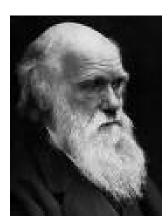
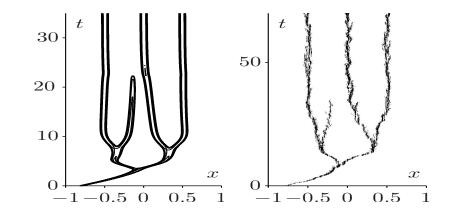


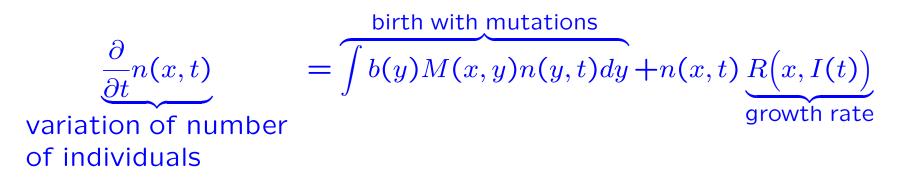
Adaptation, selection, mutation : a mathematical view of evolution Benoît Perthame, METE 2018



Sup of Vill	<u>• • x</u>
W. Je e i Ve	* * * X
	e e vi
· · · · · · · · · · · · · · · ·	r y
- V. V. Yr	l ye m
ABC DEF	C H I K L

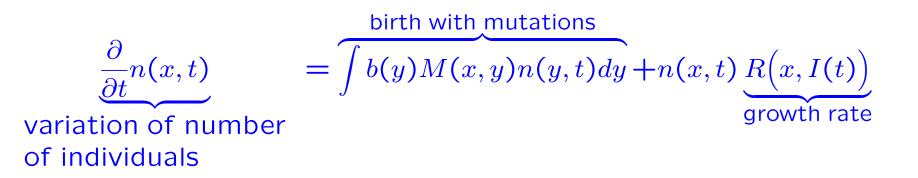


Population formalism



- \square n(x,t) = number of indivuduals with trait x
- x = phenotypical trait
- $I(t) = (I_1(t), ..., I_J(t)) = environmental unknowns$
- **R**(x, I) of Lotka-Volterra type, can be negative
- Standard : Calsina, Cuadrado, Desvillettes, Raoul, Jabin, Mirrahimi, ...

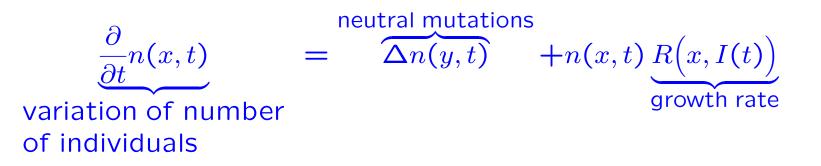
Population formalism



- \square n(x,t) = number of indivuduals with trait x
- x = phenotypical trait
- $I(t) = (I_1(t), ... I_J(t)) = environmental unknowns$
- **R**(x, I) of Lotka-Volterra type, can be negative
- interplay between population and environment

Population formalism

A variant is



<u>J</u>L

Motivation

The variable x can be

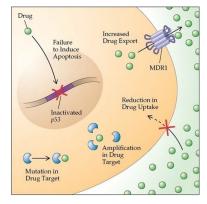
- Size of the adult individuals (adaptation to foraging)
- Cannibalism rate (and evolutionary suicide)
- Cooperative behaviour
- Dispersal rate

Motivation

But adaptation can be seen on shorter times scales

Resistance of tumor cells to chemotherapy

Resistance to insecticides



$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) = \int b(y) M_{\varepsilon}(x,y) n_{\varepsilon}(y,t) dy + n_{\varepsilon}(x,t) R(x,I_{\varepsilon}(t)),$$

 \square $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) = \int b(y) M_{\varepsilon}(x,y) n_{\varepsilon}(y,t) dy + n_{\varepsilon}(x,t) R(x,I_{\varepsilon}(t)),$$

■ $M_{\varepsilon}(x, y)$ means mutations are rare/have small effect ■ $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x, t)$ means we consider a long time scale

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) = \int b(y) M_{\varepsilon}(x,y) n_{\varepsilon}(y,t) dy + n_{\varepsilon}(x,t) R(x,I_{\varepsilon}(t)),$$

 $M_{\varepsilon}(x,y)$ means mutations are rare/have small effect
 $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t)$ means we consider a long time scale

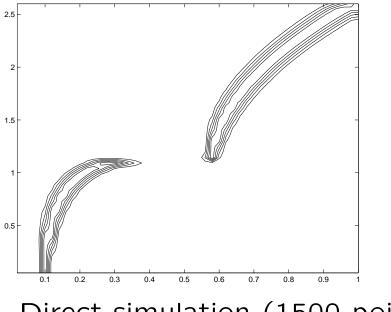
• $M_{\varepsilon}(x,y) = \frac{1}{\varepsilon^d} M\left(\frac{x-y}{\varepsilon}\right)$

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) = \int b(y) M_{\varepsilon}(x,y) n_{\varepsilon}(y,t) dy + n_{\varepsilon}(x,t) R(x,I_{\varepsilon}(t)),$$

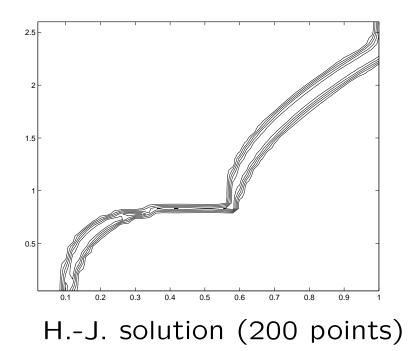
 $M_{\varepsilon}(x,y)$ means mutations are rare/have small effect
 $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t)$ means we consider a long time scale

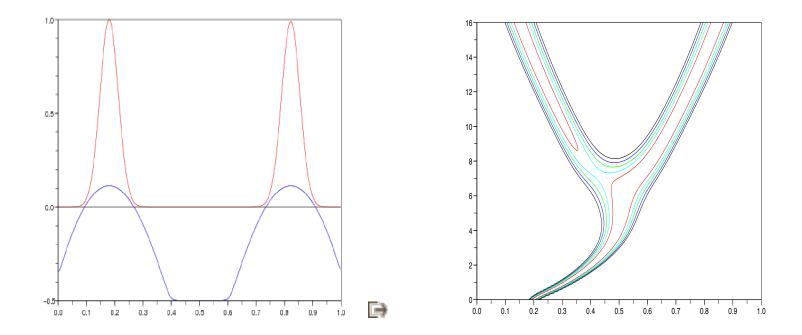
•
$$M_{\varepsilon}(x,y) = \frac{1}{\varepsilon^d} M\left(\frac{x-y}{\varepsilon}\right)$$

Concentrations occur $n_{\varepsilon}(x,t) \approx e^{-|x-\bar{x}(t)|^2/\varepsilon}$

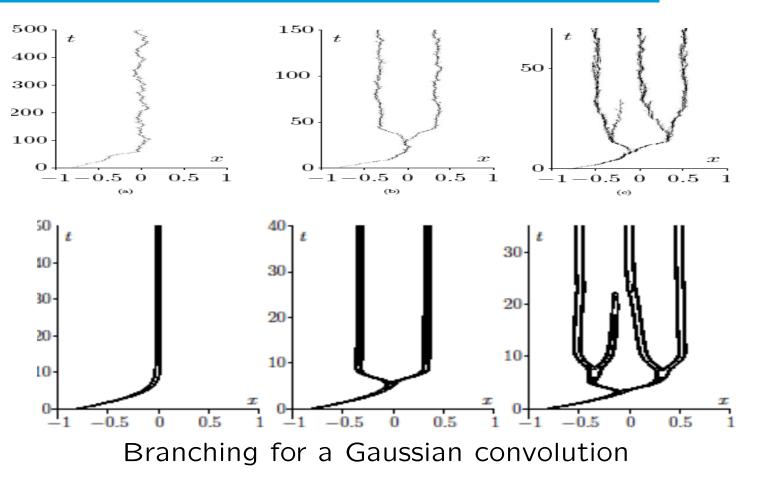


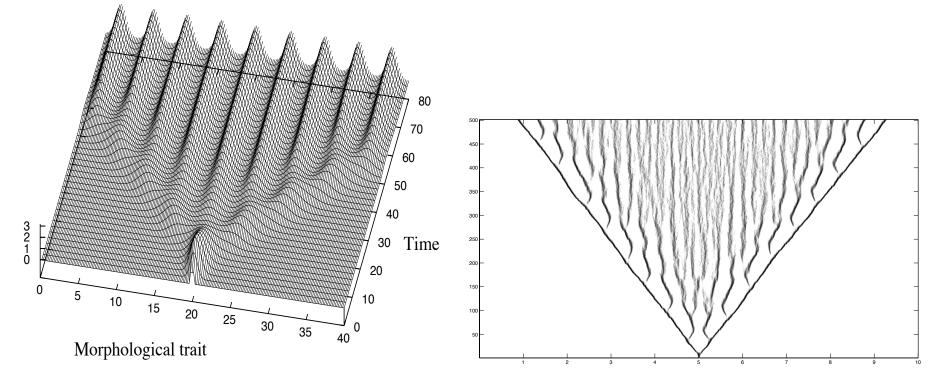
Direct simulation (1500 points)





Branching can occur for more general right hand sides (convolution)





Branching for a non-Gaussian convolution

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) = \int b(y) M_{\varepsilon}(x,y) n_{\varepsilon}(y,t) dy + n_{\varepsilon}(x,t) R(x,I_{\varepsilon}(t)),$$

■ $M_{\varepsilon}(x,y)$ means mutations are rare/have small effect ■ $\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t)$ means we consider a long time scale

Simple case $I_{\varepsilon}(t)$ is reduced to the knowledge of

 $\varrho_{\varepsilon}(t) = \int_{\mathbb{R}^d} n_{\varepsilon}(x, t) dx$

Concentration phenomena

$$\begin{cases} \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) - \varepsilon^{2} \Delta n_{\varepsilon} = n_{\varepsilon}(x,t) R(x,\varrho_{\varepsilon}(t)), & x \in \mathbb{R}, \\ \varrho_{\varepsilon}(t) = \int_{\mathbb{R}^{d}} n_{\varepsilon}(x,t) dx. \end{cases}$$
$$\exists \varrho_{M} > 0 \quad \text{s.t.} \quad \max_{x} R(x,\varrho_{M}) = 0 \\ \exists R_{\rho} < 0 \quad & R_{x} > 0 \end{cases}$$

Theorem (d=1, monotone) For well-prepared initial data, we have

$$n_{\varepsilon}(x,t) \xrightarrow[\varepsilon_k \to 0]{\bar{\varrho}}(t)\delta(x = \bar{x}(t)), \quad \bar{x}(t), \quad \bar{\varrho}(t) \in BV_{\mathsf{loc}}(0,\infty)$$
$$R(\bar{x}(t), \bar{\varrho}(t)) = 0 \quad \text{for a.e.} \quad t > 0$$

 $\bar{x}(t)$ is the fittest trait

<u>J</u>L

Concentration phenomena

$$\begin{cases} \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) - \varepsilon^{2} \Delta n_{\varepsilon} = n_{\varepsilon}(x,t) R(x,\varrho_{\varepsilon}(t)), & x \in \mathbb{R}, \\ \varrho_{\varepsilon}(t) = \int_{\mathbb{R}^{d}} n_{\varepsilon}(x,t) dx. \end{cases}$$
$$\exists \varrho_{M} > 0 \quad \text{s.t.} \quad \max_{x} R(x,\varrho_{M}) = 0 \\ \exists R_{\varrho} < 0 \quad \exists R_{x} > 0 \end{cases}$$

Theorem (d=1, monotone) For well-prepared initial data, we have

$$\begin{split} n_{\varepsilon}(x,t) &\underset{\varepsilon_k \to 0}{\longrightarrow} \bar{\varrho}(t)\delta(x = \bar{x}(t)), & \bar{x}(t), \ \bar{\varrho}(t) \in BV_{\mathsf{loc}}(0,\infty) \\ R\left(\bar{x}(t), \bar{\varrho}(t)\right) &= 0 & \text{for a.e. } t > 0 \\ \text{as } t \to \infty & R\left(\bar{x}_{\infty}, \bar{\varrho}_{\infty}\right) = 0 = \max_{x} R\left(x, \bar{\varrho}_{\infty}\right) \end{split}$$

Concentration phenomena, $d \ge 1$

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) - \varepsilon^2 \Delta n_{\varepsilon} = n_{\varepsilon}(x,t) R(x,\varrho_{\varepsilon}(t)), \quad x \in \mathbb{R}^d$$
$$\varrho_{\varepsilon}(t) = \int_{\mathbb{R}^d} n_{\varepsilon}(x,t) dx.$$

$$\begin{array}{l} \blacksquare \ R_{\varrho} < 0 \\ \blacksquare \ \exists \varrho_M > 0 \quad \text{s.t.} \quad \max_x R(x, \\ \blacksquare \ D_x^2 R \leq -K Id, \end{array} \end{array}$$

$$(x,t)dx.$$

$$R(x,\varrho_M) = 0$$

Theorem (Any d, concave) For well-prepared initial data, we have

$$n_{\varepsilon}(x,t) \longrightarrow \overline{\varrho}(t) \delta(x = \overline{x}(t)), \qquad \overline{x}(t), \quad \overline{\varrho}(t) \in C^1([0,\infty))$$

 $R(\bar{x}(t), \bar{\varrho}(t)) = 0 \quad \text{for all } t > 0$ as $t \to \infty \quad R(\bar{x}_{\infty}, \bar{\varrho}_{\infty}) = 0 = \min_{\rho} \max_{x} R(x, \varrho)$

Concentration phenomena

Why is mathematics interesting?

- Nonlocal nonlinearity drastically changes the picture
- Control in L^1 only
- Constrained Hamilton-Jacobi eq.
- Is there a simple rule for the dynamics of $\overline{x}(t)$?

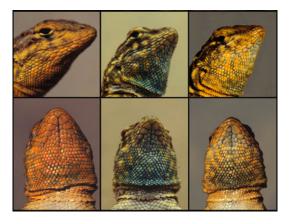
Evolutionary game theory

Blue (stronger),

Orange (middle size),

Yellow (smaller)

compensate by mating **strategies**



from B. Sinervo. http://bio.research.ucsc.edu/barrylab

NATURE VOL. 246 NOVEMBER 2 1973

The Logic of Animal Conflict

J. Hofbauer- M. Nowak- K. Sigmund

J. MAYNARD SMITH School of Biological Sciences, University of Sussex, Falmer, Sussex BNI 9QG

G. R. PRICE Galton Laboratory, University College London, 4 Stephenson Way, London NW1 2HE

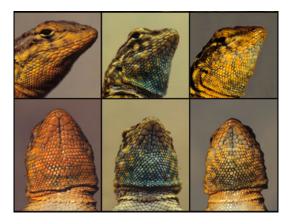
Evolutionary game theory

Blue (stronger),

Orange (middle size),

Yellow (smaller)

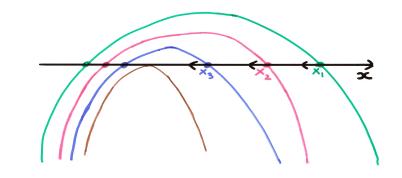
compensate by mating **strategies**



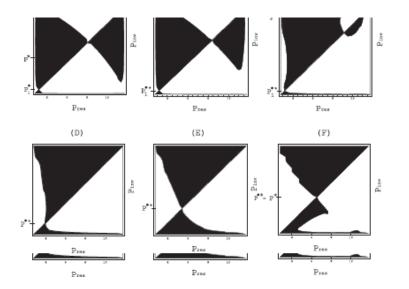
from B. Sinervo. http://bio.research.ucsc.edu/barrylab

The relation can be seen by

 $\max_{\mathcal{S}} R(x, \bar{\varrho}_{\infty}) = 0 = R(\bar{x}_{\infty}, \bar{\varrho}_{\infty})$ $\min_{\varrho} \max_{\mathcal{S}} R(x, \varrho) = 0 = R(\bar{x}_{\infty}, \bar{\rho}_{\infty})$



• Dynamical systems



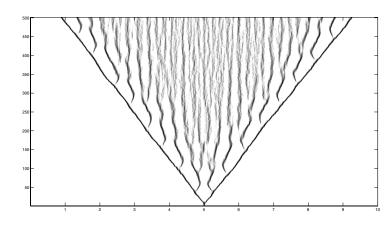
H. Metz, S. Geritz, G. Meszena, S. Kisdi, **O. Diekmann**

Can a mutant invade the resident population?

• Stochastic models, Individual Based Models : N individuals,

rescale mutation, birth, death rates

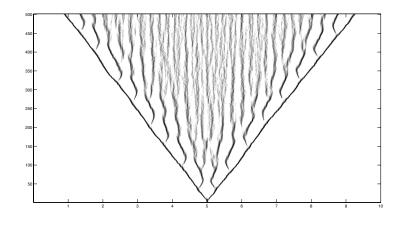
- U. Dieckmann-R. Law, R. Ferriere
- S. Billard, N. Champagnat
- S. Méléard, V. C Tran



• Stochastic models, Individual Based Models : N individuals,

rescale mutation, birth, death rates

- R. Ferriere, N. Champagnat
- S. Méléard, V. C Tran



As $N \to \infty,$ they establish both

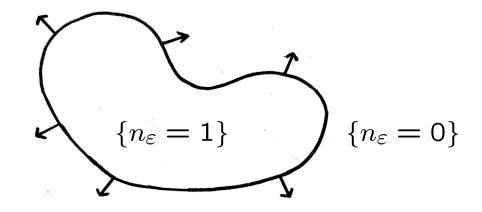
$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x) - \varepsilon^2 \Delta n_{\varepsilon} = n_{\varepsilon}(t, x) R(x, \varrho_{\varepsilon}(t))$$

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) = \int b(y) \frac{1}{\varepsilon^d} M\left(\frac{x-y}{\varepsilon}\right) n_{\varepsilon}(y,t) dy + n_{\varepsilon}(x,t) R\left(x, I_{\varepsilon}(t)\right),$$

$$\begin{cases} \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x) - \varepsilon^{2} \Delta n_{\varepsilon} = n_{\varepsilon}(t, x) R(x, \varrho_{\varepsilon}(t)), \\ \\ \varrho_{\varepsilon}(t) = \int_{\mathbb{R}^{d}} n_{\varepsilon}(t, x) dx. \end{cases}$$

This is not far from Fisher/KPP equation for invasion fronts/chemical reaction

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t,x) - \varepsilon^{2} \Delta n_{\varepsilon} = n_{\varepsilon}(t,x) \Big(1 - n_{\varepsilon}(t,x) \Big),$$



WKB, large deviations, level sets, geometric motionG. Barles, L. C. Evans, W. Fleming, P. E. Souganidis, Mete

$$\begin{cases} \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x) - \varepsilon^2 \Delta n_{\varepsilon} = n_{\varepsilon}(t, x) R(x, \varrho_{\varepsilon}(t)), \\\\ \varrho_{\varepsilon}(t) = \int_{\mathbb{R}^d} n_{\varepsilon}(t, x) dx. \end{cases}$$

In the limit one can expect

 $0 = n(t, x) R(x, \varrho(t)),$ $n(t, x) = \rho \delta_{\Gamma(t)}, \qquad \Gamma(t) \subset \{R(\cdot, \rho(t)) = 0\}.$

$$\begin{cases} \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x) - \varepsilon^2 \Delta n_{\varepsilon} = n_{\varepsilon}(t, x) R(x, \varrho_{\varepsilon}(t)), \\\\ \varrho_{\varepsilon}(t) = \int_{\mathbb{R}^d} n_{\varepsilon}(t, x) dx. \end{cases}$$

In the limit one can expect

$$0 = n(t, x) R(x, \varrho(t)),$$

$$n(t,x) = \rho \delta_{\Gamma(t)}, \qquad \Gamma(t) \subset \{R(\cdot,\rho(t)) = 0\}.$$

Which points are selected in this hypersurface?

$$\begin{cases} \varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(t, x) - \varepsilon^2 \Delta n_{\varepsilon} = n_{\varepsilon}(t, x) R(x, \varrho_{\varepsilon}(t)), \\\\ \varrho_{\varepsilon}(t) = \int_{\mathbb{R}^d} n_{\varepsilon}(t, x) dx. \end{cases}$$

In the limit one can expect

$$0 = n(t, x) R(x, \bar{\varrho}(t)),$$

 $n(t,x) = \bar{\varrho}\delta_{\Gamma(t)}, \qquad \Gamma(t) \subset \Big\{R(\cdot,\bar{\varrho}(t)) = 0\Big\}.$

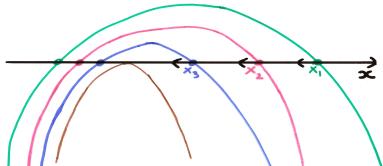
In dimension d = 1, R monotone, there is a single point.

 $\bar{x}(t) \iff \bar{\varrho}(t)$

Concentration phenomena, d > 1

$$\varepsilon \frac{\partial}{\partial t} n_{\varepsilon}(x,t) - \varepsilon^2 \Delta n_{\varepsilon} = n_{\varepsilon}(x,t) R(x,\varrho_{\varepsilon}(t)), \quad x \in \mathbb{R}^d$$
$$\varrho_{\varepsilon}(t) = \int_{\mathbb{R}^d} n_{\varepsilon}(x,t) dx.$$

 $\exists \varrho_M > 0 \quad \text{s.t.} \quad \max_x R(x, \varrho_M) = 0$ $D_x^2 R \leq -KId,$



Theorem (Any d, concave.) For well-prepared initial data, we have

$$n_{\varepsilon}(x,t) \longrightarrow \overline{\varrho}(t) \delta(x = \overline{x}(t)), \qquad \overline{x}(t), \quad \overline{\varrho}(t) \in C^1([0,\infty))$$

 $R(\bar{x}(t), \bar{\varrho}(t)) = 0 \quad \text{for all } t > 0$ as $t \to \infty \quad R(\bar{x}_{\infty}, \bar{\varrho}_{\infty}) = 0 = \min_{\rho} \max_{x} R(x, \varrho)$

Step 1. $\varrho_{\varepsilon}(t) \in_{\mathsf{b}} L^{\infty}$, $n_{\varepsilon} \in_{\mathsf{b}} L^{\infty}_{t}(L^{1}_{x})$

Step 2. A BV estimate

Step 3. Represent

$$n_{\varepsilon}(t,x) = \exp \frac{\varphi_{\varepsilon}(t,x)}{\varepsilon}$$

the 'fittest' trait $\bar{x}(t)$ is characterised by the Eikonal equation with constraints

$$\begin{cases} \frac{\partial}{\partial t}\varphi(t,x) = R\left(x,\bar{\varrho}(t)\right) + |\nabla\varphi(t,x)\rangle|^2\\ \max_x \varphi(t,x) = 0 \qquad \left(=\varphi(t,\bar{x}(t))\right). \end{cases}$$

In the viscosity sense

$$\frac{\partial}{\partial t}\varphi(t,x) = R\left(x,\bar{\varrho}(t)\right) + |\nabla\varphi(t,x)\big)|^2$$
$$\max_x \varphi(t,x) = 0 \qquad \left(=\varphi(t,\bar{x}(t))\right).$$

 $\varphi(t,x)$ is Lipschitz

This is not an obstacle problem.

 $\overline{\varrho}(t)$ is a Langrange multiplier!

In the viscosity sense

$$\begin{cases} \frac{\partial}{\partial t}\varphi(t,x) = R\left(x,\bar{\varrho}(t)\right) + |\nabla\varphi(t,x)\rangle|^2\\ \max_x \varphi(t,x) = 0 \qquad \left(=\varphi(t,\bar{x}(t))\right). \end{cases}$$

Uniqueness

- $R(x, \varrho) = b(x)a(\varrho) d(x)$ (G. Barles and BP)
- J.-M. Roquejoffre et S. Mirrahimi
- V. Calvez, A. Lam Work in preparation

$$\begin{cases} \frac{\partial}{\partial t}\varphi(t,x) = R\left(x,\bar{\varrho}(t)\right) + |\nabla\varphi(t,x)\rangle|^2\\ \max_x \varphi(t,x) = 0 \qquad \left(=\varphi(t,\bar{x}(t))\right). \end{cases}$$

Step 4. Any concentration point $x_i(t)$ will satisfy

 $R(\bar{x}_i(t), \bar{I}(t)) = 0$

Thanks to semi-concavity property of $\varphi(t,x)$

 $-\nu Id \le D^2\varphi.$

Canonical equation

Step 5. The concave case leaves place for a regularity regime, if $D^2R\leq -\nu Id, \qquad D^2\varphi^0\leq -\nu Id,$ then

 $D^2\varphi \le -\nu Id.$

Canonical equation

Any concentration point $x_i(t)$ will satisfy

(i)
$$R(\bar{x}_i(t), \bar{I}(t)) = 0$$

(ii)
$$\frac{d}{dt}\bar{x}_i(t) = \left(-D^2\varphi(\bar{x}_i(t),t)\right)^{-1} \cdot \nabla R\left(\bar{x}_i(t),\bar{I}(t)\right)$$

<u>j</u>l

Canonical equation

Any concentration point $x_i(t)$ will satisfy

(i)
$$R(\bar{x}_i(t), \bar{I}(t)) = 0$$

(ii)
$$\frac{d}{dt}\bar{x}_i(t) = \left(-D^2\varphi(\bar{x}_i(t),t)\right)^{-1} \cdot \nabla R\left(\bar{x}_i(t),\bar{I}(t)\right)$$

Conclusions :

The competitive exclusion principle (single Dirac mass for a single nutrient)

For two nutrients $R(\bar{x}_i(t), \bar{I}_1(t), I_2(t)) = 0$ one has four unknows $\bar{I}_1(t), I_2(t), \bar{x}_1(t), x_2(t)$

 $R(x, I_1, I_2)$ should have 1 or 2 roots (Champagnat, Jabin, Méléard)

<u>j</u>l

Canonical equation

Any concentration point $x_i(t)$ will satisfy

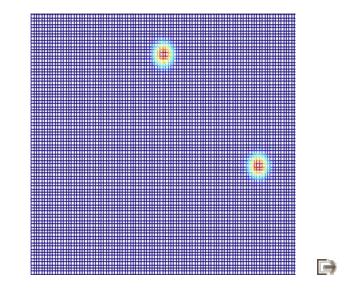
(i) $R(\bar{x}_i(t), \bar{I}(t)) = 0$

(ii)
$$\frac{d}{dt}\bar{x}_i(t) = \left(-D^2\varphi(\bar{x}_i(t),t)\right)^{-1} \cdot \nabla R\left(\bar{x}_i(t),\bar{I}(t)\right)$$

Conclusions :

- The competitive exclusion principle (single Dirac mass)
- $\blacksquare n_{\varepsilon} = \exp(\varphi/\varepsilon)$ the shape of φ plays a role

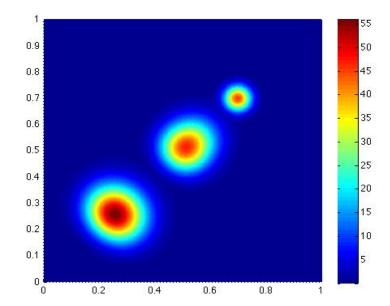
Canonical equation

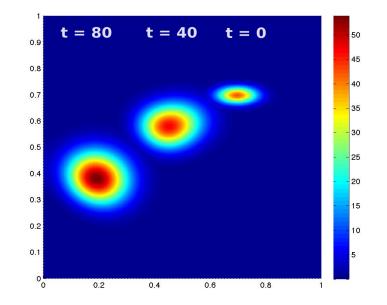


Canonical equation

$$\frac{d}{dt}\bar{x}(t) = \left(-D^2\varphi(\bar{x}(t),t)\right)^{-1} \cdot \nabla R\left(\bar{x}(t),\bar{\varrho}(t)\right)$$

Effect of the matrix $\left(-D^2\varphi(\bar{x}(t),t)\right)$ (microstructure of the Dirac)





Challenges today

- Explain diversity/heterogeneity with space
- Selection without a proliferating advantage

Challenges today

- Explain diversity/heterogeneity with space
- Selection without a proliferating advantage

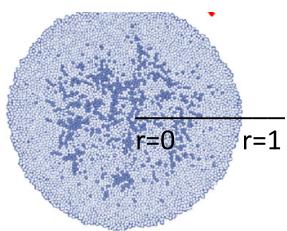
Examples are

- Local selection of a trait with a space variable
- Selection of the fittest age/size
- Selection of dispersal

Space-trait concentration

Let $y \in \mathbb{R}$ the space variable, $x \in \mathbb{R}$ trait variable

 $\begin{cases} \varepsilon \partial_t n_{\varepsilon}(y, x, t) = \left[r(x) c_{\varepsilon}(y, t) - d(x) \varrho_{\varepsilon}(y, t) - \mu(x) \right] n_{\varepsilon}(y, x, t) \\ -\Delta_y c_{\varepsilon}(y, t) + \left[\varrho_{\varepsilon}(y, t) + \lambda \right] c_{\varepsilon}(y, t) = \lambda c_B, \\ \varrho_{\varepsilon}(y, t) = \int n_{\varepsilon}(y, x, t) dx \end{cases}$



Interpetation

- Nutrients/drugs are diffused and consumed by cells
- Local conditions select space-dependent traits

Space-trait concentration

Let $y \in \mathbb{R}$ the space variable, $x \in \mathbb{R}$ trait variable

$$\begin{split} \varepsilon \partial_t n_{\varepsilon}(y, x, t) &= \left[r(x) c_{\varepsilon}(y, t) - d(x) \varrho_{\varepsilon}(y, t) - \mu(x) \right] n_{\varepsilon}(y, x, t) \\ - \Delta_y c_{\varepsilon}(y, t) + \left[\varrho_{\varepsilon}(y, t) + \lambda \right] c_{\varepsilon}(y, t) = \lambda c_B, \\ \varrho_{\varepsilon}(y, t) &= \int n_{\varepsilon}(y, x, t) dx \end{split}$$

Theorem : For well-prepared initial data, as $\varepsilon_k \rightarrow 0$, we have

$$n_{\varepsilon}(y,x,t)
ightarrow \overline{
ho}(y,t) \delta\left(x - \overline{X}(y,t)
ight)$$

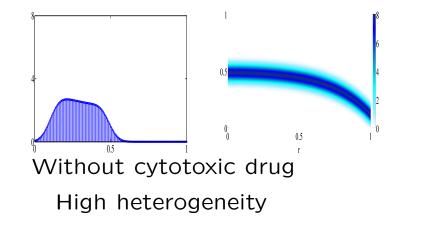
Difficulty : Space works well with L^{∞} . Traits with L^{1}

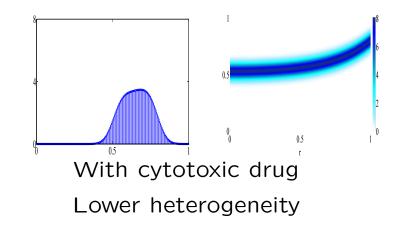
Outcome : Explains heterogeneity

Space-trait concentration

Let $y \in \mathbb{R}$ the space variable, $x \in \mathbb{R}$ trait variable

$$\begin{split} \varepsilon \partial_t n_{\varepsilon}(y, x, t) &= \left[r(x) c_{\varepsilon}(y, t) - d(x) \varrho_{\varepsilon}(y, t) - \mu(x) \right] n_{\varepsilon}(y, x, t) \\ - \Delta_y c_{\varepsilon}(y, t) + \left[\varrho_{\varepsilon}(y, t) + \lambda \right] c_{\varepsilon}(y, t) = \lambda c_B, \\ \varrho_{\varepsilon}(y, t) &= \int n_{\varepsilon}(y, x, t) dx \end{split}$$





Selection of age

A second example (viral load, age when cancer occurs)

$$\begin{cases} \varepsilon \partial_t n_{\varepsilon}(y, x, t) + \partial_y [A(x, y) n_{\varepsilon}(y, x, t)] + [d(x, y) + \varrho_{\varepsilon}(t)] n_{\varepsilon}(y, x, t) = 0\\ A(x, y = 0) n_{\varepsilon}(y = 0, x, t) = \int b(x, y') M_{\varepsilon}(y, y') n_{\varepsilon}(y', x, t) dy' dx\\ \varrho_{\varepsilon}(t) = \int_{y=0}^{\infty} \int_x n_{\varepsilon}(y, x, t) dx dy\end{cases}$$

How to describe the concentration effect?

Selection of age

Consider the eigenvalue problem x by x

$$\begin{cases} \partial_y [A(x,y)N(y,x)] + d(x,y)N(y,x) = \Lambda(x,\eta) \\ A(x,y=0)N(y=0,x) = \eta \int b(x,y)N(y,x)dydx \\ N(y,x) > 0 \end{cases}$$

The dynamics of concentration is described by

$$\begin{cases} \partial_t \varphi(x,t) + \bar{\varrho}(t) + \Lambda \left(x, \int M(z) e^{z \cdot \nabla \varphi(x,t)} dz \right) = 0\\ \max_x \varphi(x,t) = 0. \end{cases}$$

Selection of age

$$n_{\varepsilon}(y, x, t) \approx \overline{\varrho}(t) \ e^{\varphi_{\varepsilon}(x, t)/\varepsilon} \ N_{\varepsilon}(x, y, t)$$

 $pprox \overline{\varrho}(t) \ \delta(x - \overline{x}(t)) \ N(y, t)$

The strategy of proof is to use $\varphi_{\varepsilon}(x,t)$ and handle the other corrections by entropy methods for $N_{\varepsilon}(x,y,t)$

Selection of age

$$n_{arepsilon}(y,x,t) pprox ar{arrho}(t) \; e^{arphi_{arepsilon}(x,t)/arepsilon} \; N_{arepsilon}(y,x,t)$$

 $pprox ar{arrho}(t) \; \delta(x-ar{x}(t)) \; N(y,t)$

The canonical equation is

$$\frac{d}{dt}\bar{x}(t) = \left(-D^2\varphi(\bar{x}(t),t)\right)^{-1} \left[\nabla_x \Lambda(x,1) + \frac{\partial \Lambda(x,1)}{\partial \eta} D^2\varphi(\bar{x}(t),t) M_1\right]$$
$$M_1 = \int z M(z) dz$$

 $M_1 = 0$ for symmetric mutation kernels

Evolution of dispersal

Selection without a proliferative advantage?

- motility/dispersal of individuals is subject to variability
- no advantage regarding their reproductive rate
- **R** (x, ρ) = Operator acting on the space variable

Hastings, Theor. Popul. Biol. 1983

Evolution of dispersal

We model it for $y \in \Omega$ + Neuman BC, x = dispersal (trait)

 $\partial_t n(t, x, y) = D(x) \partial_{yy}^2 n(t, x, y) + n(t, x, y) (K(y) - \rho(t, y)) + \varepsilon^2 \partial_{xx}^2 n(t, x, y)$

$$=R(x,\cdot)$$

$$\rho(t,y) = \int_0^\infty n(t,x,y) \, dx$$

K(y) is not constant.

Evolution of dispersal

 $\partial_t n(t, x, y) = D(x) \partial_{yy}^2 n(t, x, y) + n(t, x, y) (K(y) - \rho(t, y)) + \varepsilon^2 \partial_{xx}^2 n(t, x, y)$

$$o(t,y) = \int_0^\infty n(t,x,y) \, dy$$

Theorem (P. E. Souganidis, BP and K. Y. Lam, Y. Lou) The ESS are of the form

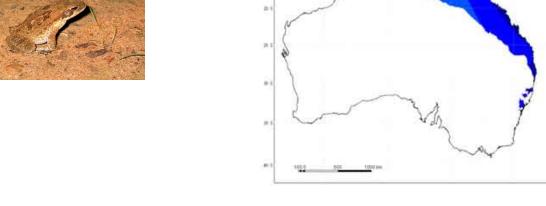
$$n(t, x, y) \approx \overline{\rho}_{\infty}(y) \delta(x = \overline{x}), \quad D(\overline{x}) = \min D(x)$$

and the constrained H.-J. eq.

$$\begin{cases} \frac{\partial}{\partial t}\varphi(x,t) = \Lambda(x,\bar{\varrho}(\cdot,t)) + |\nabla\varphi|^2\\ \max_x \varphi(x,t) = 0 = \varphi(\bar{x}(t),t), \end{cases}$$

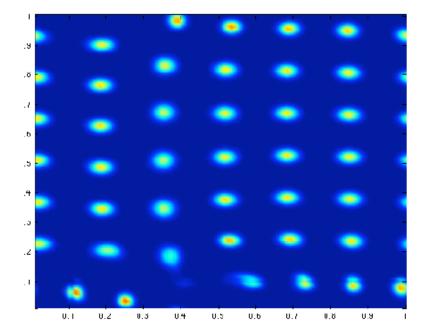
Evolution of dispersal

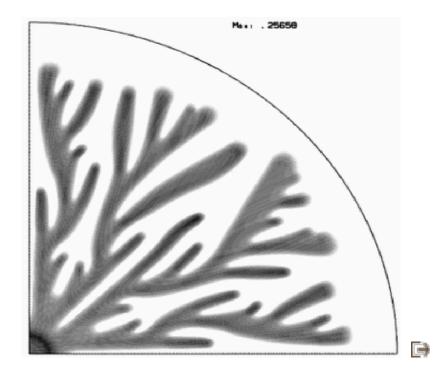
- Same question for traveling waves
- Accelerating waves
- Example cane toads invasion in Australia



J. Berestycki, E. Bouin, V. Calvez, C. Mouhot, G. Raoul, L. Ryzhik., C. Henderson

Turing (dentritic) patterns





Thanks to my collaborators

- O. Diekmann, P.-E. Jabin, S. Mischler,
- M. Gauduchon, J. Clairambault, A. Escargueil,
- G. Barles, S. Mirrahimi, P. E. Souganidis,
- V. Calvez, A. Lorz

Thanks to my collaborators

- O. Diekmann, P.-E. Jabin, S. Mischler,
- M. Gauduchon, J. Clairambault, A. Escargueil,
- G. Barles, S. Mirrahimi, P. E. Souganidis,
- V. Calvez, A. Lorz

Happy birthday Mete