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Population formalism

∂

∂t
n(x, t)︸ ︷︷ ︸

variation of number
of individuals

=

birth with mutations︷ ︸︸ ︷∫
b(y)M(x, y)n(y, t)dy+n(x, t)R

(
x, I(t)

)
︸ ︷︷ ︸
growth rate

n(x, t) = number of indivuduals with trait x

x = phenotypical trait

I(t) = (I1(t), ...IJ(t)) = environmental unknowns

R(x, I) of Lotka-Volterra type, can be negative

Standard : Calsina, Cuadrado, Desvillettes, Raoul, Jabin, Mirrahimi, ...
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Population formalism

A variant is

∂

∂t
n(x, t)︸ ︷︷ ︸

variation of number
of individuals

=

neutral mutations︷ ︸︸ ︷
∆n(y, t) +n(x, t)R

(
x, I(t)

)
︸ ︷︷ ︸
growth rate



Motivation

The variable x can be

Size of the adult individuals (adaptation to foraging)

Cannibalism rate (and evolutionary suicide)

Cooperative behaviour

Dispersal rate



Motivation

But adaptation can be seen on shorter times scales

Resistance of tumor cells to chemotherapy

Resistance to insecticides



Rescaling

ε
∂

∂t
nε(x, t) =

∫
b(y)Mε(x, y)nε(y, t)dy + nε(x, t)R

(
x, Iε(t)

)
,

Mε(x, y) means mutations are rare/have small effect
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Rescaling

ε
∂

∂t
nε(x, t) =

∫
b(y)Mε(x, y)nε(y, t)dy + nε(x, t)R

(
x, Iε(t)

)
,

Mε(x, y) means mutations are rare/have small effect

ε ∂∂tnε(x, t) means we consider a long time scale

Mε(x, y) = 1
εd
M
(
x−y
ε

)
Concentrations occur nε(x, t) ≈ e−|x−x̄(t)|2/ε



Examples of behaviors
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Examples of behaviors
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Branching can occur for more general right hand sides (convolution)
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Examples of behaviors

Branching for a Gaussian convolution



Examples of behaviors

4 Darwin’s divergence principle
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Figure 2: Evolutionary branching. Periodic boundary conditions. Parame-
ters are a = 1, K = 1, b = 3, d = 0.05, L = 40.

Under the conditions of self-organization presented in section 3 an ini-
tially monomorphic population will undergo several successive branchings to
become polymorphic. According to the numerical simulations, this polymor-
phic population is a stable asymptotic equilibrium.

See figure 2 where the parameters are the same as in figure 1 except that
the morphospace is larger (L = 40), and that the initial condition is different
(the population is initially monomorphic). This monomorphic population
first proliferates, but then it experiences an intense competition, which is
favorable to its most different descendants:
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Branching for a non-Gaussian convolution



Rescaling

ε
∂

∂t
nε(x, t) =

∫
b(y)Mε(x, y)nε(y, t)dy + nε(x, t)R

(
x, Iε(t)

)
,

Mε(x, y) means mutations are rare/have small effect

ε ∂∂tnε(x, t) means we consider a long time scale

Simple case Iε(t) is reduced to the knowledge of

%ε(t) =
∫
Rd
nε(x, t)dx



Concentration phenomena
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
, x ∈ R,

%ε(t) =
∫
Rd
nε(x, t)dx.

∃%M > 0 s.t. maxxR(x, %M) = 0

R% < 0 Rx > 0

Theorem (d=1, monotone) For well-prepared initial data, we have

nε(x, t) −→
εk→0

%̄(t)δ(x = x̄(t)), x̄(t), %̄(t) ∈ BVloc(0,∞)

R
(
x̄(t), %̄(t)

)
= 0 for a.e. t > 0

x̄(t) is the fittest trait



Concentration phenomena
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
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, x ∈ R,
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∫
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εk→0

%̄(t)δ(x = x̄(t)), x̄(t), %̄(t) ∈ BVloc(0,∞)

R
(
x̄(t), %̄(t)

)
= 0 for a.e. t > 0

as t→∞ R
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)
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x
R
(
x, %̄∞

)



Concentration phenomena, d ≥ 1
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
, x ∈ Rd

%ε(t) =
∫
Rd
nε(x, t)dx.

R% < 0

∃%M > 0 s.t. maxxR(x, %M) = 0

D2
xR ≤ −KId,

Theorem (Any d, concave) For well-prepared initial data, we have

nε(x, t)−→%̄(t)δ(x = x̄(t)), x̄(t), %̄(t) ∈ C1
(
[0,∞)

)
R
(
x̄(t), %̄(t)

)
= 0 for all t > 0

as t→∞ R
(
x̄∞, %̄∞

)
= 0 = minρmaxxR

(
x, %

)



Concentration phenomena

Why is mathematics interesting ?

Nonlocal nonlinearity drastically changes the picture

Control in L1 only

Constrained Hamilton-Jacobi eq.

Is there a simple rule for the dynamics of x̄(t) ?



Related approaches
• Evolutionary game theory

Blue (stronger),

Orange (middle size),

Yellow (smaller)

compensate by mating strategies
. .
. from B. Sinervo. http : //bio.research.ucsc.edu/barrylab

. J. Hofbauer- M. Nowak- K. Sigmund

.

.



Related approaches
• Evolutionary game theory

Blue (stronger),

Orange (middle size),

Yellow (smaller)

compensate by mating strategies
. .
. from B. Sinervo. http : //bio.research.ucsc.edu/barrylab

The relation can be seen by

max
S

R(x, %̄∞) = 0 = R(x̄∞, %̄∞)

min
%

max
S

R(x, %) = 0 = R(x̄∞, ρ̄∞).



Related approaches
• Dynamical systems

. H. Metz, S. Geritz, G. Meszena,

. S. Kisdi, O. Diekmann

Can a mutant invade the resident population ?



Related approaches

• Stochastic models, Individual Based Models : N individuals,

rescale mutation, birth, death rates

U. Dieckmann-R. Law, R. Ferriere

S. Billard, N. Champagnat

S. Méléard, V. C Tran
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As N →∞, they establish both

ε
∂

∂t
nε(t, x)− ε2∆nε = nε(t, x)R

(
x, %ε(t)

)

ε
∂

∂t
nε(x, t) =

∫
b(y)

1

εd
M
(x− y

ε

)
nε(y, t)dy + nε(x, t)R

(
x, Iε(t)

)
,



Asymptotics with mutations


ε ∂∂tnε(t, x)− ε2∆nε = nε(t, x)R

(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(t, x)dx.



Asymptotics with mutations

This is not far from Fisher/KPP equation for invasion

fronts/chemical reaction

ε
∂

∂t
nε(t, x)− ε2∆nε = nε(t, x)

(
1− nε(t, x)

)
,

. {nε = 1} {nε = 0}

WKB, large deviations, level sets, geometric motion

G. Barles, L. C. Evans, W. Fleming, P. E. Souganidis, Mete



Asymptotics with mutations


ε ∂∂tnε(t, x)− ε2∆nε = nε(t, x)R

(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(t, x)dx.

In the limit one can expect

0 = n(t, x)R
(
x, %(t)

)
,

n(t, x) = ρδΓ(t), Γ(t) ⊂
{
R(·, ρ(t)) = 0

}
.



Asymptotics with mutations


ε ∂∂tnε(t, x)− ε2∆nε = nε(t, x)R

(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(t, x)dx.

In the limit one can expect

0 = n(t, x)R
(
x, %(t)

)
,

n(t, x) = ρδΓ(t), Γ(t) ⊂
{
R(·, ρ(t)) = 0

}
.

Which points are selected in this hypersurface ?



Asymptotics with mutations


ε ∂∂tnε(t, x)− ε2∆nε = nε(t, x)R

(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(t, x)dx.

In the limit one can expect

0 = n(t, x)R
(
x, %̄(t)

)
,

n(t, x) = %̄δΓ(t), Γ(t) ⊂
{
R(·, %̄(t)) = 0

}
.

In dimension d = 1, R monotone, there is a single point.

x̄(t)⇐⇒ %̄(t)



Concentration phenomena, d ≥ 1
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
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)
, x ∈ Rd
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∫
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R% < 0

∃%M > 0 s.t. maxxR(x, %M) = 0

D2
xR ≤ −KId,

Theorem (Any d, concave.) For well-prepared initial data, we have

nε(x, t)−→%̄(t)δ(x = x̄(t)), x̄(t), %̄(t) ∈ C1
(
[0,∞)

)
R
(
x̄(t), %̄(t)

)
= 0 for all t > 0

as t→∞ R
(
x̄∞, %̄∞

)
= 0 = minρmaxxR

(
x, %

)



Proof

Step 1. %ε(t) ∈b L
∞, nε ∈b L

∞
t (L1

x)

Step 2. A BV estimate

Step 3. Represent

nε(t, x) = exp
ϕε(t, x)

ε

the ’fittest’ trait x̄(t) is characterised by the Eikonal equation with

constraints 
∂
∂tϕ(t, x) = R

(
x, %̄(t)

)
+ |∇ϕ(t, x)

)
|2

maxxϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)
.



Proof

In the viscosity sense
∂
∂tϕ(t, x) = R

(
x, %̄(t)

)
+ |∇ϕ(t, x)

)
|2

maxxϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)
.

ϕ(t, x) is Lipschitz

This is not an obstacle problem.

%̄(t) is a Langrange multiplier !



Proof

In the viscosity sense
∂
∂tϕ(t, x) = R

(
x, %̄(t)

)
+ |∇ϕ(t, x)

)
|2

maxxϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)
.

Uniqueness

R(x, %) = b(x)a(%)− d(x) (G. Barles and BP)

J.-M. Roquejoffre et S. Mirrahimi

V. Calvez, A. Lam Work in preparation



Proof 
∂
∂tϕ(t, x) = R

(
x, %̄(t)

)
+ |∇ϕ(t, x)

)
|2

maxxϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)
.

Step 4. Any concentration point xi(t) will satisfy

R
(
x̄i(t), Ī(t)

)
= 0

Thanks to semi-concavity property of ϕ(t, x)

−νId ≤ D2ϕ.



Canonical equation

Step 5. The concave case leaves place for a regularity regime, if

D2R ≤ −νId, D2ϕ0 ≤ −νId,

then

D2ϕ ≤ −νId.



Canonical equation

Any concentration point xi(t) will satisfy

(i) R
(
x̄i(t), Ī(t)

)
= 0

(ii) d
dtx̄i(t) =

(
−D2ϕ(x̄i(t), t)

)−1
.∇R

(
x̄i(t), Ī(t)

)



Canonical equation

Any concentration point xi(t) will satisfy

(i) R
(
x̄i(t), Ī(t)

)
= 0

(ii) d
dtx̄i(t) =

(
−D2ϕ(x̄i(t), t)

)−1
.∇R

(
x̄i(t), Ī(t)

)
Conclusions :

The competitive exclusion principle (single Dirac mass for a single

nutrient)

For two nutrients R
(
x̄i(t), Ī1(t), I2(t)

)
= 0

one has four unknows Ī1(t), I2(t), x̄1(t), x2(t)

R(x, I1, I2) should have 1 or 2 roots (Champagnat, Jabin, Méléard)



Canonical equation

Any concentration point xi(t) will satisfy

(i) R
(
x̄i(t), Ī(t)

)
= 0

(ii) d
dtx̄i(t) =

(
−D2ϕ(x̄i(t), t)

)−1
.∇R

(
x̄i(t), Ī(t)

)
Conclusions :

The competitive exclusion principle (single Dirac mass)

nε = exp(ϕ/ε) the shape of ϕ plays a role



Canonical equation
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Canonical equation
d

dt
x̄(t) =

(
−D2ϕ(x̄(t), t)

)−1
.∇R

(
x̄(t), %̄(t)

)
Effect of the matrix

(
−D2ϕ(x̄(t), t)

)
(microstructure of the Dirac)



Challenges today

Explain diversity/heterogeneity with space

Selection without a proliferating advantage



Challenges today

Explain diversity/heterogeneity with space

Selection without a proliferating advantage

Examples are

Local selection of a trait with a space variable

Selection of the fittest age/size

Selection of dispersal



Space-trait concentration

Let y ∈ R the space variable, x ∈ R trait variable
ε∂tnε(y, x, t) =

[
r(x)cε(y, t)− d(x)%ε(y, t)− µ(x)

]
nε(y, x, t)

−∆ycε(y, t) +
[
%ε(y, t) + λ

]
cε(y, t) = λcB,

%ε(y, t) =
∫
nε(y, x, t)dx !

___________!
r=0!!!!!!!!!!r=1!
!

Interpetation

Nutrients/drugs are diffused and consumed by cells

Local conditions select space-dependent traits



Space-trait concentration

Let y ∈ R the space variable, x ∈ R trait variable
ε∂tnε(y, x, t) =

[
r(x)cε(y, t)− d(x)%ε(y, t)− µ(x)

]
nε(y, x, t)

−∆ycε(y, t) +
[
%ε(y, t) + λ

]
cε(y, t) = λcB,

%ε(y, t) =
∫
nε(y, x, t)dx

Theorem : For well-prepared initial data, as εk → 0, we have

nε(y, x, t)→ ρ(y, t)δ
(
x−X(y, t)

)
Difficulty : Space works well with L∞. Traits with L1

Outcome : Explains heterogeneity



Space-trait concentration

Let y ∈ R the space variable, x ∈ R trait variable
ε∂tnε(y, x, t) =

[
r(x)cε(y, t)− d(x)%ε(y, t)− µ(x)

]
nε(y, x, t)

−∆ycε(y, t) +
[
%ε(y, t) + λ

]
cε(y, t) = λcB,

%ε(y, t) =
∫
nε(y, x, t)dx

0 0.5 10

4

8

x

0 n(t,r,x) dr / lT(t) at t=T

0 0.5 10

4

8

x

0 n(t,r,x) dr / lT(t) at t=T

Without cytotoxic drug With cytotoxic drug

High heterogeneity Lower heterogeneity



Selection of age

A second example (viral load, age when cancer occurs)



ε∂tnε(y, x, t) + ∂y[A(x, y)nε(y, x, t)] +
[
d(x, y) + %ε(t)

]
nε(y, x, t) = 0

A(x, y = 0)nε(y = 0, x, t) =
∫
b(x, y′)Mε(y, y

′)nε(y′, x, t)dy′dx

%ε(t) =
∫ ∞
y=0

∫
x
nε(y, x, t)dxdy

How to describe the concentration effect ?



Selection of age

Consider the eigenvalue problem x by x
∂y[A(x, y)N(y, x)] + d(x, y)N(y, x) = Λ(x, η)

A(x, y = 0)N(y = 0, x) = η
∫
b(x, y)N(y, x)dydx

N(y, x) > 0

The dynamics of concentration is described by
∂tϕ(x, t) + %̄(t) + Λ

(
x,
∫
M(z)ez.∇ϕ(x,t)dz

)
= 0

maxxϕ(x, t) = 0.



Selection of age

nε(y, x, t) ≈ %̄(t) eϕε(x,t)/ε Nε(x, y, t)

≈ %̄(t) δ(x− x̄(t)) N(y, t)

The strategy of proof is to use ϕε(x, t) and handle the other

corrections by entropy methods for Nε(x, y, t)



Selection of age

nε(y, x, t) ≈ %̄(t) eϕε(x,t)/ε Nε(y, x, t)

≈ %̄(t) δ(x− x̄(t)) N(y, t)

The canonical equation is

d

dt
x̄(t) =

(
−D2ϕ(x̄(t), t)

)−1
[
∇xΛ(x,1) +

∂Λ(x,1)

∂η
D2ϕ(x̄(t), t).M1

]

M1 =
∫
zM(z)dz

M1 = 0 for symmetric mutation kernels



Evolution of dispersal

Selection without a proliferative advantage ?

motility/dispersal of individuals is subject to variability

no advantage regarding their reproductive rate

R(x, ρ) = Operator acting on the space variable

Hastings, Theor. Popul. Biol. 1983



Evolution of dispersal

We model it for y ∈ Ω + Neuman BC, x = dispersal (trait)

∂tn(t, x, y)

dispersion/motility︷ ︸︸ ︷
= D(x)∂2

yyn(t, x, y) +

reproduction︷ ︸︸ ︷
n(t, x, y) (K(y)− ρ(t, y))

mutations on motility︷ ︸︸ ︷
+ε2∂2

xxn(t, x, y)

x∂2
yyn(t, x, y) + n(t, x, y) (K(y)− ρ(t))︸ ︷︷ ︸

=R(x,·)

ρ(t, y) =
∫ ∞

0
n(t, x, y) dx

K(y) is not constant.



Evolution of dispersal

∂tn(t, x, y)

dispersion/motility︷ ︸︸ ︷
= D(x)∂2

yyn(t, x, y) +

reproduction︷ ︸︸ ︷
n(t, x, y) (K(y)− ρ(t, y))

mutations on motility︷ ︸︸ ︷
+ε2∂2

xxn(t, x, y)

ρ(t, y) =
∫ ∞

0
n(t, x, y) dy

Theorem (P. E. Souganidis, BP and K. Y. Lam, Y. Lou) The ESS
are of the form

n(t, x, y) ≈ ρ̄∞(y)δ
(
x = x̄

)
, D(x̄) = minD(x)

and the constrained H.-J. eq.
∂
∂tϕ(x, t) = Λ(x, %̄(·, t)) + |∇ϕ|2

maxxϕ(x, t) = 0 = ϕ(x̄(t), t),



Evolution of dispersal

Same question for traveling waves

Accelerating waves

Example cane toads invasion in Australia

J. Berestycki, E. Bouin, V. Calvez, C. Mouhot, G. Raoul, L. Ryzhik., C. Henderson



Turing (dentritic) patterns
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