Duality and Convergence for Super–Hedging with Price Impact

Yan Dolinsky

Hebrew University and Monash University

METE, ETH Zurich, 5.6.18

Based on joint work with Mete Soner, Peter Bank and Selim Gokay

イロト イポト イヨト イヨト

Introduction

Probabilistic Approach Volatility Uncertainty Version Super–replication with Price Imapct Scaling limits

- Financial market with one risky asset $S = \{S_t\}_{t=0}^T$.
- Linear price impact:

$$S \rightarrow S + 2\Lambda \nu$$
.

Wealth process:

$$V_t = V_0 + \int_0^t \gamma_u dS_u - \Lambda \langle \gamma \rangle_t.$$

イロン 不同と 不同と 不同と

Bank and Baum Density Result

Theorem: Let S be a continuous semi-martingale. For any ε > 0 and γ = {γ_t}^T_{t=0} there exists a continuous process of bounded variation δ = {δ_t}^T_{t=0} such that

$$\sup_{0 \le t \le T} |\int_0^t \gamma_u dS_u - \int_0^t \delta_u dS_u| < \epsilon \text{ a.s.}$$

In particular

$$\langle \delta \rangle \equiv 0.$$

 Corollary: In continuous time there is no liquidity premium.

(日) (四) (王) (王) (王)

Two Approaches two deal with this "Paradox"

- First approach: (Cetin, Soner and Touzi 2010). Putting Gamma constraints on portfolio strategies.
- Second approach: (Gokay and Soner 2012). Consider binomial models with quadratic costs and no constraints on the trading strategies.
- Both approaches lead to the same liquidity premium and were solved for Markovian payoffs by using PDE techniques.

$$\phi_t(t,s)+rac{\sigma^2s^2}{2}(1+4\Lambda\phi_{ss}(t,s))\phi_{ss}(t,s)=0.$$

イロト イポト イヨト イヨト

The Stochastic Control Problem

$$\phi(0,s) = \sup_{\nu \ge 0} \mathbb{E}\left(f(S_T^{(\nu)}) - \frac{1}{16\Lambda\sigma^2} \int_0^1 [(\nu^2 - \sigma^2)S_t^{(\nu)}]^2 dt\right)$$

where the above control problem defined on a Brownian probability space and supremum is taken over all adapted processes, and bounded processes $\nu \geq 0$. The process $S^{(\nu)}$ is the Doleans–Dade exponential

$$S_t^{(\nu)} = s \exp\left(\int_0^t \nu_u dW_u - \frac{1}{2}\int_0^t \nu_u^2 du\right).$$

イロト イポト イラト イラト 一日

Binomial Model

- Time horizon: T = 1.
- Number of time steps: $n \in \mathbb{N}$.
- Market active at times $0, \frac{1}{n}, ..., 1$.
- Risky asset given by

$$S_k^{(n)} = s \exp\left(\frac{\sigma}{\sqrt{n}} \sum_{i=1}^k \xi_i\right)$$

where $\xi_1, ..., \xi_n = \pm 1$.

・ロン ・回 と ・ 回 と ・ 回 と

Super-replication with Quadratic Costs

Portfolio value at maturity:

$$V_n^{\gamma} = V_0 + \sum_{i=0}^{n-1} \gamma_i (S_{i+1} - S_i) - \Lambda \sum_{i=1}^n |\gamma_i - \gamma_{i-1}|^2$$

where $\gamma_n = \gamma_0 \equiv 0$.

The super-replication price of a European contingent claim

$$X = f(S_1, \dots, S_n)$$

defined by

$$V_0 = \inf\{V_0 : \exists \gamma \text{ such that } V_n^{\gamma} \ge X\}.$$

イロト イポト イヨト イヨト

Theorem: (Soner & D)

The super-replication price given by

$$P = \sup_{(\mathbb{Q},M)} \mathbb{E}_{\mathbb{Q}} \left(X - \frac{1}{4\Lambda} \sum_{k=0}^{n} |M_k - S_k|^2 \right)$$

where $M = (M_0, ..., M_n)$ is martingale with respect to \mathbb{Q} and the filtration generated by S.

• *M* can be viewed as a shadow price.

・ロト ・回ト ・ヨト ・ヨト

Asymptotic Behaviour

▶ In the *n*-step model we consider a European claim

$$X_n = F\left(\mathcal{W}_n(S_0, ..., S_n)\right)$$

where $F: C[0,1] \rightarrow \mathbb{R}_+$ is a continuous function and

$$\mathcal{W}_n: \mathbb{R}^{n+1} \to C[0,1]$$

is the linear interpolation operator.

・ロン ・回と ・ヨン ・ヨン

Main Result

Theorem: (Soner & D)

$$\liminf V_n \geq \sup_{\nu \geq 0} \mathbb{E}\left(F(S^{(\nu)}) - \frac{1}{16\Lambda\sigma^2} \int_0^1 [(\nu^2 - \sigma^2)S_t^{(\nu)}]^2 dt\right)$$

where the above control problem defined on a Brownian probability space and supremum is taken over all adapted processes, and bounded processes $\nu \geq 0$. The process $S^{(\nu)}$ is the Doleans–Dade exponential

$$S_t^{(\nu)} = s \exp\left(\int_0^t \nu_u dW_u - \frac{1}{2} \int_0^t \nu_u^2 du\right).$$

In fact for the case where F satisfy some growth conditions we can prove that the above right hand side is also the upper bound.

Intuition

- Main idea goes back to **Kusuoka 1995**.
- Shadow price:

$$M_k^{(n)} = \frac{1}{\sqrt{n}} \sum_{i=1}^k \xi_i + \frac{\alpha \xi_k}{\sqrt{n}}.$$

Martingale measure: (lpha > -1/2)

$$\mathbb{E}_{Q}[\xi_{k}|\xi_{1},...,\xi_{k-1}] = \frac{\alpha}{1+\alpha}\xi_{k-1}.$$
$$\mathbb{E}_{Q}\left((M_{k+1}-M_{k})^{2}|\xi_{1},...,\xi_{k}\right) = \frac{1+2\alpha}{n}.$$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{[nt]} \Rightarrow \sqrt{1+2\alpha}W.$$

Yan Dolinsky

Duality and Convergence for Super-Hedging with Price Impact

The Setup

Volatility uncertainty interval

$$I = [\underline{\sigma}, \overline{\sigma}].$$

- Time horizon: T = 1.
- Number of time steps: $n \in \mathbb{N}$.
- Market active at times $0, \frac{1}{n}, ..., 1$.
- Risky asset give by

$$S_k^{(n)} = s \exp\left(\frac{1}{\sqrt{n}} \sum_{i=1}^k X_i\right)$$

where $X_1, ..., X_n$ random variables such that

$$|X_i| \in I$$
.

・ロン ・回 と ・ ヨ と ・ ヨ と

Super-replication with Quadratic Costs

Portfolio value at maturity:

$$V_n^{\gamma} = V_0 + \sum_{i=0}^{n-1} \gamma_i (S_{i+1} - S_i) - \Lambda \sum_{i=1}^n |\gamma_i - \gamma_{i-1}|^2$$

where $\gamma_n = \gamma_0 \equiv 0$.

The super-replication price of a European contingent claim

$$X = f(S_1, \dots, S_n)$$

defined by

$$V_0 = \inf\{V_0 : \exists \gamma \text{ such that } V_n^{\gamma} \ge X \text{ for } all X_1, ..., X_n\}.$$

イロト イポト イヨト イヨト

Duality Result

Let

$$K = \{(x_1, ..., x_n) : |x_i| \in I\} \subset \mathbb{R}^n.$$

Theorem: (Bank, D & Gokay) The super-replication price given by

$$P = \sup_{(\mathbb{Q},M)} \mathbb{E}_{\mathbb{Q}}\left(X - \frac{1}{4\Lambda}\sum_{k=0}^{n}|M_k - S_k|^2\right)$$

where $M = (M_0, ..., M_n)$ is martingale with respect to \mathbb{Q} and the filtration generated by S.

- *M* can be viewed as the shadow price.
- There is no a reference measure.

Asymptotic Behaviour

▶ In the *n*-step model we consider a European claim

$$X_n = F\left(\mathcal{W}_n(S_0, ..., S_n)\right)$$

where $F: C[0,1] \rightarrow \mathbb{R}_+$ is a continuous function and

$$\mathcal{W}_n: \mathbb{R}^{n+1} \to C[0,1]$$

is the linear interpolation operator.

・ロン ・回と ・ヨン ・ヨン

Main Result

Theorem: (Bank, D & Gokay)

$$\begin{split} &\lim \inf V_n \geq \sup_{\nu \geq 0} \mathbb{E} \left(F(S^{(\nu)}) - \mathbb{I}_{\nu > \overline{\sigma}} \frac{1}{16\Lambda\overline{\sigma}^2} \int_0^1 [(\nu^2 - \overline{\sigma}^2) S_t^{(\nu)}]^2 dt - \mathbb{I}_{\nu < \underline{\sigma}} \frac{1}{16\Lambda\underline{\sigma}^2} \int_0^1 [(\nu^2 - \underline{\sigma}^2) S_t^{(\nu)}]^2 dt \right) \end{split}$$

• The process $S^{(\nu)}$ is the Doleans–Dade exponential

$$S_t^{(\nu)} = s \exp\left(\int_0^t \nu_u dW_u - \frac{1}{2} \int_0^t \nu_u^2 du\right).$$

・ロン ・回と ・ヨン・

Bank & Voss Model

- $\gamma = \{\gamma_t\}_{t=0}^T$ trading strategy.
- Price Impact

$$dA_t^{\gamma} = dP_t + \eta d\gamma_t^+ - \frac{\kappa}{2} (A_{t-}^{\gamma} - B_{t-}^{\gamma}) dt$$

$$dB_t^{\gamma} = dP_t - \eta d\gamma_t^- + \frac{\kappa}{2} (A_{t-}^{\gamma} - B_{t-}^{\gamma}) dt.$$

- P is the exogenous fundamental random shock.
- $\frac{1}{n}$ is the market depth.
- κ is the resilience rate.

・ロン ・回 と ・ ヨ と ・ ヨ と

Portfolio Value

The spread

$$\zeta_t^\gamma = A_t^\gamma - B_t^\gamma$$

is given by

$$d\zeta_t^{\gamma} = \eta |d\gamma_t| - \kappa \zeta_{t-}^{\gamma} dt$$

and satisfies

$$\zeta_t^{\gamma} = \eta e^{-\kappa t} \int_0^t e^{\kappa u} |d\gamma_u|.$$

• Portfolio value: (we require $\gamma_0 = \gamma_T = 0$)

$$Z_T^{\gamma} = -\int_0^T P_t d\gamma_t - \frac{\kappa}{2\eta} \int_0^T |\zeta_{t-}^{\gamma}|^2 dt - \frac{1}{4\eta} |\zeta_T^{\gamma}|^2.$$

イロト イヨト イヨト イヨト

Duality Theory

- European contingent claim $X \in L^1(\mathcal{F}_T, \mathbb{P})$.
- The super-replication price

$$V := \inf\{x : \exists \gamma \ x + Z_T^{\gamma} \ge X \text{ a.s.}\}.$$

 In continuous time, duality for non linear friction was only studied in Guasoni & Rasonyi 2015. They considered a penalty of the form

$$\int_0^T |\dot{\gamma}|^p dt$$

Main Result

Theorem: (Bank & D)

Let \mathcal{A} be the set of all triples $(\mathbb{Q}, Y, S = M + A)$ such that S-is a semi-martingale with

$$S_t \geq e^{-\kappa t} |\mathbb{E}_{\mathbb{Q}}(Y|\mathcal{F}_t) - P_t|, \ \forall t.$$

Then super-replication price given by

$$V = \sup_{(\mathbb{Q},Y,S)} \mathbb{E}_{\mathbb{Q}} \left(X - \frac{1}{2\kappa\eta} \int_0^T e^{2\kappa t} \left(\frac{dA_t}{dt} \right)^2 dt - \frac{e^{2\kappa T}}{\eta} S_T^2 \right)$$

イロン イヨン イヨン イヨン

Intuition about the Duality

• Choose a triple (\mathbb{Q}, Y, S) and a trading strategy γ . Then

$$\begin{split} V+\epsilon &\geq \mathbb{E}_{\mathbb{Q}}\left(X+\int_{0}^{T}P_{t}d\gamma_{t}+\frac{\kappa}{2\eta}\int_{0}^{T}|\zeta_{t-}^{\gamma}|^{2}dt+\frac{1}{4\eta}|\zeta_{T}^{\gamma}|^{2}\right) =\\ \mathbb{E}_{\mathbb{Q}}\left(X+\int_{0}^{T}(P_{t}-\mathbb{E}_{\mathbb{Q}}(Y|\mathcal{F}_{t}))d\gamma_{t}+\frac{\kappa}{2\eta}\int_{0}^{T}|\zeta_{t-}^{\gamma}|^{2}dt+\frac{1}{4\eta}|\zeta_{T}^{\gamma}|^{2}\right) \\ &\geq \mathbb{E}_{\mathbb{Q}}\left(X-\int_{0}^{T}S_{t}e^{\kappa t}|d\gamma_{t}|+\frac{\kappa}{2\eta}\int_{0}^{T}|\zeta_{t-}^{\gamma}|^{2}dt+\frac{1}{4\eta}|\zeta_{T}^{\gamma}|^{2}\right) =\\ &\mathbb{E}_{\mathbb{Q}}\left(X+\int_{0}^{T}\frac{dA_{t}}{dt}e^{\kappa t}|d\gamma_{t}|-S_{T}\int_{0}^{T}e^{\kappa t}|d\gamma_{t}|+\frac{\kappa}{2\eta}\int_{0}^{T}|\zeta_{t-}^{\gamma}|^{2}dt+\frac{1}{4\eta}|\zeta_{T}^{\gamma}|^{2}\right) \\ &\mathbb{E}_{\mathbb{Q}}\left(X-\frac{1}{2\kappa\eta}\int_{0}^{T}e^{2\kappa t}\left(\frac{dA_{t}}{dt}\right)^{2}dt-\frac{e^{2\kappa T}}{\eta}S_{T}^{2}\right). \end{split}$$

Yan Dolinsky Duality and Convergence for Super–Hedging with Price Impact

Upper Bound

 \blacktriangleright Separation argument yields that $\exists \mathbb{Q} \sim \mathbb{P}$ such that

$$V \leq \mathbb{E}_{\mathbb{Q}}[X] + \int_{\gamma,\gamma_0=\gamma_T=0}^{T} \mathbb{E}_{\mathbb{Q}}\left(\int_0^T P_t d\gamma_t + \frac{\kappa}{2\eta} \int_0^T |\zeta_{t-}^{\gamma}|^2 dt + \frac{1}{4\eta} |\zeta_T^{\gamma}|^2\right).$$
$$\zeta_t^{\gamma} = \eta e^{-\kappa t} \int_0^t e^{\kappa u} |d\gamma_u|.$$

イロン イヨン イヨン イヨン

æ

Continuation

$$V \leq \mathbb{E}_{\mathbb{Q}}[X] + \sup_{Y \in L^{\infty}} \inf_{\gamma, \gamma_{0}=0} \mathbb{E}_{\mathbb{Q}} \left(\int_{(0,T]} (P_{t} - \mathbb{E}_{\mathbb{Q}}(Y|\mathcal{F}_{t})) d\gamma_{t} \right)$$
$$+ \frac{\kappa}{2\eta} \int_{0}^{T} |\zeta_{t-}^{\gamma}|^{2} dt + \frac{1}{4\eta} |\zeta_{T}^{\gamma}|^{2} \right) =$$
$$E_{\mathbb{Q}}[X] + \sup_{Y \in L^{\infty}} \inf_{\gamma, \gamma_{0}=0} \mathbb{E}_{\mathbb{Q}} \left(- \int_{(0,T]} |P_{t} - \mathbb{E}_{\mathbb{Q}}(Y|\mathcal{F}_{t})| |d\gamma_{t}| \right)$$
$$+ \frac{\kappa}{2\eta} \int_{0}^{T} |\zeta_{t-}^{\gamma}|^{2} dt + \frac{1}{4\eta} |\zeta_{T}^{\gamma}|^{2} \right)$$

・ロト ・回ト ・ヨト ・ヨト

ъ

Auxiliary result

▶ Lemma: For a given Q and

$$X_t = e^{-\kappa t} |\mathbb{E}_{\mathbb{Q}}(Y|\mathcal{F}_t) - P_t|, \ t \in [0, T]$$

we have

=

$$\begin{aligned} \inf_{\theta} \operatorname{increasing} _{,\theta_0=0} \mathbb{E}_{\mathbb{Q}} \left(-\int_{(0,T]} X_t d\theta_t \right. \\ &\left. + \frac{\kappa \eta}{2} \int_0^T e^{-2\kappa t} \theta_t^2 dt + \frac{\eta e^{-2\kappa T} \Theta_T^2}{4} \right) \\ &= \sup_{S=M+A \ge X} \mathbb{E}_{\mathbb{Q}} \left(\frac{e^{2\kappa T}}{\eta} S_T^2 + \frac{1}{2\kappa \eta} \int_0^T e^{2\kappa t} \left(\frac{dA_t}{dt} \right)^2 dt \right). \end{aligned}$$

Proved by applying stochastic representation theorem P.Bank and N.E.Karoui.

Main Idea

• Extending X beyond T by $X_t = e^{-\kappa(t-T)}X_T$.

•
$$\mu(dt) = \kappa e^{-2\kappa t} dt.$$

► Stochastic representation theorem: ∃L

$$X_t = \mathbb{E}_{\mathbb{Q}}\left(\int_{(t,\infty)} \sup_{t \leq v < s} L_v d\mu(s) |\mathcal{F}_t
ight).$$

► Set:
$$\theta_t := \frac{1}{\eta} \sup_{0 \le v < t} L_v \lor 0, t \ge 0.$$

$$S_t = \eta \mathbb{E}_{\mathbb{Q}} \left(\int_{(t,\infty)} \theta_s d\mu(s) | \mathcal{F}_t \right), \quad t \ge 0.$$

► Then θ is the minimizer and $S \ge X$ is the maximizer and they achieve the same value given by $\frac{\eta}{2} \mathbb{E}_{\mathbb{Q}} \left(\int_{(0,\infty)} \theta_u^2 d\mu(u) \right)$.

Formulation of the problem

- In continuous time super-replication leads to buy-and-hold strategies.
- Time horizon: T = 1.
- Number of time steps: $n \in \mathbb{N}$.
- Market active at times $0, \frac{1}{n}, ..., 1$.
- Price Impact:

$$\begin{aligned} A_k^{(n)} &= A_{k-1}^{(n)} - \frac{\kappa}{2} (A_{k-1}^{(n)} - B_{k-1}^{(n)}) + \eta (\gamma_k - \gamma_{k-1})^+ + \frac{\sigma \xi_k}{\sqrt{n}} \\ B_k^{(n)} &= B_{k-1}^{(n)} + \frac{\kappa}{2} (A_{k-1}^{(n)} - B_{k-1}^{(n)}) - \eta (\gamma_k - \gamma_{k-1})^- + \frac{\sigma \xi_k}{\sqrt{n}} \\ \xi_i &= \pm 1. \end{aligned}$$

κ ∈ (0,1].
The resilience is scaled.

Main Result

▶ In the *n*-step model we consider a European claim

$$X_n = F(P_n).$$

Theorem: (Bank & D)

$$\lim V_n = \sup_{\nu \ge 0} \mathbb{E}_{\mathbb{P}_W} \left(F\left(\Pi_0 + \int_0^1 \nu_t dW_t \right) - \frac{\kappa}{4\eta(2-\kappa)} \int_0^1 \left(\frac{\nu_t^2}{\sigma} - \sigma \right)^2 \right).$$

We get the same limit as we get with quadratic costs

$$u
ightarrow rac{\eta(2-\kappa)}{4\kappa}
u^2$$

・ロン ・聞と ・ほと ・ほと

Happy Birthday Mete

Yan Dolinsky Duality and Convergence for Super–Hedging with Price Impact

・ロト ・回ト ・ヨト ・ヨト