# Two-Dimensional Passport Option An Open Problem 

Steven E. Shreve<br>Department of Mathematical Sciences<br>Carnegie Mellon University<br>shreve@andrew.cmu.edu

## METE

Mathematics and Economics
Trends and Explorations
ETH-Zürich
June 4-8, 2018

## Option on a traded account

Consider an option that confers on its holder the right to

- Begin with initial capital $X_{0}$,
- Trade in one or more risky assets and a risk-free asset subject to some constraints,
- Generate an account balance $X_{t}$ at each time $t, 0 \leq t \leq T$,
- At expiration $T$ receive

$$
\max \left\{X_{T}, \text { Floor }\right\}
$$

Primary example: Variable annuity.

## Passport option

A passport option is an option on a traded account in which

- the holder is constrained to have positions between short one share and long one share of the risky asset (or assets),
- At expiration $T$, the option pays $X_{T}^{+}$.

A short history:

- Developed at Banker's Trust and originally sold on foreign currency; see Hyer, et. al. (1997).
- Long the currency "corresponds" to being in a foreign country. Short "corresponds" to coming home. For this travel, one needs a passport.
- Later extended to other assets, including bonds and interest rate futures. A variety of related options were introduced; see Andersen, et. al. (1998), Penaud, et. al. (1999).


## The simplest case

- Geometric Brownian motion

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}
$$

- Traded account value

$$
d X_{t}=q_{t} d S_{t}+r\left(X_{t}-q_{t} S_{t}\right) d t
$$

- Constraint on trading

$$
-1 \leq q_{t} \leq 1, \quad 0 \leq t \leq T
$$

- At expiration the option pays

$$
X_{T}^{+}
$$

Price the option by solving a stochastic control problem

$$
\begin{array}{ll}
\text { Maximize } & \mathbb{E}\left[e^{-r T} X_{T}^{+}\right] \\
\text {Subject to } & \left|q_{t}\right| \leq 1, \quad 0 \leq t \leq T .
\end{array}
$$

Value function for $0 \leq t \leq T, s \geq 0, x \in \mathbb{R}$ :

$$
V(t, s, x)=\max _{|q| \leq 1} \mathbb{E}\left[e^{-r(T-t)} X_{T}^{+} \mid S_{t}=s, X_{t}=x\right]
$$

Hamilton-Jacobi-Bellman (HJB) equation
$-r V+V_{t}+r s V_{s}+r x V_{x}+\frac{1}{2} \sigma^{2} V_{s s}+\sigma^{2} s^{2} \max _{|q| \leq 1}\left[q V_{s X}+\frac{1}{2} q^{2} V_{x x}\right]=0$.
Terminal condition

$$
V(T, s, x)=x^{+} \text {for all } s>0, x \in \mathbb{R}
$$

Option seller's hedge (given the function $V(t, s, x)$ )
Define the "optimal" feedback control $\widehat{q}_{t}(s, x)$ by

$$
\begin{aligned}
& \widehat{q}_{t}(s, x) V_{s x}(t, s, x)+\frac{1}{2} \widehat{q}_{t}^{2}(s, x) V_{x x}(t, s, x) \\
& =\max _{|q| \leq 1}\left[q V_{s x}(t, s, x)+\frac{1}{2} q^{2} V_{x x}(t, s, x)\right] .
\end{aligned}
$$

- Suppose the option holder uses the trading strategy $q_{t}$, resulting in account value $X_{t}, 0 \leq t \leq T$.
- Then the option seller uses the trading strategy

$$
\bar{q}_{t}:=V_{s}\left(t, S_{t}, X_{t}\right)+q_{t} V_{x}\left(t, S_{t}, X_{t}\right)
$$

- Also, the option seller consumes at the nonnegative rate

$$
\begin{aligned}
C_{t}=\sigma^{2} S_{t}^{2}[ & \left(\widehat{q}_{t}\left(S_{t}, X_{t}\right)-q_{t}\right) V_{s x}\left(t, S_{t}, X_{t}\right) \\
& \left.+\frac{1}{2}\left(\widehat{q}_{t}^{2}\left(S_{t}, X_{t}\right)-q_{t}^{2}\right) V_{x x}\left(t, S_{t}, X_{t}\right)\right] .
\end{aligned}
$$

Option seller's hedge (given the function $V(t, s, x)$ )
Differential of the discounted option price along the option holder's account value process is

$$
\left.\begin{array}{l}
d\left(e^{-r t} V\left(t, S_{t}, X_{t}\right)\right) \\
=e^{-r t}\left[-r V+V_{t}+r S V_{s}+r X V_{x}+\sigma^{2} S^{2}\left(\frac{1}{2} V_{s s}+q_{t} V_{s x}+\frac{1}{2} q_{t}^{2} V_{x x}\right)\right] d t \\
\quad+\sigma e^{-r t} S\left(V_{s}+q_{t} V_{x}\right) d W \\
= \\
e^{-r t}\left[-r V+V_{t}+r S V_{s}+r X V_{x}+\sigma^{2} S^{2}\left(\frac{1}{2} V_{s s}+\widehat{q}_{t} V_{s x}+\frac{1}{2} \widehat{q}_{t}^{2} V_{x x}\right)\right] d t \\
\quad-e^{-r t} C_{t} d t+\sigma e^{-r t} S\left(V_{s}+q_{t} V_{x}\right) d W
\end{array}\right] \begin{aligned}
& =-e^{-r t} C_{t} d t+\sigma e^{-r t} S_{t} \bar{q}_{t} d W_{t} .
\end{aligned}
$$

Differential of the option seller's discounted portfolio:

$$
\begin{aligned}
d\left(e^{-r t} \bar{X}_{t}\right) & =-e^{-r t} C_{t} d t+\sigma e^{-r t} S_{t} \bar{q}_{t} d W_{t}=d\left(e^{-r t} V\left(t, S_{t}, X_{t}\right)\right) . \\
\bar{X}_{0} & =V\left(0, S_{0}, X_{0}\right) \Longrightarrow \bar{X}_{T}=V\left(T, S_{T}, X_{T}\right)=X_{T}^{+} .
\end{aligned}
$$

## Stochastic control problem

Maximize $\mathbb{E}\left[e^{-r T} X_{T}^{+}\right] \quad$ Subject to $\left|q_{t}\right| \leq 1, \quad 0 \leq t \leq T$.
Value function $V(t, s, x)=\max _{|q| \leq 1} \mathbb{E}\left[e^{-r(T-t)} X_{T}^{+} \mid S_{t}=s, X_{t}=x\right]$.
Theorem $V(t, s, x)$ is convex in $x$.
Proof: Given $x^{(3)}=\lambda x^{(1)}+(1-\lambda) x^{(2)}$ with $0 \leq \lambda \leq 1$.
Let $q_{\theta}, t \leq \theta \leq T$, be a trading strategy.
This generates account value processes $X^{(i)}$ starting from $S_{t}=s$,
$X_{t}^{(i)}=x^{(i)}, i=1,2,3$. Then

$$
X_{T}^{(3)}=\lambda X_{T}^{(1)}+(1-\lambda) X_{T}^{(2)}
$$

$$
\begin{aligned}
\mathbb{E}\left[e^{-r T}\left(X_{T}^{(3)}\right)^{+}\right] & \leq \lambda \mathbb{E}\left[e^{-r T}\left(X_{T}^{(1)}\right)^{+}\right]+(1-\lambda) \mathbb{E}\left[e^{-r T}\left(X_{T}^{(2)}\right)^{+}\right] \\
& \leq \lambda V\left(t, s, x^{(1)}\right)+(1-\lambda) V\left(t, s, x^{(2)}\right)
\end{aligned}
$$

Now maximize the left-hand side over $q_{\theta}, t \leq \theta \leq T$.

## Bang-bang control

Hamilton-Jacobi-Bellman (HJB) equation
$-r V+V_{t}+r s V_{s}+r x V_{x}+\frac{1}{2} \sigma^{2} s^{2} V_{s s}+\sigma^{2} s^{2} \max _{|q| \leq 1}\left[q V_{s x}+\frac{1}{2} q^{2} V_{x x}\right]=0$.
Because $V_{x x} \geq 0$, the maximum over $q$ is achieved at an extreme point of the convex constraint set $[-1,1]$, i.e., at either

$$
q_{t}=-1 \text { or } q_{t}=1
$$

But which extreme point?

## Example

We always have

$$
\mathbb{E}\left[e^{-r T} X_{T}\right]=X_{0}, \quad \mathbb{E}\left[e^{-r T} X_{T}^{+}\right]>X_{0} .
$$

Consider a one-step problem.

- Expiration date: $T=1$
- Initial account value value: $X_{0}=2$
- Initial risky asset price: $S_{0}=4$
- Parameter values: $r=2 \%, \sigma=20 \%$

What is the distribution of $X_{T}$

- if the option holder takes a long position?
- if the option holder takes a short position?

Which position maximizes

$$
\mathbb{E}\left[e^{-r T} X_{T}^{+}\right] ?
$$

## Intuition

Probability density functions for long and short positions


Conjecture: $\widehat{q}_{t}=-\operatorname{sign}\left(X_{t}\right)$.

## Change of numéraire

Two martingales:

$$
\begin{aligned}
d\left(e^{-r t} S_{t}\right) & =\sigma e^{-r t} S_{t} d W_{t} \\
d\left(e^{-r t} X_{t}\right) & =\sigma e^{-r t} S_{t} q_{t} d W_{t}
\end{aligned}
$$

Define

$$
Y_{t}:=\frac{X_{t}}{S_{t}}=\frac{e^{-r t} X_{t}}{e^{-r t} S_{t}}
$$

Then

$$
d Y_{t}=\sigma\left(q_{t}-Y_{t}\right)\left(d W_{t}-\sigma d t\right)=\sigma\left(q_{t}-Y_{t}\right) d \widetilde{W}_{t}
$$

where $\widetilde{W}_{t}:=W_{t}-\sigma t$ is a Brownian motion under $\widetilde{\mathbb{P}}$ defined by

$$
\begin{gathered}
\frac{d \widetilde{\mathbb{P}}}{d \mathbb{P}}=\frac{e^{-r T} S_{T}}{S_{0}} \\
\mathbb{E}\left[e^{-r T} X_{T}^{+}\right]=S_{0} \mathbb{E}\left[\frac{e^{-r T} S_{T}}{S_{0}}\left(\frac{X_{T}}{S_{T}}\right)^{+}\right]=S_{0} \widetilde{\mathbb{E}}\left[Y_{T}^{+}\right] .
\end{gathered}
$$

## Equivalent stochastic control problem

Maximize $\widetilde{\mathbb{E}}\left[Y_{T}^{+}\right]$
Subject to $Y_{0}=X_{0} / S_{0}$,

$$
\begin{aligned}
& d Y_{t}=\sigma\left(q_{t}-Y_{t}\right) d \widetilde{W}_{t}, \\
& \left|q_{t}\right| \leq 1, \quad 0 \leq t \leq T .
\end{aligned}
$$

Value function

$$
u(t, y)=\max _{|q| \leq 1} \widetilde{\mathbb{E}}\left[Y_{T}^{+} \mid Y_{t}=y\right] .
$$

Hamilton-Jacobi-Bellman (HJB) equation

$$
u_{t}(t, y)+\frac{1}{2} \sigma^{2} \max _{|q| \leq 1}(q-y)^{2} u_{y y}(t, y)=0 .
$$

Terminal condition

$$
u(T, y)=y^{+} \text {for all } y \in \mathbb{R} .
$$

## Optimal control in feedback form

Theorem $u(t, y)$ is convex in $y$.
Recall the Hamilton-Jacobi-Bellman (HJB) equation

$$
u_{t}(t, y)+\frac{1}{2} \sigma^{2} \max _{|q| \leq 1}(q-y)^{2} u_{y y}(t, y)=0
$$

Therefore,

$$
\begin{aligned}
\widehat{q}_{t} & =-\operatorname{sign}\left(Y_{t}\right) \\
d Y_{t} & =\sigma\left(\widehat{q}_{t}-Y_{t}\right) d \widetilde{W}_{t} \\
& =-\sigma \operatorname{sign}\left(Y_{t}\right)\left(1+\left|Y_{t}\right|\right) d \widetilde{W}_{t}
\end{aligned}
$$

and the HJB equation becomes

$$
u_{t}(t, y)+\frac{1}{2} \sigma^{2}(1+|y|)^{2} u_{y y}(t, y)=0
$$

## Solution of HJB by Skorohod mapping

Delbaen \& Yor (2002), Henderson \& Hobson (2000), Nagayama (1999).

Let $Y_{0}=y$ and

$$
d Y_{t}=-\sigma \operatorname{sign}\left(Y_{t}\right)\left(1+\left|Y_{t}\right|\right) d \widetilde{W}_{t}, \quad 0 \leq t \leq T
$$

Then

$$
\begin{aligned}
d\left(1+\left|Y_{t}\right|\right) & =\operatorname{sign}\left(Y_{t}\right) d Y_{t}+d L_{t}^{Y}(0) \\
& =-\sigma\left(1+\left|Y_{t}\right|\right) d \widetilde{W}_{t}+d L_{t}^{Y}(0)
\end{aligned}
$$

and

$$
\begin{aligned}
& d \log \left(1+\left|Y_{t}\right|\right) \\
& \quad=\frac{1}{1+\left|Y_{t}\right|} d\left(1+\left|Y_{t}\right|\right)-\frac{1}{2\left(1+\left|Y_{t}\right|\right)^{2}} d\langle 1+| Y|, 1+|Y|\rangle_{t} \\
& \quad=-\sigma d \widetilde{W}_{t}-\frac{1}{2} \sigma^{2} d t+d L_{t}^{Y}(0) .
\end{aligned}
$$

## Solution of HJB by Skorohod mapping

From the previous page: $Y_{0}=y$ and

$$
d \log \left(1+\left|Y_{t}\right|\right)=\sigma\left(-d \widetilde{W}_{t}-\frac{1}{2} \sigma d t\right)+d L_{t}^{Y}(0), \quad 0 \leq t \leq T
$$

Define

$$
\bar{W}_{t}=-\widetilde{W}_{t}-\frac{1}{2} \sigma t
$$

and a measure $\overline{\mathbb{P}}$ under which $\bar{W}$ is a Brownian motion. Then

$$
\log \left(1+\left|Y_{t}\right|\right)=\log (1+|y|)+\sigma \bar{W}_{t}+L_{t}^{Y}(0)
$$

The process $\log \left(1+\left|Y_{t}\right|\right)$ is nonnegative and $L_{t}^{Y}(0)$ grows only when $\log \left(1+\left|Y_{t}\right|\right)$ is at zero. Skorohod implies

$$
L_{t}^{Y}(0)=\max _{0 \leq u \leq t}\left(-\log (1+|y|)-\sigma \bar{W}_{u}\right)^{+}
$$

## Solution of HJB by Skorohod mapping

Conclusion:
$\log \left(1+\left|Y_{T}\right|\right)=\log (1+|y|)+\sigma \bar{W}_{T}+\max _{0 \leq u \leq T}\left(-\log (1+|y|)-\sigma \bar{W}_{u}\right)^{+}$,
where $\bar{W}$ is a Brownian motion under $\overline{\mathbb{P}}$ and

$$
\frac{d \overline{\mathbb{P}}}{d \widetilde{\mathbb{P}}}=\exp \left[-\frac{1}{2} \sigma \widetilde{W}_{T}-\frac{1}{8} \sigma^{2} T\right]
$$

Put all the pieces together to compute

$$
\begin{aligned}
\widetilde{\mathbb{E}}\left[Y_{T}^{+} \mid Y_{0}=y\right] & =\frac{1}{2} y-\frac{1}{2} \log (1+|y|)+\frac{1}{4} \sigma^{2} T+\frac{1}{2} \sigma \sqrt{T} N^{\prime}\left(d_{-}\right) \\
& +\frac{1}{2}(1+|y|) N\left(d_{+}\right)+\frac{1}{2}\left(\sigma \sqrt{T} d_{-}-1\right) N\left(d_{-}\right)
\end{aligned}
$$

where

$$
d_{ \pm}=\frac{1}{\sigma \sqrt{T}} \log (1+|y|) \pm \frac{1}{2} \sigma T, \quad N\left(d_{ \pm}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{d_{ \pm}} e^{-x^{2} / 2} d x
$$

## Solution of the control problem by comparison

Hajek (1985), Shreve \& Večeř (2000).
$\begin{array}{ll}\text { Maximize } & \widetilde{\mathbb{E}}\left[Y_{T}^{+}\right] \\ \text {Subject to } & Y_{0}=X_{0} / S_{0},\end{array}$

$$
\begin{aligned}
& d Y_{t}=\sigma\left(q_{t}-Y_{t}\right) d \widetilde{W}_{t} \\
& \left|q_{t}\right| \leq 1, \quad 0 \leq t \leq T
\end{aligned}
$$

Let $q_{\theta}$ be any adapted process satisfying $\left|q_{\theta}\right| \leq 1,0 \leq t \leq T$, and let

$$
Y_{t}=Y_{0}+\sigma \int_{0}^{t}\left(q_{\theta}-Y_{\theta}\right) d \widetilde{W}_{\theta}
$$

Define

$$
\varphi(y)=-\operatorname{sign}(y)(1+|y|), \quad y \in \mathbb{R}
$$

so that $\varphi^{2}\left(Y_{\theta}\right) \geq\left(q_{\theta}-Y_{\theta}\right)^{2}$. Define

$$
A_{t}=\int_{0}^{t} \frac{\left(q_{\theta}-Y_{\theta}\right)^{2}}{\varphi^{2}\left(Y_{\theta}\right)} d \theta \leq t, \quad A_{s}^{-1}=\inf \left\{t \geq 0: A_{t}>s\right\}
$$

## Solution of the control problem by comparison

Both

$$
Y_{t}=Y_{0}+\sigma \int_{0}^{t}\left(q_{\theta}-Y_{\theta}\right) d \widetilde{W}_{\theta}
$$

and

$$
Y_{t}^{2}-\sigma^{2} \int_{0}^{t}\left(q_{\theta}-Y_{\theta}\right)^{2} d \theta
$$

are continuous martingales.
Optional sampling implies that both

$$
Z_{s}:=Y_{A_{s}^{-1}}
$$

and

$$
Y_{A_{s}^{-1}}^{2}-\sigma^{2} \int_{0}^{A_{s}^{-1}}\left(q_{\theta}-Y_{\theta}\right)^{2} d \theta
$$

are continuous martingales.

## Solution of the control problem by comparison

Consider the continuous martingale

$$
\begin{aligned}
& Y_{A_{s}^{-1}}^{2}-\sigma^{2} \int_{0}^{A_{s}^{-1}}\left(q_{\theta}-Y_{\theta}\right)^{2} d \theta \\
& \quad=Y_{A_{s}^{-1}}^{2}-\sigma^{2} \int_{0}^{A_{s}^{-1}} \varphi^{2}\left(Y_{\theta}\right) \frac{\left(q_{\theta}-Y_{\theta}\right)^{2}}{\varphi^{2}\left(Y_{\theta}\right)} d \theta \\
& \quad=Z_{s}^{2}-\sigma^{2} \int_{0}^{A_{s}^{-1}} \varphi\left(Z_{A_{\theta}}\right) d A_{\theta} \\
& \quad=Z_{s}^{2}-\sigma^{2} \int_{0}^{s} \varphi^{2}\left(Z_{\nu}\right) d \nu
\end{aligned}
$$

Therefore, both

$$
Z_{s} \text { and } Z_{s}^{2}-\sigma^{2} \int_{0}^{s} \varphi^{2}\left(Z_{\nu}\right) d \nu
$$

are continuous martingales, so $Z$ is a weak solution of the SDE

$$
d Z_{s}=Y_{0}+\sigma \int_{0}^{s} \varphi\left(Z_{\nu}\right) d \widetilde{W}_{\nu}
$$

## Solution of the control problem by comparison

Conclusion: We have

$$
\begin{aligned}
Y_{0} & =Z_{0} \\
d Y_{t} & =\sigma\left(q_{t}-Y_{t}\right) d \widetilde{W}_{t} \\
d Z_{s} & =\sigma \varphi\left(Z_{s}\right) d \widetilde{W}_{s} \\
Y_{T} & =Z_{A_{T}} \\
A_{T} & \leq T
\end{aligned}
$$

The submartingale property for $Z^{+}$implies

$$
\widetilde{\mathbb{E}}\left[Y_{T}^{+}\right]=\widetilde{\mathbb{E}}\left[Z_{A_{T}}^{+}\right] \leq \widetilde{\mathbb{E}}\left[Z_{T}^{+}\right] .
$$

## Two other solution methods

- Solve the HJB equation by analytical methods
- Andersen, Andreasen \& Brotherton-Radcliffe (1998)
- Hyer, Lipton-Lifschitz \& Pugachevsky (1997)
- Solve the discrete-time trading problem and pass to the limit
- Delbaen \& Yor (2002)

Open problem: Passport option on multiple risky assets

- Two risky assets

$$
\begin{aligned}
d S_{1}(t) & =r S_{1}(t) d t+\sigma_{1} S_{1}(t) d W_{1}(t), \\
d S_{2}(t) & =r S_{2}(t) d t+\sigma_{2} S_{2}(t) d W_{2}(t), \\
d W_{1}(t) d W_{2}(t) & =\rho d t \quad(-1<\rho<1)
\end{aligned}
$$

- Traded account value

$$
d X(t)=\sum_{i=1}^{2} q_{i}(t) d S_{i}(t)+r\left(X(t)-\sum_{i=1}^{2} q_{i}(t) S_{i}(t)\right) d t
$$

- Maximize

$$
\mathbb{E}\left[X^{+}(T)\right]
$$

## Trading constraint and value function

Trading constraint

$$
\left|q_{1}(t)\right|+\left|q_{2}(t)\right| \leq 1, \quad 0 \leq t \leq T .
$$



Value function

$$
\begin{aligned}
& V\left(t, s_{1}, s_{2}, x\right) \\
& =\max _{\left|q_{1}\right|+\left|q_{2}\right| \leq 1} \mathbb{E}\left[e^{-r T} X^{+}(T) \mid S_{1}(t)=s_{1}, S_{2}(t)=s_{2}, X(t)=x\right]
\end{aligned}
$$

## Hamilton-Jacobi-Bellman equation

$$
\begin{aligned}
V_{t}+ & r \sum_{i=1}^{2} s_{i} V_{s_{i}}+r x V_{x}+\frac{1}{2} \operatorname{trace}\left(C \nabla_{s s}^{2} V\right) \\
& +\max _{\left|q_{1}\right|+\left|q_{2}\right| \leq 1}\left[\left\langle\nabla_{s x}^{2} V, C q\right\rangle+\frac{1}{2}\langle q, C q\rangle V_{x x}\right]=0
\end{aligned}
$$

where

$$
\begin{gathered}
q=\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
\sigma_{1}^{2} s_{1}^{2} & \rho \sigma_{1} \sigma_{2} s_{1} s_{2} \\
\rho \sigma_{1} \sigma_{2} s_{1} s_{2} & \sigma_{2}^{2} s_{2}^{2}
\end{array}\right] \geq 0 \\
\nabla_{s x}^{2} V=\left[\begin{array}{l}
V_{s_{1} x} \\
V_{s_{2} x}
\end{array}\right], \quad \nabla V_{s s}^{2}=\left[\begin{array}{ll}
V_{s_{1} s_{1}} & V_{s_{1} s_{2}} \\
V_{s_{1} s_{2}} & V_{s_{2} s_{2}}
\end{array}\right] .
\end{gathered}
$$

## Bang-bang control

$$
\left\langle\nabla_{s x}^{2} V, C q\right\rangle+\frac{1}{2}\langle q, C q\rangle V_{x x}
$$

is convex in $\left(q_{1}, q_{2}\right)$, so the maximum is always obtained at an extreme points of the constraint set


But which extreme point?

## Observations

- Even if the correlation between the risky assets is zero or one, the solution is not known. These cases might have simple explicit solutions.
- In general, correlation seems to matter. Even when we don't hold an asset, its price changes now affect opportunities it offers later.
- The solution of the HJB equation for multiple risky assets is unknown, although variations of it with two risky assets have been solved numerically (e.g., Penaud (2000)).
- One can choose either $S_{1}$ or $S_{2}$ as the numéraire and reduce the dimensionality of the problem with two risky-assets. The reduced problem has a two-dimensional state process.
- The Skorohod mapping approach and the comparison argument do not have obvious extensions to the case of a two-dimensional state process.


## And finally....

## Don't tell Mete anything!

Sagen Sie Mete nichts!

## References

[1] Andersen, L., Andreasen, J. \& Brotherton-Radcliffe, R. (1998) The passport option, J. Comput. Finance 1, 13-36.
[2] Delbaen, F. \& Yor, M. (2002) Passport options, Math. Finance 12, 299-328.
[3] Hajek, B. (1985) Mean stochastic comparison of diffusions, $Z$. Wahrscheinlichkeitstheorie verw. Gebiete 68, 315-329.
[4] Henderson, V. \& Hobson, D. (2000) Local time, coupling and the passport option, Finance and Stochastics 4, 69-80.
[5] Hyer, T., Lipton-Lifschitz, A. \& Pugachevsky, D. (1997) Passport to success, RISK Magazine 10/9, 127-131.
[6] Nagayama, I. (1999) Pricing of passport option, J. Math. Sci. Univ. Tokyo 5, 747-785.

## References

[7] Penaud, A., Wilmott, A. \& Ahn, H. (1999) Exotic passport options, Asia-Pacific Financial Markets 6, 171-182.
[8] Penaud, A. (2000) Optimal decisions in finance: Passport options and the bonus problem, Ph.D. dissertation, Somerville College, University of Oxford.
[9] Shreve, S. E. \& Večeř, J. (2000) Options on a traded account: Vacation calls, vacation puts and passport options, Finance and Stochastics 4, 255-274.

