
Two-Dimensional Passport Option
An Open Problem

Steven E. Shreve
Department of Mathematical Sciences

Carnegie Mellon University
shreve@andrew.cmu.edu

METE
Mathematics and Economics

Trends and Explorations
ETH–Zürich
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Option on a traded account

Consider an option that confers on its holder the right to

I Begin with initial capital X0,

I Trade in one or more risky assets and a risk-free asset subject
to some constraints,

I Generate an account balance Xt at each time t, 0 ≤ t ≤ T ,

I At expiration T receive

max{XT ,Floor}.

Primary example: Variable annuity.
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Passport option

A passport option is an option on a traded account in which

I the holder is constrained to have positions between short one
share and long one share of the risky asset (or assets),

I At expiration T , the option pays X+
T .

A short history:

I Developed at Banker’s Trust and originally sold on foreign
currency; see Hyer, et. al. (1997).

I Long the currency “corresponds” to being in a foreign
country. Short “corresponds” to coming home. For this
travel, one needs a passport.

I Later extended to other assets, including bonds and interest
rate futures. A variety of related options were introduced; see
Andersen, et. al. (1998), Penaud, et. al. (1999).
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The simplest case

I Geometric Brownian motion

dSt = rSt dt + σSt dWt .

I Traded account value

dXt = qt dSt + r
(
Xt − qtSt) dt.

I Constraint on trading

−1 ≤ qt ≤ 1, 0 ≤ t ≤ T .

I At expiration the option pays

X+
T .
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Price the option by solving a stochastic control problem

Maximize E
[
e−rTX+

T

]
Subject to |qt | ≤ 1, 0 ≤ t ≤ T .

Value function for 0 ≤ t ≤ T , s ≥ 0, x ∈ R:

V (t, s, x) = max
|q|≤1

E
[
e−r(T−t)X+

T

∣∣∣St = s,Xt = x
]
.

Hamilton-Jacobi-Bellman (HJB) equation

−rV +Vt +rsVs +rxVx +
1

2
σ2Vss +σ2s2 max

|q|≤1

[
qVsx +

1

2
q2Vxx

]
= 0.

Terminal condition

V (T , s, x) = x+ for all s > 0, x ∈ R. �
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Option seller’s hedge (given the function V (t, s, x))
Define the “optimal” feedback control q̂t(s, x) by

q̂t(s, x)Vsx(t, s, x) +
1

2
q̂2t (s, x)Vxx(t, s, x)

= max
|q|≤1

[
qVsx(t, s, x) +

1

2
q2Vxx(t, s, x)

]
.

I Suppose the option holder uses the trading strategy qt ,
resulting in account value Xt , 0 ≤ t ≤ T .

I Then the option seller uses the trading strategy

qt := Vs

(
t, St ,Xt

)
+ qtVx

(
t,St ,Xt

)
.

I Also, the option seller consumes at the nonnegative rate

Ct = σ2S2
t

[(
q̂t(St ,Xt)− qt

)
Vsx

(
t, St ,Xt

)
+

1

2

(
q̂2t (St ,Xt)− q2t

)
Vxx

(
t, St ,Xt

)]
. �
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Option seller’s hedge (given the function V (t, s, x))
Differential of the discounted option price along the option holder’s
account value process is

d
(
e−rtV (t,St ,Xt)

)
=e−rt

[
−rV +Vt +rSVs +rXVx + σ2S2

(
1

2
Vss + qtVsx +

1

2
q2tVxx

)]
dt

+σe−rtS(Vs + qtVx) dW

=e−rt
[
−rV +Vt +rSVs +rXVx + σ2S2

(
1

2
Vss + q̂tVsx +

1

2
q̂2t vxx

)]
dt

−e−rtCt dt + σe−rtS(Vs + qtVx) dW

= −e−rtCt dt + σe−rtStqt dWt .

Differential of the option seller’s discounted portfolio:

d(e−rtX t) = −e−rtCt dt + σe−rtStqt dWt = d
(
e−rtV (t,St ,Xt)

)
.

X 0 = V (0,S0,X0) =⇒ XT = V (T , ST ,XT ) = X+
T . �
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Stochastic control problem

Maximize E
[
e−rTX+

T

]
Subject to |qt | ≤ 1, 0 ≤ t ≤ T .

Value function V (t, s, x) = max
|q|≤1

E
[
e−r(T−t)X+

T

∣∣∣St = s,Xt = x
]
.

Theorem V (t, s, x) is convex in x.
Proof: Given x (3) = λx (1) + (1− λ)x (2) with 0 ≤ λ ≤ 1.
Let qθ, t ≤ θ ≤ T , be a trading strategy.
This generates account value processes X (i) starting from St = s,

X
(i)
t = x (i), i = 1, 2, 3. Then

X
(3)
T = λX

(1)
T + (1− λ)X

(2)
T ,

E
[
e−rT (X

(3)
T )+

]
≤ λE

[
e−rT (X

(1)
T )+

]
+ (1− λ)E

[
e−rT (X

(2)
T )+

]
≤ λV

(
t, s, x (1)

)
+ (1− λ)V

(
t, s, x (2)

)
.

Now maximize the left-hand side over qθ, t ≤ θ ≤ T . �
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Bang-bang control

Hamilton-Jacobi-Bellman (HJB) equation

−rV+Vt+rsVs+rxVx+
1

2
σ2s2Vss+σ2s2 max

|q|≤1

[
qVsx +

1

2
q2Vxx

]
= 0.

Because Vxx ≥ 0, the maximum over q is achieved at an extreme
point of the convex constraint set [−1, 1], i.e., at either

qt = −1 or qt = 1.

But which extreme point?
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Example
We always have

E
[
e−rTXT

]
= X0, E

[
e−rTX+

T

]
> X0.

Consider a one-step problem.

I Expiration date: T = 1

I Initial account value value: X0 = 2

I Initial risky asset price: S0 = 4

I Parameter values: r = 2%, σ = 20%

What is the distribution of XT

I if the option holder takes a long position?

I if the option holder takes a short position?

Which position maximizes

E
[
e−rTX+

T

]
? �
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Intuition
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Figure: Caption

Conjecture: q̂t = −sign(Xt). �
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Change of numéraire
Two martingales:

d(e−rtSt) = σe−rtSt dWt ,

d(e−rtXt) = σe−rtStqt dWt .

Define

Yt :=
Xt

St
=

e−rtXt

e−rtSt
.

Then

dYt = σ(qt − Yt)(dWt − σ dt) = σ(qt − Yt) dW̃t ,

where W̃t := Wt − σt is a Brownian motion under P̃ defined by

d P̃
dP

=
e−rTST

S0
.

E
[
e−rTX+

T

]
= S0E

[
e−rTST

S0

(
XT

ST

)+
]

= S0Ẽ
[
Y+
T

]
. �
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Equivalent stochastic control problem

Maximize Ẽ
[
Y+
T

]
Subject to Y0 = X0/S0,

dYt = σ(qt − Yt) dW̃t ,

|qt | ≤ 1, 0 ≤ t ≤ T .

Value function

u(t, y) = max
|q|≤1

Ẽ
[
Y+
T

∣∣Yt = y
]
.

Hamilton-Jacobi-Bellman (HJB) equation

ut(t, y) +
1

2
σ2 max
|q|≤1

(q − y)2uyy (t, y) = 0.

Terminal condition

u(T , y) = y+ for all y ∈ R. �
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Optimal control in feedback form
Theorem u(t, y) is convex in y .

Recall the Hamilton-Jacobi-Bellman (HJB) equation

ut(t, y) +
1

2
σ2 max
|q|≤1

(q − y)2uyy (t, y) = 0.

Therefore,

q̂t = −sign(Yt),

dYt = σ(q̂t − Yt) dW̃t

= −σ sign(Yt)(1 + |Yt |) dW̃t ,

and the HJB equation becomes

ut(t, y) +
1

2
σ2(1 + |y |)2uyy (t, y) = 0.
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Solution of HJB by Skorohod mapping
Delbaen & Yor (2002), Henderson & Hobson (2000), Nagayama
(1999).
Let Y0 = y and

dYt = −σ sign(Yt)(1 + |Yt |) dW̃t , 0 ≤ t ≤ T .

Then

d(1 + |Yt |) = sign(Yt) dYt + dLYt (0)

= −σ(1 + |Yt |) dW̃t + dLYt (0),

and

d log(1 + |Yt |)

=
1

1 + |Yt |
d(1 + |Yt |)−

1

2(1 + |Yt |)2
d〈1 + |Y |, 1 + |Y |〉t

= −σ dW̃t −
1

2
σ2 dt + dLYt (0).
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Solution of HJB by Skorohod mapping
From the previous page: Y0 = y and

d log
(
1 + |Yt |

)
= σ

(
−dW̃t −

1

2
σ dt

)
+ dLYt (0), 0 ≤ t ≤ T .

Define

W t = −W̃t −
1

2
σt,

and a measure P under which W is a Brownian motion. Then

log(1 + |Yt |) = log(1 + |y |) + σW t + LYt (0).

The process log(1 + |Yt |) is nonnegative and LYt (0) grows only
when log(1 + |Yt |) is at zero. Skorohod implies

LYt (0) = max
0≤u≤t

(
− log(1 + |y |)− σW u

)+
.
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Solution of HJB by Skorohod mapping
Conclusion:

log(1+|YT |) = log(1+|y |)+σW T + max
0≤u≤T

(
−log(1+|y |)−σW u

)+
,

where W is a Brownian motion under P and

dP
d P̃

= exp

[
−1

2
σW̃T −

1

8
σ2T

]
.

Put all the pieces together to compute

Ẽ
[
Y+
T

∣∣Y0 = y ] =
1

2
y − 1

2
log(1 + |y |) +

1

4
σ2T +

1

2
σ
√
T N ′(d−)

+
1

2
(1 + |y |)N(d+) +

1

2
(σ
√
T d− − 1)N(d−),

where

d± =
1

σ
√
T

log(1 + |y |)± 1

2
σT , N(d±) =

1√
2π

∫ d±

−∞
e−x

2/2 dx .
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Solution of the control problem by comparison
Hajek (1985), Shreve & Večěr (2000).

Maximize Ẽ
[
Y+
T

]
Subject to Y0 = X0/S0,

dYt = σ(qt − Yt) dW̃t ,

|qt | ≤ 1, 0 ≤ t ≤ T .

Let qθ be any adapted process satisfying |qθ| ≤ 1, 0 ≤ t ≤ T , and
let

Yt = Y0 + σ

∫ t

0
(qθ − Yθ) dW̃θ.

Define
ϕ(y) = −sign(y)(1 + |y |), y ∈ R,

so that ϕ2(Yθ) ≥ (qθ − Yθ)2. Define

At =

∫ t

0

(qθ − Yθ)2

ϕ2(Yθ)
dθ ≤ t, A−1s = inf{t ≥ 0 : At > s}.

�
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Solution of the control problem by comparison

Both

Yt = Y0 + σ

∫ t

0
(qθ − Yθ) dW̃θ,

and

Y 2
t − σ2

∫ t

0
(qθ − Yθ)2 dθ

are continuous martingales.
Optional sampling implies that both

Zs := YA−1
s

and

Y 2
A−1
s
− σ2

∫ A−1
s

0
(qθ − Yθ)2 dθ

are continuous martingales. �

18 / 29



Solution of the control problem by comparison
Consider the continuous martingale

Y 2
A−1
s
− σ2

∫ A−1
s

0
(qθ − Yθ)2 dθ

= Y 2
A−1
s
− σ2

∫ A−1
s

0
ϕ2(Yθ)

(qθ − Yθ)2

ϕ2(Yθ)
dθ

= Z 2
s − σ2

∫ A−1
s

0
ϕ(ZAθ

)dAθ

= Z 2
s − σ2

∫ s

0
ϕ2(Zν) dν.

Therefore, both

Zs and Z 2
s − σ2

∫ s

0
ϕ2(Zν) dν

are continuous martingales, so Z is a weak solution of the SDE

dZs = Y0 + σ

∫ s

0
ϕ(Zν) dW̃ν . �
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Solution of the control problem by comparison

Conclusion: We have

Y0 = Z0,

dYt = σ(qt − Yt) dW̃t ,

dZs = σϕ(Zs) dW̃s ,

YT = ZAT
,

AT ≤ T .

The submartingale property for Z+ implies

Ẽ
[
Y+
T

]
= Ẽ

[
Z+
AT

]
≤ Ẽ

[
Z+
T

]
.
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Two other solution methods

I Solve the HJB equation by analytical methods
I Andersen, Andreasen & Brotherton-Radcliffe (1998)
I Hyer, Lipton-Lifschitz & Pugachevsky (1997)

I Solve the discrete-time trading problem and pass to the limit
I Delbaen & Yor (2002)
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Open problem: Passport option on multiple risky assets

I Two risky assets

dS1(t) = rS1(t) dt + σ1S1(t) dW1(t),

dS2(t) = rS2(t) dt + σ2S2(t) dW2(t),

dW1(t) dW2(t) = ρ dt (−1 < ρ < 1).

I Traded account value

dX (t) =
2∑

i=1

qi (t) dSi (t) + r

(
X (t)−

2∑
i=1

qi (t)Si (t)

)
dt.

I Maximize
E
[
X+(T )

]
.
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Trading constraint and value function
Trading constraint

|q1(t)|+ |q2(t)| ≤ 1, 0 ≤ t ≤ T .

(−1,0) (1,0)

(0,1)

(0,−1)

q1

q2

Value function

V (t, s1, s2, x)

= max
|q1|+|q2|≤1

E
[
e−rTX+(T )

∣∣∣S1(t) = s1, S2(t) = s2,X (t) = x
]
.
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Hamilton-Jacobi-Bellman equation

Vt + r
2∑

i=1

siVsi + rxVx +
1

2
trace(C∇2

ssV )

+ max
|q1|+|q2|≤1

[
〈∇2

sxV ,Cq〉+
1

2
〈q,Cq〉Vxx

]
= 0,

where

q =

[
q1
q2

]
, C =

[
σ21s

2
1 ρσ1σ2s1s2

ρσ1σ2s1s2 σ22s
2
2

]
≥ 0,

∇2
sxV =

[
Vs1x

Vs2x

]
, ∇V 2

ss =

[
Vs1s1 Vs1s2

Vs1s2 Vs2s2

]
.
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Bang-bang control

〈∇2
sxV ,Cq〉+

1

2
〈q,Cq〉Vxx

is convex in (q1, q2), so the maximum is always obtained at an
extreme points of the constraint set

(−1,0) (1,0)

(0,1)

(0,−1)

q1

q2

But which extreme point? �
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Observations

I Even if the correlation between the risky assets is zero or one,
the solution is not known. These cases might have simple
explicit solutions.

I In general, correlation seems to matter. Even when we don’t
hold an asset, its price changes now affect opportunities it
offers later.

I The solution of the HJB equation for multiple risky assets is
unknown, although variations of it with two risky assets have
been solved numerically (e.g., Penaud (2000)).

I One can choose either S1 or S2 as the numéraire and reduce
the dimensionality of the problem with two risky-assets. The
reduced problem has a two-dimensional state process.

I The Skorohod mapping approach and the comparison
argument do not have obvious extensions to the case of a
two-dimensional state process. �
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And finally....

Don’t tell Mete anything!

Sagen Sie Mete nichts!
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