 → C [0, 1]

is the linear interpolation operator.
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Main Result

I Theorem: (Bank, D & Gokay)

lim inf Vn ≥ supν≥0 E
(
F (S (ν))−

Iν>σ 1
16Λσ2

∫ 1
0 [(ν2 − σ2)S

(ν)
t ]2dt −

Iν<σ 1
16Λσ2

∫ 1
0 [(ν2 − σ2)S

(ν)
t ]2dt

)
I The process S (ν) is the Doleans–Dade exponential

S
(ν)
t = s exp

(∫ t

0
νudWu −

1

2

∫ t

0
ν2
udu

)
.
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Bank & Voss Model

I γ = {γt}Tt=0 trading strategy.

I Price Impact

dAγt = dPt + ηdγ+
t − κ

2 (Aγt− − Bγt−)dt

dBγt = dPt − ηdγ−t + κ
2 (Aγt− − Bγt−)dt.

I P is the exogenous fundamental random shock.

I 1
η is the market depth.

I κ is the resilience rate.
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Portfolio Value

I The spread
ζγt = Aγt − Bγt

is given by
dζγt = η|dγt | − κζγt−dt

and satisfies

ζγt = ηe−κt
∫ t

0
eκu|dγu|.

I Portfolio value: (we require γ0 = γT = 0)

ZγT = −
∫ T

0
Ptdγt −

κ

2η

∫ T

0
|ζγt−|2dt −

1

4η
|ζγT |

2.
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Duality Theory

I European contingent claim X ∈ L1(FT ,P).

I The super–replication price

V := inf{x : ∃γ x + ZγT ≥ X a.s.}.

I In continuous time, duality for non linear friction was only
studied in Guasoni & Rasonyi 2015. They considered a
penalty of the form

Λ

∫ T

0
|γ̇|pdt.
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Main Result

I Theorem: (Bank & D)
Let A be the set of all triples (Q,Y , S = M + A) such that
S–is a semi–martingale with

St ≥ e−κt |EQ(Y |Ft)− Pt |, ∀t.

Then super–replication price given by

V = sup
(Q,Y ,S)

EQ

(
X − 1

2κη

∫ T

0
e2κt

(
dAt

dt

)2

dt − e2κT

η
S2
T

)
.
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Intuition about the Duality

I Choose a triple (Q,Y ,S) and a trading strategy γ. Then

V + ε ≥ EQ

(
X +

∫ T
0 Ptdγt + κ

2η

∫ T
0 |ζ

γ
t−|2dt + 1

4η |ζ
γ
T |

2
)

=

EQ

(
X +

∫ T
0 (Pt − EQ(Y |Ft))dγt + κ

2η

∫ T
0 |ζ

γ
t−|2dt + 1

4η |ζ
γ
T |

2
)

≥ EQ

(
X −

∫ T
0 Ste

κt |dγt |+ κ
2η

∫ T
0 |ζ

γ
t−|2dt + 1

4η |ζ
γ
T |

2
)

=

EQ

(
X +

∫ T
0

dAt
dt e

κt |dγt | − ST
∫ T

0 eκt |dγt |+

κ
2η

∫ T
0 |ζ

γ
t−|2dt + 1

4η |ζ
γ
T |

2

)
EQ

(
X − 1

2κη

∫ T
0 e2κt

(
dAt
dt

)2
dt − e2κT

η S2
T

)
.
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Upper Bound

I Separation argument yields that ∃Q ∼ P such that

V ≤ EQ[X ]+

inf
γ,γ0=γT =0

EQ

(∫ T

0
Ptdγt +

κ

2η

∫ T

0
|ζγt−|2dt +

1

4η
|ζγT |

2

)
.

I

ζγt = ηe−κt
∫ t

0
eκu|dγu|.
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Continuation

V ≤ EQ[X ] + supY∈L∞ infγ,γ0=0 EQ

(∫
(0,T ](Pt − EQ(Y |Ft))dγt

+ κ
2η

∫ T
0 |ζ

γ
t−|2dt + 1

4η |ζ
γ
T |

2

)
=

EQ[X ] + supY∈L∞ infγ,γ0=0 EQ

(
−
∫

(0,T ] |Pt − EQ(Y |Ft)||dγt |

+ κ
2η

∫ T
0 |ζ

γ
t−|2dt + 1

4η |ζ
γ
T |

2

)
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Auxiliary result

I Lemma: For a given Q and

Xt = e−κt |EQ(Y |Ft)− Pt |, t ∈ [0,T ]

we have

infθ increasing ,θ0=0 EQ

(
−
∫

(0,T ] Xtdθt

+κη
2

∫ T
0 e−2κtθ2

t dt +
ηe−2κT Θ2

T
4

)
= supS=M+A≥X EQ

(
e2κT

η S2
T + 1

2κη

∫ T
0 e2κt

(
dAt
dt

)2
dt
)
.

I Proved by applying stochastic representation theorem P.Bank
and N.E.Karoui.
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Main Idea

I Extending X beyond T by Xt = e−κ(t−T )XT .
I µ(dt) = κe−2κtdt.
I Stochastic representation theorem: ∃L

Xt = EQ

(∫
(t,∞)

sup
t≤v<s

Lvdµ(s)|Ft

)
.

I Set: θt := 1
η sup0≤v<t Lv ∨ 0, t ≥ 0.

St = ηEQ

(∫
(t,∞)

θsdµ(s)|Ft

)
, t ≥ 0.

I Then θ is the minimizer and S ≥ X is the maximizer and they

achieve the same value given by η
2EQ

(∫
(0,∞) θ

2
udµ(u)

)
.
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Formulation of the problem

I In continuous time super–replication leads to
buy–and–hold strategies.

I Time horizon: T = 1.
I Number of time steps: n ∈ N.
I Market active at times 0, 1

n , ..., 1.
I Price Impact:

A
(n)
k = A

(n)
k−1 −

κ
2 (A

(n)
k−1 − B

(n)
k−1) + η(γk − γk−1)+ + σξk√

n

B
(n)
k = B

(n)
k−1 + κ

2 (A
(n)
k−1 − B

(n)
k−1)− η(γk − γk−1)− + σξk√

n

ξi = ±1.

I κ ∈ (0, 1].
I The resilience is scaled.
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Main Result

I In the n–step model we consider a European claim

Xn = F (Pn).

I Theorem: (Bank & D)

limVn = supν≥0 EPW

(
F
(

Π0 +
∫ 1

0 νtdWt

)
−

κ
4η(2−κ)

∫ 1
0

(
ν2
t
σ − σ

)2
)
.

I We get the same limit as we get with quadratic costs

ν → η(2− κ)

4κ
ν2.
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Happy Birthday Mete
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