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Overview

I want to illustrate, by a few recent examples, how semigroup
techniques can be used to attack problems in Geometric Measure
Theory, Real Analysis, more generally “calculus” problems in structures
that can be very far from being Euclidean, in some lucky cases
overcoming lack of doubling property, infinite dimensionality, lack of
local coordinates,....
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Sets of finite perimeter in Rm

E ∈ B(Rm) has finite perimeter if DχE ∈
[
M (Rm)

]m, namely∫
E

∂φ

∂xi
dx = −

∫
Rm
φdDiχE φ ∈ C∞c (Rm), i = 1, . . . ,m.

Caccioppoli’s original definition:

P(E) := inf
{

lim inf
n→∞

Area(∂En) : En polyhedra, En → E in L1
loc

}
.

The two definitions are equivalent, and P(E) = |DχE |(Rm).
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Two more definitions
De Giorgi (1951): E has finite perimeter if

I(E) := lim
t↓0

∫
Rm
|∇TtχE |dx <∞.

Here TtχE = Gt ∗ χE is the solution to the heat equation with χE as
initial datum. Again, I(E) = P(E) = |DχE |(Rm) and the existence of
the limit is a simple consequence of the properties

∇Ts+tχE = ∇TsTtχE = Ts∇TtχE .

Ledoux (1994):

P(E) = lim
t↓0

√
π

t
Kt (E ,Rn \ E),

where
Kt (E ,F ) :=

∫
Rn

Tt/2χETt/2χF dx .

In addition, always P(E) ≥
√

π
t Kt (E ,Rn \ E) holds.
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Gauss-Green formulas

Writing the polar decomposition DχE = νE |DχE |, with νE provided by
the Radon-Nikodym theorem, we have

(weak)

∫
E

∂φ

∂xi
dx = −

∫
Rm
φνE ,i d |DχE |

On the other hand

(classical)
∫

E

∂φ

∂xi
dx = −

∫
∂E

nE ,iφdH m−1

where nE = (nE ,1, . . . ,nE ,m) is the inner normal.

How far from each other are the two formulas?
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Measure-theoretic boundaries

Essential boundary.

∂∗E :=

{
x ∈ Rm : lim sup

r↓0

|Br (x) ∩ E |
|Br (x)|

> 0 and lim sup
r↓0

|Br (x) \ E |
|Br (x)|

> 0

}
.

By Lebesgue’s theorem, ∂∗E is L m-negligible.
Reduced boundary.

FE :=

{
x ∈ supp |DχE | : ∃ lim

r↓0

DχE (Br (x))

|DχE |(Br (x))
and |limit| = 1

}
.

At points x ∈ FE the (weak) inner normal νE is defined by the value of
the limit. Furthermore, by Besicovitch theorem,

|DχE | is concentrated on FE and DχE = νE |DχE |.
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De Giorgi and Federer results
Theorem. For any set of finite perimeter E we have
(a) |DχE |(B) = H m−1(B ∩FE) for all B ∈ B(Rm);
(b) FE ⊂ ∂∗E, but H m−1(∂∗E \FE) = 0;
(c) FE is contained in the union of countably many Lipschitz

hypersurfaces.
These results, of central importance for the development of modern
GMT, reduce somehow the gap between the weak and the classical
Gauss-Green formulas.
The proof of these statements is mostly based on a blow-up analysis,
and in particular in the proof of the convergence

1
r

(E − x)→ halfspace ⊥ to νE (x) as r ↓ 0 for all x ∈ FE .

This works because points in FE are Lebesgue points of νE , relative
to |DχE |.
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Gaussian theory: finite dimensions

X = Rm, Gm(x) = (2π)−m/2e−|x |
2/2, γm = GmL m standard Gaussian.

Since ∂hγm = −〈x ,h〉γm we have the integration by parts formula∫
X

f∂hφdγm = −
∫

X
φ∂hf dγm +

∫
X
〈x ,h〉fφdγm h ∈ X

It can be used, with f = χE , to define a weak derivative DγmχE .
Obviously DγχE = GmDχE and all “local” regularity properties remain
true. For instance

DγmχE = GmDχE = GmH m−1 ∂∗E

leads to a “more explicit” GG formula even in Gaussian spaces.
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The Ornstein-Uhlenbeck semigroup

∂t f = div
(
∇ft + xft

)
If we write ftL m = %tγm (i.e. ft = %tGm), a fundamental representation
formula for ρt is

(Mehler) %t (x) =

∫
X
%0
(
e−tx +

√
1− e−2ty) dγm(y).

We still have

|DγmχE | = lim
t↓0

∫
X
|∇%t |dγm %0 = χE

and many properties are known in finite dimension, for instance the
only isoperimetric sets are the halfspaces (Sudakov).
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What happens in infinite dimensions?

X separable Banach space, γ ∈ P(X ) with
∫

X x dγ(x) = 0, not
supported in a proper subspace of X .
We say that γ is Gaussian if x 7→ 〈x∗, x〉 has a Gaussian law (in R) for
all x ∈ X ∗ \ {0}.
The Cameron-Martin subspace H ⊂ X is defined by

H := {h ∈ X : τhγ � γ}

It turns out that H is dense in X , but γ(H) = 0!
There is a natural way to extract from the density βh of τhγ w.r.t. γ an
Hilbert norm which makes the inclusion of H in X compact. In finite
dimensions, with the standard Gaussian,

βh(x) = e−|h|
2/2+〈x ,h〉.
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Good news

• Still the integration by parts formula along directions in H makes
sense, and this leads to a Sobolev (and BV ) theory (Gross, Malliavin,
Fukushima).

• Mehler’s formula

%t (x) =

∫
X
%0
(
e−tx +

√
1− e−2ty) dγ(y)

still makes sense and provides a nice contraction semigroup Pt% := %t
in all Lp(γ) spaces. Furthermore Pt%, understood in the pointwise
sense of Mehler’s formula, is smooth for t > 0 (along directions of H).
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Bad news

• Preiss-Tiser showed that Lebesgue theorem holds if the covariance
operator of γ decays sufficiently fact (quite fast, indeed). Preiss
provided also an example of a Gaussian measure γ in a Hilbert space
X and f ∈ L∞(X , γ) such that

lim sup
r↓0

1
γ(Br (x))

∫
Br (x)

f dγ > f (x) in a set of γ-positive measure.

So, no Lebesgue theorem can be expected in general and the
definition of essential boundary, based on volume fractions, becomes
problematic.

• Of course also no Besicovitch theorem can be expected, so there is
no hope to define the reduced boundary in the traditional way.
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Blow-up analysis via OU semigroup
Theorem. (A-Figalli, A-Figalli-Runa) For any set E of finite perimeter
one has

lim
t↓0

∫
X
|PtχE −

1
2
|2 d |DγχE | = 0,

more precisely

lim
t↓0

∫
X

∫
X

∣∣∣χE (e−tx +
√

1− e−2ty)− χS(x)(y)
∣∣∣ dγ(y) d |DγχE |(x) = 0

where Sx is the halfspace determined by νE (x).
Eventually this can be used to give coordinate-free definitions of ∂∗E
and FE , proving the representation formula (Hino)

|DγχE | = H ∞−1 ∂∗E = H ∞−1 FE ,

where H ∞−1 is the Feyel-De la Pradelle codimension 1 (Gaussian)
Hausdorff measure.
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Finite-codimension Hausdorff measures
As illustrated in the picture, γ⊥F × γF is a factorization of γ induced by
a m-dimensional subspace F of H (γF is the standard Gaussian in F ,
with the metric induced by H) and the sets Ay are the m-dimensional
sections of A, keeping y ∈ (I − πF )(X ) fixed.

H ∞−k
F (A) :=

1
√

2π
m

∫
F⊥

∫
Ay

e−|x |
2/2 dH m−k

F (x) dγF⊥(y).

A

F+

F
_|

F
_γ

y

y

|
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Lusin-type Lipschitz approximation
In a metric measure space (X ,d,m), a function f : X → R is said to be
approximable in Lusin’s sense by Lipschitz functions on A ∈ B(X ) if for
all ε > 0 there exists C ∈ B(X ) such that

m(A \ C) < ε and f |C is d-Lipschitz.

We are interested in the quantitative version of this statement, in
particular to

|f (x)− f (y)| ≤ d(x , y)(g(x) + g(y)) ∀x , y ∈ X \ N

with m(N) = 0, for some g ∈ Lp(X ,m). One can then take
C = {g ≤ M} \ N, so that Lip(f |C) ≤ 2M and

m(X \ C) ≤ M−1/p
∫
{g>M}

|g|p dm = o(M−1/p)

by Markov inequality. In Euclidean and other “nice” spaces, the decay
property m(X \ C) = o

(
(Lip(f |C))−1/p) characterizes W 1,p Sobolev

spaces for p ∈ [1,∞) (the so-called Hajlasz-Sobolev spaces).
Luigi Ambrosio (SNS) Semigroups and GMT Zurich meeting, 29.10.18 16 / 30



Some classical applications

The Lusin-Lipschitz property has a variety of applications:

• Lower semicontinuity in vectorial Calculus of Variations (Acerbi-
Fusco);

• Regularity in Elliptic PDE’s (Diening, Duzaar, Mingione, Stroffolini,
Verde,....);

• Theory of currents (A-Kirchheim, De Lellis-Spadaro);

• Flow of nonsmooth vector fields (Crippa-De Lellis);

• Rate of convergence in the matching problem (A-Stra-Trevisan,
A-Glaudo).
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Strategies of proof of Lusin-Lip: Euclidean case
For f ∈ W 1,p(X ,d ,m), p > 1, we want to find g ∈ Lp(X ,m) and a
m-negligible set N such that

|f (x)− f (y)| ≤ d(x , y)(g(x) + g(y)) ∀x , y ∈ X \ N.

In Euclidean spaces the proof of can be achieved, for instance, writing
f as a singular integral

f (x) = −
∫
〈∇f (y),∇xG(x , y)〉dy

with G fundamental solution of Laplace’s operator ∆, in the end a
suitable g is proportional to M(|∇f |) (the Hardy-Littlewood’s maximal
function), namely

M(|∇f |)(x) := sup
r>0
−
∫

Br (x)
|∇f |dy .
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Strategies of proof of Lusin-Lip: PI metric measure
spaces

In more general metric measure structures, we can compare f with a
regularization fr , for instance fr (x) = −

∫
Br (x) f dm. Choosing r ∼ d(x , y),

fr (x) is comparable to fr (y) (with an estimate ∼ r −
∫

BCr (x)
|∇f |dm) and

the problem reduces to the pointwise estimate of f (x)− fr (x).

This estimate involves once more M(|∇f |)(x).

However, these strategies seem to fail when either m is not doubling
or the local Poincaré inequality fails. This happens for instance for
Gaussian spaces (even when they are topologically finite-dimensional),
for the Wiener space and for RCD(K ,∞) spaces.

Our method covers all these important cases, and builds upon another
powerful maximal theorem.
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New strategy of proof
Theorem. (Rota) For p ∈ (1,∞] and for the m-a.e. continuous version
of a Markov semigroup Rt one has

‖ sup
t>0

Rt f‖p ≤ Cp‖f‖p ∀f ∈ Lp(X ,m).

In addition, for all f ∈ Lp(X ,m), one has Rt f → f m-a.e. as t → 0+.
Then, our method uses the semigroup Rt associated to the Sobolev
class W 1,2 instead of the inversion of Laplace’s operator: the
regularization is ft = Rt f , now with t ∼ d2(x , y).
It follows that we need to estimate

|f (x)− f (y)| ≤ |f (x)− Rt f (x)|+ |Rt f (x)− Rt f (y)|+ |Rt f (y)− f (y)|.

Roughly speaking the estimates of all terms involve |∇f |, but while the
estimate of the oscillation |Rt (x)− Rt (y)| involves mostly the curvature
properties of the metric measure space, the estimate of f −Rt f is more
related to the regularity of the transition probabilities pt (x , y) of Rt .
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Lip-Lusin property in RCD(K ,∞) spaces
Recall that a metric measure space (X ,d ,m) is said to be RCD(K ,∞)
if it is CD(K ,∞) according to Lott-Villani and Sturm, i.e.

Entm(%m) =

∫
X
% log %dm is K -convex along geodesics of (P2(X ),W2)

and Cheeger’s energy

Ch(f ) := inf
{

lim inf
h→∞

∫
X
|∇fh|2 dm : fh ∈ Lip(X ,d), ‖fh − f‖2 → 0

}
is a quadratic form in L2(X ,m).
By now this class of spaces, and the smaller class RCD(K ,N) is well
understood and characterized in many ways, after the work of many
authors (A., Bolley, Gentil, Gigli, Guillin, Kuwada, Mondino, Savaré,
Sturm,..), via properties of the heat flow Ht , gradient contractivity
properties, or suitable Bochner inequalities (Bakry-Émery).
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Lip-Lusin in RCD(K ,∞) spaces

Theorem. (A-Brué-Trevisan) For all f ∈W 1,2(X ,d ,m) and all α ∈ (1,2)
there exists a m-negligible set N ⊂ X such that

|f (x)− f (y)| ≤ Cα,K d(x , y)(g(x) + g(y)) ∀x , y ∈ X \ N,

with

g :=

(
sup
t>0

Ht |∇f |α
)1/α

+ sup
s>0
|Hs
√
−∆f | ∈ L2(X ,m).

In addition, this property characterizes the space W 1,2(X ,d ,m).
The Ht

√
−∆f term in the definition of g is due to the fractional

representation

Ht f (x)− f (x) =

∫ ∞
0

K (s, t)Hs
√
−∆f (x) ds.

Luigi Ambrosio (SNS) Semigroups and GMT Zurich meeting, 29.10.18 22 / 30



Lip-Lusin in Gaussian spaces
The result covers also Sobolev spaces W 1,2

E (H,m), with H separable
Hilbert and m Gaussian and non-degenerate, induced by the Dirichlet
form

E(f ) :=

∫
H
|∇f |2 dm.

They are indeed particular cases of RCD(K ,∞) spaces, but in this
case g takes the simpler form

g := sup
t>0

Pt |∇f |+ sup
t>0
|Pt
√
−∆E f | ∈ L2(H,m)

for all f ∈ W 1,2
E (H,m), where Pt is the standard Markov semigroup

associated to E and ∆E the infinitesimal generator.
Also a more extreme case (the Wiener space, an extended metric
measure space) can be covered, as well as the cases p 6= 2 and f
Hilbert-valued.

Luigi Ambrosio (SNS) Semigroups and GMT Zurich meeting, 29.10.18 23 / 30



Regular Lagrangian Flows

The DiPerna-Lions theory provides existence, uniqueness and stability
to the flow X (t , x) of a large class of vector fields bt (x), t ∈ (0,T ),
including Sobolev vector fields. We follow the axiomatization of A. ’04,
based on the concept of Regular Lagrangian Flow.

Definition. We say that X (t , x) is a Regular Lagrangian Flow
associated to bt if:

(i) X (·, x) is an absolutely continuous solution in [0,T ] to the ODE
γ̇ = bt (γ) for L n-a.e. x ∈ Rn;

(ii) for some constant L ≥ 0, called compression constant, one has
X (t , ·)#L n ≤ LL n for all t ∈ [0,T ].

Recently, using notions from Γ-calculus, the DiPerna-Lions theory
has been extended in A.-Trevisan to a large class of metric measure
structures, including all RCD(K ,∞) metric measure spaces.
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Regular Lagrangian Flows
Existence and uniqueness of the RLF are equivalent to the well-
posedness, in the class of nonnegative functions % in L∞t (L1

x ∩ L∞x ),
of

d
dt
%t + div

(
bt%t

)
= 0.

The DiPerna-Lions strategy relies on a regularization %t 7→ %εt := Rε%t
and on the fine analysis of the commutator

d
dt
%εt + div

(
bt%

ε
t ) = C ε(bt , %t ),

i.e. C ε(bt , %t ) := div
(
btRε%t )− Rε

(
div (bt%t )

)
.

We discovered that the use of Pε as regularizing operator Rε leads to a
coordinate-free formula for the commutator, namely (if div bt = 0)

〈C ε(bt , %t ), φ〉 =

∫ ε

0

(∫
X
〈∇bsym

t ∇Pε−s%t ,∇Psφ〉dm
)

ds

and this is starting point for the “synthetic approach” to the theory of
RLF’s in RCD(K ,∞) spaces (including the Gaussian case of A-Figalli).
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Sets of finite perimeter in metric measure spaces

In a metric measure space (X ,d ,m), we say that a Borel set E has
finite perimeter if there exist Lipschitz functions fn convergent to χE in
L1(X ,m) with

lim sup
n→∞

∫
X
|∇fn|dm <∞.

Optimization of the sequence (fn) and localization of this construction
to open subsets then give a finite Borel measure |DχE | = Per(E , ·),
playing the role of “surface measure”. The “distributional” point of view
is still possible, but requires the language of derivations (Di Marino).
Question. Can we prove that at |DχE |-a.e. point the set E has a
“good” behaviour on sufficiently small scales? For instance, under
fairly general assumptions, one can prove that any tangent set F in any
tangent metric measure structure (Y , δ, ν) is an entire minimizer of the
perimeter.
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Sets of finite perimeter in RCD(K ,N) spaces
In a work in progress with Brué and Semola, we are studying the fine
structure of sets of finite perimeter in RCD(K ,N) spaces.
Definition. A RCD(K ,∞) space (X ,d ,m) is RCD(K ,N) if Bochner’s
inequality holds

∆
1
2
|∇f |2 ≥ 〈∇f ,∇∆f 〉+ K |∇f |2 +

1
N

(∆f )2.

• Any RCD(K ,N) space has an “essential dimension” (Brué-Semola),
i.e. there exists an integer k ∈ [1,N] with m(X \ Rk ) = 0. Here Rk is
the k -dimensional set, i.e. the set of points x where the limit

lim
r→0+

(
X ,

1
r

d ,
1

Z (x , r)
m
)

=
(
Rk ,deu,L

k)
occurs in the pointed, measured Gromov-Hausdorff sense.
• We call RCD(K ,N) “non-collapsed” (De Philippis-Gigli) if there is no
dimension gap, i.e. k = N.
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Sets of finite perimeter in RCD(K ,N) spaces
Difficulty: Even though RCD(K ,N) spaces are doubling and their
tangent bundle (according to Cheeger’s theory) is finite-dimensional,
it is hard to identify DχE and its “components”, because the bundle is
defined only up to m-negligible sets.
Theorem. If (X ,d ,m) is non-collapsed RCD(K ,N), |DχE | is
concentrated on RN and, at |DχE |-a.e. point x ∈ X, the tangent set to
E at x is the half-Euclidean N-space.
The first ingredient of the proof is the fact that blow-up provides the
equality case in the Bakry-Émery inequality

(BE)1 |∇Pt f | ≤ Pt |∇f |.

Theorem A. If (X ,d ,m) is RCD(K ,N), at |DχE |-a.e. point x ∈ X, any
tangent F to E at x satisfies

|∇Pt+sχF | = Pt |∇PsχF | ν-a.e. in Y ,

so that fs = PsχF satisfy (BE)1 with equality.
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Sets of finite perimeter in RCD(K ,N) spaces

The second ingredient is a “dual” splitting theorem, where instead of
starting from a line (Cheeger-Gromoll, Gigli), we start from a function
satisfying (BE)1 with equality.
Theorem B. (Rigidity of (BE)1 and splitting) In a RCD(0,N) space
(Y , δ, ν), the condition

|∇Pt f | = Pt |∇f | ν-a.e. in Y

with f 6≡ 0, implies the splitting

(Y , δ, ν) ∼ (Y ′, δ′, ν ′)× (R,deu,L
1)

and, with coordinates y = (y ′, s), f is a monotone function of s.

Open problems: • Rectifiability? • Carnot groups?
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Thank you for the attention!

Slides available upon request
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