Adaptation, selection, mutation : a mathematical view of evolution

Benoît Perthame, METE 2018

Population formalism

$$
\underbrace{\frac{\partial}{\partial t} n(x, t)}_{\text {variation of number }}=\overbrace{\int b(y) M(x, y) n(y, t) d y}^{\text {birth with mutations }}+n(x, t) \underbrace{R(x, I(t))}_{\text {growth rate }}
$$

of individuals
$\square n(x, t)=$ number of indivuduals with trait x
$\square x=$ phenotypical trait
$\square I(t)=\left(I_{1}(t), \ldots I_{J}(t)\right)=$ environmental unknowns
■ $R(x, I)$ of Lotka-Volterra type, can be negative
■ Standard : Calsina, Cuadrado, Desvillettes, Raoul, Jabin, Mirrahimi, ...

Population formalism

$$
\underbrace{\frac{\partial}{\partial t} n(x, t)}_{\text {variation of number }}=\overbrace{\int b(y) M(x, y) n(y, t) d y}^{\text {birth with mutations }}+n(x, t) \underbrace{R(x, I(t))}_{\text {growth rate }}
$$ of individuals

$\square n(x, t)=$ number of indivuduals with trait x
$\square x=$ phenotypical trait
$\square I(t)=\left(I_{1}(t), \ldots I_{J}(t)\right)=$ environmental unknowns

- $R(x, I)$ of Lotka-Volterra type, can be negative

■ interplay between population and environment

Population formalism

A variant is

$$
\underbrace{\frac{\partial}{\partial t} n(x, t)}_{\begin{array}{c}
\text { variation of number } \\
\text { of individuals }
\end{array}}=\overbrace{\Delta n(y, t)}^{\text {neutral mutations }}+n(x, t) \underbrace{R(x, I(t))}_{\text {growth rate }}
$$

Motivation

The variable x can be
$■$ Size of the adult individuals (adaptation to foraging)

- Cannibalism rate (and evolutionary suicide)

■ Cooperative behaviour

■ Dispersal rate

Motivation

But adaptation can be seen on shorter times scales

- Resistance of tumor cells to chemotherapy

■ Resistance to insecticides

Rescaling

$$
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)=\int b(y) M_{\varepsilon}(x, y) n_{\varepsilon}(y, t) d y+n_{\varepsilon}(x, t) R\left(x, I_{\varepsilon}(t)\right),
$$

■ $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect

Rescaling

$$
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)=\int b(y) M_{\varepsilon}(x, y) n_{\varepsilon}(y, t) d y+n_{\varepsilon}(x, t) R\left(x, I_{\varepsilon}(t)\right),
$$

- $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect
- $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)$ means we consider a long time scale

Rescaling

$$
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)=\int b(y) M_{\varepsilon}(x, y) n_{\varepsilon}(y, t) d y+n_{\varepsilon}(x, t) R\left(x, I_{\varepsilon}(t)\right),
$$

■ $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect
$■ \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)$ means we consider a long time scale

- $M_{\varepsilon}(x, y)=\frac{1}{\varepsilon^{d}} M\left(\frac{x-y}{\varepsilon}\right)$

Rescaling

$$
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)=\int b(y) M_{\varepsilon}(x, y) n_{\varepsilon}(y, t) d y+n_{\varepsilon}(x, t) R\left(x, I_{\varepsilon}(t)\right),
$$

- $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect
- $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)$ means we consider a long time scale
- $M_{\varepsilon}(x, y)=\frac{1}{\varepsilon^{d}} M\left(\frac{x-y}{\varepsilon}\right)$
- Concentrations occur $n_{\varepsilon}(x, t) \approx e^{-|x-\bar{x}(t)|^{2} / \varepsilon}$

Examples of behaviors

Direct simulation (1500 points)

H.-J. solution (200 points)

Examples of behaviors

Branching can occur for more general right hand sides (convolution)

Examples of behaviors

Examples of behaviors

Morphological trait

Branching for a non-Gaussian convolution

Rescaling

$$
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)=\int b(y) M_{\varepsilon}(x, y) n_{\varepsilon}(y, t) d y+n_{\varepsilon}(x, t) R\left(x, I_{\varepsilon}(t)\right),
$$

■ $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect

- $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)$ means we consider a long time scale

■ Simple case $I_{\varepsilon}(t)$ is reduced to the knowledge of

$$
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(x, t) d x
$$

Concentration phenomena

$$
\left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(x, t) R\left(x, \varrho_{\varepsilon}(t)\right), \quad x \in \mathbb{R}, \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(x, t) d x .
\end{array}\right.
$$

$\square \exists \varrho_{M}>0 \quad$ s.t. $\quad \max _{x} R\left(x, \varrho_{M}\right)=0$
$\square R_{\varrho}<0 \quad \square R_{x}>0$
Theorem ($\mathrm{d}=1$, monotone) For well-prepared initial data, we have

$$
\begin{aligned}
& n_{\varepsilon}(x, t) \underset{\varepsilon_{k} \rightarrow 0}{\longrightarrow} \bar{\varrho}(t) \delta(x=\bar{x}(t)), \quad \bar{x}(t), \quad \bar{\varrho}(t) \in B V_{\text {loc }}(0, \infty) \\
& R(\bar{x}(t), \bar{\varrho}(t))=0 \quad \text { for a.e. } t>0
\end{aligned}
$$

$\bar{x}(t)$ is the fittest trait

Concentration phenomena

$$
\left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(x, t) R\left(x, \varrho_{\varepsilon}(t)\right), \quad x \in \mathbb{R} \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(x, t) d x
\end{array}\right.
$$

$\square \exists \varrho_{M}>0 \quad$ s.t. $\max _{x} R\left(x, \varrho_{M}\right)=0$
$\square R_{\varrho}<0 \quad \square R_{x}>0$
Theorem ($\mathrm{d}=1$, monotone) For well-prepared initial data, we have

$$
\begin{aligned}
& n_{\varepsilon}(x, t) \underset{\varepsilon_{k} \rightarrow 0}{\longrightarrow} \bar{\varrho}(t) \delta(x=\bar{x}(t)), \quad \bar{x}(t), \quad \bar{\varrho}(t) \in B V_{\mathrm{loc}}(0, \infty) \\
& R(\bar{x}(t), \bar{\varrho}(t))=0 \quad \text { for a.e. } t>0 \\
& \text { as } t \rightarrow \infty
\end{aligned}
$$

Concentration phenomena, $d \geq 1$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(x, t) R\left(x, \varrho_{\varepsilon}(t)\right), \quad x \in \mathbb{R}^{d} \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(x, t) d x .
\end{array}\right. \\
& \square R_{\varrho}<0 \\
& \exists \varrho_{M}>0 \text { s.t. } \max _{x} R\left(x, \varrho_{M}\right)=0
\end{aligned}
$$

- $R_{\varrho}<0$
- $D_{x}^{2} R \leq-K I d$,

Theorem (Any d, concave) For well-prepared initial data, we have

$$
\begin{aligned}
& n_{\varepsilon}(x, t) \longrightarrow \bar{\varrho}(t) \delta(x=\bar{x}(t)), \quad \bar{x}(t), \quad \bar{\varrho}(t) \in C^{1}([0, \infty)) \\
& R(\bar{x}(t), \bar{\varrho}(t))=0 \quad \text { for all } t>0 \\
& \text { as } t \rightarrow \infty \quad R\left(\bar{x}_{\infty}, \bar{\varrho}_{\infty}\right)=0=\min _{\rho} \max _{x} R(x, \varrho)
\end{aligned}
$$

Concentration phenomena

Why is mathematics interesting?
■ Nonlocal nonlinearity drastically changes the picture

- Control in L^{1} only
- Constrained Hamilton-Jacobi eq.

■ Is there a simple rule for the dynamics of $\bar{x}(t)$?

Related approaches

- Evolutionary game theory

Blue (stronger),
Orange (middle size),
Yellow (smaller)
compensate by mating strategies

from B. Sinervo. http://bio.research.ucsc.edu/barrylab

NATURE VOL. 246 NOVEMBER 21973

The Logic of Animal Conflici

J. Hofbauer- M. Nowak- K. Sigmund
J. MAYNARD SMITH

School of Biological Sciences, University of Sussex, Falmer, Sussex BN1 9QG
G. R. PRICE

Galton Laboratory, University College London, 4 Stephenson Way, London NW1 2HE

Related approaches

- Evolutionary game theory

Blue (stronger),
Orange (middle size),
Yellow (smaller)
compensate by mating strategies

from B. Sinervo. http://bio.research.ucsc.edu/barrylab
The relation can be seen by

$$
\begin{aligned}
& \max _{\mathcal{S}} R\left(x, \bar{\varrho}_{\infty}\right)=0=R\left(\bar{x}_{\infty}, \bar{\varrho}_{\infty}\right) \\
& \min _{\varrho} \max _{\mathcal{S}} R(x, \varrho)=0=R\left(\bar{x}_{\infty}, \bar{\rho}_{\infty}\right)
\end{aligned}
$$

Related approaches

- Dynamical systems

Can a mutant invade the resident population?

Related approaches

- Stochastic models, Individual Based Models : N individuals, rescale mutation, birth, death rates
U. Dieckmann-R. Law, R. Ferriere
S. Billard, N. Champagnat
S. Méléard, V. C Tran

Related approaches

- Stochastic models, Individual Based Models : N individuals, rescale mutation, birth, death rates
R. Ferriere, N. Champagnat
S. Méléard, V. C Tran

As $N \rightarrow \infty$, they establish both

$$
\begin{gathered}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(t, x) R\left(x, \varrho_{\varepsilon}(t)\right) \\
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)=\int b(y) \frac{1}{\varepsilon^{d}} M\left(\frac{x-y}{\varepsilon}\right) n_{\varepsilon}(y, t) d y+n_{\varepsilon}(x, t) R\left(x, I_{\varepsilon}(t)\right)
\end{gathered}
$$

Asymptotics with mutations

$$
\left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(t, x) R\left(x, \varrho_{\varepsilon}(t)\right), \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(t, x) d x .
\end{array}\right.
$$

Asymptotics with mutations

This is not far from Fisher/KPP equation for invasion fronts/chemical reaction

$$
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(t, x)\left(1-n_{\varepsilon}(t, x)\right)
$$

WKB, large deviations, level sets, geometric motion G. Barles, L. C. Evans, W. Fleming, P. E. Souganidis, Mete

Asymptotics with mutations

$$
\left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(t, x) R\left(x, \varrho_{\varepsilon}(t)\right) \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(t, x) d x
\end{array}\right.
$$

In the limit one can expect

$$
\begin{gathered}
0=n(t, x) R(x, \varrho(t)), \\
n(t, x)=\rho \delta_{\Gamma(t)}, \quad \Gamma(t) \subset\{R(\cdot, \rho(t))=0\} .
\end{gathered}
$$

Asymptotics with mutations

$$
\left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(t, x) R\left(x, \varrho_{\varepsilon}(t)\right) \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(t, x) d x
\end{array}\right.
$$

In the limit one can expect

$$
\begin{gathered}
0=n(t, x) R(x, \varrho(t)) \\
n(t, x)=\rho \delta_{\Gamma(t)}, \quad \Gamma(t) \subset\{R(\cdot, \rho(t))=0\} .
\end{gathered}
$$

Which points are selected in this hypersurface?

Asymptotics with mutations

$$
\left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(t, x) R\left(x, \varrho_{\varepsilon}(t)\right) \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(t, x) d x
\end{array}\right.
$$

In the limit one can expect

$$
\begin{gathered}
0=n(t, x) R(x, \bar{\varrho}(t)), \\
n(t, x)=\bar{\varrho} \delta_{\Gamma(t)}, \quad \Gamma(t) \subset\{R(\cdot, \bar{\varrho}(t))=0\} .
\end{gathered}
$$

In dimension $d=1, R$ monotone, there is a single point.

$$
\bar{x}(t) \Longleftrightarrow \bar{\varrho}(t)
$$

Concentration phenomena, $d \geq 1$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)-\varepsilon^{2} \Delta n_{\varepsilon}=n_{\varepsilon}(x, t) R\left(x, \varrho_{\varepsilon}(t)\right), \quad x \in \mathbb{R}^{d} \\
\varrho_{\varepsilon}(t)=\int_{\mathbb{R}^{d}} n_{\varepsilon}(x, t) d x .
\end{array}\right. \\
& \square R_{\varrho}<0 \\
& \exists \varrho_{M}>0 \text { s.t. } \max _{x} R\left(x, \varrho_{M}\right)=0
\end{aligned}
$$

- $R_{\varrho}<0$
- $D_{x}^{2} R \leq-K I d$,

Theorem (Any d, concave.) For well-prepared initial data, we have

$$
\begin{aligned}
& n_{\varepsilon}(x, t) \longrightarrow \varrho(t) \delta(x=\bar{x}(t)), \quad \bar{x}(t), \quad \bar{\varrho}(t) \in C^{1}([0, \infty)) \\
& R(\bar{x}(t), \bar{\varrho}(t))=0 \quad \text { for all } t>0 \\
& \text { as } t \rightarrow \infty \quad R\left(\bar{x}_{\infty}, \bar{\varrho}_{\infty}\right)=0=\min _{\rho} \max _{x} R(x, \varrho)
\end{aligned}
$$

Proof

Step 1. $\varrho_{\varepsilon}(t) \in_{\mathrm{b}} L^{\infty}, \quad n_{\varepsilon} \in_{\mathrm{b}} L_{t}^{\infty}\left(L_{x}^{1}\right)$
Step 2. A BV estimate
Step 3. Represent

$$
n_{\varepsilon}(t, x)=\exp \frac{\varphi_{\varepsilon}(t, x)}{\varepsilon}
$$

the 'fittest' trait $\bar{x}(t)$ is characterised by the Eikonal equation with constraints

$$
\left\{\begin{array}{l}
\left.\frac{\partial}{\partial t} \varphi(t, x)=R(x, \bar{\varrho}(t))+\mid \nabla \varphi(t, x)\right)\left.\right|^{2} \\
\max _{x} \varphi(t, x)=0 \quad(=\varphi(t, \bar{x}(t)))
\end{array}\right.
$$

Proof

In the viscosity sense

$$
\left\{\begin{array}{l}
\left.\frac{\partial}{\partial t} \varphi(t, x)=R(x, \bar{\varrho}(t))+\mid \nabla \varphi(t, x)\right)\left.\right|^{2} \\
\max _{x} \varphi(t, x)=0 \quad(=\varphi(t, \bar{x}(t)))
\end{array}\right.
$$

$\varphi(t, x)$ is Lipschitz

This is not an obstacle problem.
$\bar{\varrho}(t)$ is a Langrange multiplier!

Proof

In the viscosity sense

$$
\left\{\begin{array}{l}
\left.\frac{\partial}{\partial t} \varphi(t, x)=R(x, \bar{\varrho}(t))+\mid \nabla \varphi(t, x)\right)\left.\right|^{2} \\
\max _{x} \varphi(t, x)=0 \quad(=\varphi(t, \bar{x}(t)))
\end{array}\right.
$$

Uniqueness

$■ R(x, \varrho)=b(x) a(\varrho)-d(x)(\mathrm{G}$. Barles and BP)
■ J.-M. Roquejoffre et S. Mirrahimi

- V. Calvez, A. Lam Work in preparation

Proof

$$
\left\{\begin{array}{l}
\left.\frac{\partial}{\partial t} \varphi(t, x)=R(x, \bar{\varrho}(t))+\mid \nabla \varphi(t, x)\right)\left.\right|^{2} \\
\max _{x} \varphi(t, x)=0 \quad(=\varphi(t, \bar{x}(t)))
\end{array}\right.
$$

Step 4. Any concentration point $x_{i}(t)$ will satisfy

$$
R\left(\bar{x}_{i}(t), \bar{I}(t)\right)=0
$$

Thanks to semi-concavity property of $\varphi(t, x)$

$$
-\nu I d \leq D^{2} \varphi
$$

Canonical equation

Step 5. The concave case leaves place for a regularity regime, if

$$
D^{2} R \leq-\nu I d, \quad D^{2} \varphi^{0} \leq-\nu I d,
$$

then

$$
D^{2} \varphi \leq-\nu I d .
$$

Canonical equation

Any concentration point $x_{i}(t)$ will satisfy
(i) $\quad R\left(\bar{x}_{i}(t), \bar{I}(t)\right)=0$
(ii) $\quad \frac{d}{d t} \bar{x}_{i}(t)=\left(-D^{2} \varphi\left(\bar{x}_{i}(t), t\right)\right)^{-1} . \nabla R\left(\bar{x}_{i}(t), \bar{I}(t)\right)$

Canonical equation

Any concentration point $x_{i}(t)$ will satisfy

$$
\begin{equation*}
R\left(\bar{x}_{i}(t), \bar{I}(t)\right)=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d t} \bar{x}_{i}(t)=\left(-D^{2} \varphi\left(\bar{x}_{i}(t), t\right)\right)^{-1} \cdot \nabla R\left(\bar{x}_{i}(t), \bar{I}(t)\right) \tag{ii}
\end{equation*}
$$

Conclusions:
■ The competitive exclusion principle (single Dirac mass for a single nutrient)

For two nutrients $R\left(\bar{x}_{i}(t), \bar{I}_{1}(t), I_{2}(t)\right)=0$
one has four unknows $\bar{I}_{1}(t), I_{2}(t), \bar{x}_{1}(t), x_{2}(t)$
$R\left(x, I_{1}, I_{2}\right)$ should have 1 or 2 roots (Champagnat, Jabin, Méléard)

Canonical equation

Any concentration point $x_{i}(t)$ will satisfy

$$
\begin{equation*}
R\left(\bar{x}_{i}(t), \bar{I}(t)\right)=0 \tag{i}
\end{equation*}
$$

(ii)

$$
\frac{d}{d t} \bar{x}_{i}(t)=\left(-D^{2} \varphi\left(\bar{x}_{i}(t), t\right)\right)^{-1} \cdot \nabla R\left(\bar{x}_{i}(t), \bar{I}(t)\right)
$$

Conclusions :

- The competitive exclusion principle (single Dirac mass)
- $n_{\varepsilon}=\exp (\varphi / \varepsilon)$ the shape of φ plays a role

Canonical equation

Canonical equation

$$
\frac{d}{d t} \bar{x}(t)=\left(-D^{2} \varphi(\bar{x}(t), t)\right)^{-1} \cdot \nabla R(\bar{x}(t), \bar{\varrho}(t))
$$

Effect of the matrix $\left(-D^{2} \varphi(\bar{x}(t), t)\right)$ (microstructure of the Dirac)

Challenges today

■ Explain diversity/heterogeneity with space
■ Selection without a proliferating advantage

Challenges today

■ Explain diversity/heterogeneity with space
■ Selection without a proliferating advantage

Examples are

■ Local selection of a trait with a space variable
■ Selection of the fittest age/size
■ Selection of dispersal

Space-trait concentration

Let $y \in \mathbb{R}$ the space variable, $x \in \mathbb{R}$ trait variable

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\varepsilon \partial_{t} n_{\varepsilon}(y, x, t)=\left[r(x) c_{\varepsilon}(y, t)-d(x) \varrho_{\varepsilon}(y, t)-\mu(x)\right] n_{\varepsilon}(y, x, t) \\
-\Delta_{y} c_{\varepsilon}(y, t)+\left[\varrho_{\varepsilon}(y, t)+\lambda\right] c_{\varepsilon}(y, t)=\lambda c_{B}, \\
\varrho_{\varepsilon}(y, t)=\int n_{\varepsilon}(y, x, t) d x
\end{array}\right. \\
& \text { Interpetation }
\end{aligned}
$$

■ Nutrients/drugs are diffused and consumed by cells
■ Local conditions select space-dependent traits

Space-trait concentration

Let $y \in \mathbb{R}$ the space variable, $x \in \mathbb{R}$ trait variable

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} n_{\varepsilon}(y, x, t)=\left[r(x) c_{\varepsilon}(y, t)-d(x) \varrho_{\varepsilon}(y, t)-\mu(x)\right] n_{\varepsilon}(y, x, t) \\
-\Delta_{y} c_{\varepsilon}(y, t)+\left[\varrho_{\varepsilon}(y, t)+\lambda\right] c_{\varepsilon}(y, t)=\lambda c_{B} \\
\varrho_{\varepsilon}(y, t)=\int n_{\varepsilon}(y, x, t) d x
\end{array}\right.
$$

Theorem : For well-prepared initial data, as $\varepsilon_{k} \rightarrow 0$, we have

$$
n_{\varepsilon}(y, x, t) \rightarrow \bar{\rho}(y, t) \delta(x-\bar{X}(y, t))
$$

Difficulty : Space works well with L^{∞}. Traits with L^{1}
Outcome : Explains heterogeneity

Space-trait concentration

Let $y \in \mathbb{R}$ the space variable, $x \in \mathbb{R}$ trait variable

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} n_{\varepsilon}(y, x, t)=\left[r(x) c_{\varepsilon}(y, t)-d(x) \varrho_{\varepsilon}(y, t)-\mu(x)\right] n_{\varepsilon}(y, x, t) \\
-\Delta_{y} c_{\varepsilon}(y, t)+\left[\varrho_{\varepsilon}(y, t)+\lambda\right] c_{\varepsilon}(y, t)=\lambda c_{B} \\
\varrho_{\varepsilon}(y, t)=\int n_{\varepsilon}(y, x, t) d x
\end{array}\right.
$$

Without cytotoxic drug High heterogeneity

Selection of age

A second example (viral load, age when cancer occurs)

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} n_{\varepsilon}(y, x, t)+\partial_{y}\left[A(x, y) n_{\varepsilon}(y, x, t)\right]+\left[d(x, y)+\varrho_{\varepsilon}(t)\right] n_{\varepsilon}(y, x, t)=0 \\
A(x, y=0) n_{\varepsilon}(y=0, x, t)=\int b\left(x, y^{\prime}\right) M_{\varepsilon}\left(y, y^{\prime}\right) n_{\varepsilon}\left(y^{\prime}, x, t\right) d y^{\prime} d x \\
\varrho_{\varepsilon}(t)=\int_{y=0}^{\infty} \int_{x} n_{\varepsilon}(y, x, t) d x d y
\end{array}\right.
$$

How to describe the concentration effect?

Selection of age

Consider the eigenvalue problem x by x

$$
\left\{\begin{array}{l}
\partial_{y}[A(x, y) N(y, x)]+d(x, y) N(y, x)=\wedge(x, \eta) \\
A(x, y=0) N(y=0, x)=\eta \int b(x, y) N(y, x) d y d x \\
N(y, x)>0
\end{array}\right.
$$

The dynamics of concentration is described by

$$
\left\{\begin{array}{l}
\partial_{t} \varphi(x, t)+\bar{\varrho}(t)+\Lambda\left(x, \int M(z) e^{z \cdot \nabla \varphi(x, t)} d z\right)=0 \\
\max _{x} \varphi(x, t)=0
\end{array}\right.
$$

Selection of age

$$
\begin{aligned}
n_{\varepsilon}(y, x, t) & \approx \bar{\varrho}(t) e^{\varphi_{\varepsilon}(x, t) / \varepsilon} N_{\varepsilon}(x, y, t) \\
& \approx \bar{\varrho}(t) \delta(x-\bar{x}(t)) N(y, t)
\end{aligned}
$$

The strategy of proof is to use $\varphi_{\varepsilon}(x, t)$ and handle the other corrections by entropy methods for $N_{\varepsilon}(x, y, t)$

Selection of age

$$
\begin{aligned}
n_{\varepsilon}(y, x, t) & \approx \bar{\varrho}(t) e^{\varphi_{\varepsilon}(x, t) / \varepsilon} N_{\varepsilon}(y, x, t) \\
& \approx \bar{\varrho}(t) \delta(x-\bar{x}(t)) N(y, t)
\end{aligned}
$$

The canonical equation is

$$
\begin{gathered}
\frac{d}{d t} \bar{x}(t)=\left(-D^{2} \varphi(\bar{x}(t), t)\right)^{-1}\left[\nabla_{x} \wedge(x, 1)+\frac{\partial \wedge(x, 1)}{\partial \eta} D^{2} \varphi(\bar{x}(t), t) \cdot M_{1}\right] \\
M_{1}=\int z M(z) d z
\end{gathered}
$$

$M_{1}=0$ for symmetric mutation kernels

Evolution of dispersal

Selection without a proliferative advantage?

■ motility/dispersal of individuals is subject to variability
■ no advantage regarding their reproductive rate
$\square R(x, \rho)=$ Operator acting on the space variable

Evolution of dispersal

We model it for $y \in \Omega+$ Neuman BC, $x=$ dispersal (trait)

$$
\begin{gathered}
\partial_{t} n(t, x, y) \overbrace{=\underbrace{\text { dispersion/motility }}_{=D(x) \partial_{y y}^{2} n(t, x, y)}+\overbrace{n(t, x, y)(K(y)-\rho(t, y))}^{\text {reproduction }} \overbrace{+\varepsilon^{2} \partial_{x x}^{2} n(t, x, y)}^{\text {mutations on motility }}}^{\rho(t, y)=\int_{0}^{\infty} n(t, x, y) d x}
\end{gathered}
$$

$K(y)$ is not constant.

Evolution of dispersal

$$
\begin{gathered}
\partial_{t} n(t, x, y) \overbrace{=D(x) \partial_{y y}^{2} n(t, x, y)}^{\text {dispersion/motility }}+\overbrace{n(t, x, y)(K(y)-\rho(t, y))}^{\text {reproduction }} \overbrace{+\varepsilon^{2} \partial_{x x}^{2} n(t, x, y)}^{\text {mutation on motility }} \\
\rho(t, y)=\int_{0}^{\infty} n(t, x, y) d y
\end{gathered}
$$

Theorem (P. E. Souganidis, BP and K. Y. Lam, Y. Lou) The ESS are of the form

$$
n(t, x, y) \approx \bar{\rho}_{\infty}(y) \delta(x=\bar{x}), \quad D(\bar{x})=\min D(x)
$$

and the constrained H.-J. eq.

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \varphi(x, t)=\wedge(x, \bar{\varrho}(\cdot, t))+|\nabla \varphi|^{2} \\
\max _{x} \varphi(x, t)=0=\varphi(\bar{x}(t), t),
\end{array}\right.
$$

Evolution of dispersal

■ Same question for traveling waves

- Accelerating waves

■ Example cane toads invasion in Australia

J. Berestycki, E. Bouin, V. Calvez, C. Mouhot, G. Raoul, L. Ryzhik., C. Henderson

Turing (dentritic) patterns

元

[

Thanks to my collaborators
O. Diekmann, P.-E. Jabin, S. Mischler,
M. Gauduchon, J. Clairambault, A. Escargueil,
G. Barles, S. Mirrahimi, P. E. Souganidis,
V. Calvez, A. Lorz

Thanks to my collaborators
O. Diekmann, P.-E. Jabin, S. Mischler,
M. Gauduchon, J. Clairambault, A. Escargueil,
G. Barles, S. Mirrahimi, P. E. Souganidis,
V. Calvez, A. Lorz

Happy birthday Mete

