
Droplet breakup in the liquid drop modelwith background potential
Lia Bronsard

McMaster University
PDEs and Geometric Measure TheoryETH, Zurich

with Stan Alama (McMaster), Rustum Choksi (McGill), and Ihsan Topaloglu (VCU)



Gamow’s Liquid Drop Model
In 1928, physicist George Gamow proposed a simplified model for atomic nuclei.

I Consider nucleus as a uniformly charged, incompressible fluid body.
I Let Ω ⊂ R3 be a set of finite perimeter (Caccioppoli set) which represents thenucleus.
I Minimize the following energy over sets with nuclear mass (Lebesgue measure)
|Ω| = M ,

E0(Ω) := Per(Ω) + ˆΩ
ˆ

Ω
1

|x − y |dx dy

I Isoperimetric term:
Per(Ω) = ∥∥χΩ∥∥BV = sup

{ˆ
Ω divφ dx : φ ∈ C1

0 (Rd ;Rd ), ∥∥φ∥∥L∞(Rd ) 6 1
}
.

I The perimeter Per(Ω) is minimized by balls.
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Gamow’s Liquid Drop Model
E0(Ω) := Per(Ω) + ˆΩ

ˆ
Ω

1
|x − y |dx dy , |Ω| = M

I Nonlocal interaction: This is the Newtonian potential energy of a self-gravitatingfluid body. ˆ
Ω
ˆ

Ω
1

|x − y |dx dy = ∥∥χΩ∥∥2
H−1(R3) = ˆ

R3
|∇vΩ|2 dx ,

where vΩ solves −∆vΩ = 4πχΩ in R3 .
I The Coulomb interaction is maximized by balls. (Carleman 1919; Lieb 1977)
I Rescale Ω = M1/3Ω1 , |Ω1| = 1, get

E0(Ω)
M

= M−
1
3 Per(Ω1) + M

2
3

ˆ
Ω1

ˆ
Ω1

dx dy
|x − y | .

I Expect minimizer is a ball for small M ; no minimizer exists for large M .
I Nature seems to agree: observed nuclei are spherical.
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Diblock copolymers
Different physics, but similar variational structure.

I Polymer strands composed of two monomers A, B glued together.
I Monomers of the same type attract; of opposite type repel.

fA denotes the volume fraction of A-type monomers.



I Diffuse-interface energy (Ohta-Kawasaki) model, u : Ω ⊂ R3 → R phase function,
Kε,γ (u) = ˆΩ

[
ε
2
|∇u|2 + 1

εW (u)] dx + γ
∥∥u −m

∥∥2
H−1 , m = 1

|Ω|
ˆ

Ω u dx .

I u = 1 in pure A-phase, u = 0 in pure B-phase, the minima of W .

I Γ-convergence  sharp interface model, a nonlocal isoperimetric problem (NLIP), for
u ∈ BV (Ω; {0, 1}),

Eγ (u) = ˆΩ |∇u|+ γ
∥∥u −m

∥∥2
H−1 , m = 1

|Ω|
ˆ

Ω u dx .

I Phase domain structure, morphologies depend on volume fraction of monomers and γ .
I Gamow model in R3 obtained as a limit with very dilute A-phase and very stronginteraction strength γ . (Choksi-Peletier, ABCT)

Extensive literature: Acerbi-Fusco-Morini, Alberti-Choksi-Otto, Bonacini-Cristoferi,Choksi-Glasner, Choksi-Peletier, Choksi-Ren, Choksi-Sternberg, Frank-Killip-Nam,Frank-Nam-Van den Bosch, Goldman-Muratov-Serfaty, Knüpfer-Muratov,Knüpfer-Muratov-Novaga, Lu-Otto, Muratov, Ren, Ren-Wei, Shirokoff-Choksi-Nave,Sternberg-Topaloglu,. . .
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Minimizers of Gamow’s model
Define

e0(m) = inf
{

E0(Ω) = Per(Ω) + ˆΩ
ˆ

Ω
dx dy
|x − y | : |Ω| = m

}
.

Much is known about this variational problem, but an important question remains open:

Theorem (Knupfer-Muratov, Lu-Otto)
There exist constants 0 < mc1 ≤ mc2 ≤ mc3 such that

I For m ≤ mc2 , there exists a minimizer of e0(m);
I For m ≤ mc1 the minimizer is a ball;
I For m > mc3 the minimum is not attained.

I It is unknown whether any pair of these critical values coincide.
I The nonexistence of a minimizer is due to splitting of the mass into pieces.
I Minimizers satisfy H∂Ω(x ) + vΩ(x ) = λ, with H∂Ω the mean curvature, and λ ∈ R aLagrange multiplier.
I Locally minimizing solutions and non-min critical points by Ren-Wei, Julin-Pisante.
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A generalization
The nonlocal term need not be the Newtonian potential; Riesz potentials may besubstituted.

Es
0 (Ω) = Per(Ω) + ˆΩ

ˆ
Ω

dx dy
|x − y |s , |Ω| = M,

for Ω ⊂ Rd with 0 < s < d . Call es
0(M) the infimum value of Es

0 under the constraint
|Ω| = M .

I Existence/nonexistence is similar to Gamow (s = 1, d = 3);
I Existence for small M = |Ω| proved by:

I Knüpfer-Muratov for d = 2 and for 3 ≤ d ≤ 7 and 0 < s < d − 1;
I Bonacini-Cristoferi for all d ≥ 2 and 0 < s < d − 1;
I Figalli-Fusco-Maggi-Millot-Morini for d ≥ 3 and 0 < s < d .

I Nonexistence for large M = |Ω| by Knüpfer-Muratov for s < 2.An important improvement for small s:Theorem (Bonacini-Cristoferi 2014)
There exists s̄ = s̄(d ) such that for all 0 < s < s̄ if es

0(M) is attained, then Ω is a ball.

In other words, for sufficiently small s the critical values mc1 = mc2 = mc3 coincide.
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Background potentials
Lu-Otto, Frank-Nam-Van den Bosch (2016) add an attractive background potential toGamow’s model,

EV (Ω) = Per Ω + ˆΩ
ˆ

Ω
1

|x − y |dx dy︸ ︷︷ ︸
E0(Ω), Gamow!

−
ˆ

Ω V (x )dx .

with V (x ) = Z /|x |, Coulomb potential, mass constraint |Ω| = M .

I Sharp-interface toy model of the Thomas-Fermi-Dirac-von Weizsäcker (TFDW)energy (“Ionization conjecture”)
I Question: does the attractive potential V (x ) = Z /|x | enhance binding (existence of amin)?
I Answer: not much, but it gives a parameter to play with!
I Nonexistence of a min if M > Z + C2 max{Z 2/3, 1}, for constant C2 > 0;
I Minimizer is a ball if M ≤ Z + C1 , for constant C1 > 0.
I Idea: for large M , nuclear attraction of V is screened by Ω, compactness is lost atinfinity.Questions: if V (x ) is of longer range than Coulomb, will it confine the minimizers, andgive compactness? And if so, what will minimizers look like?
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Long-range potentials
EV (Ω) = Per Ω + ˆΩ

ˆ
Ω

1
|x − y |dx dy −

ˆ
Ω V (x )dx .

with V (x ) longer range than 1/|x | (“super-Newtonian”,)(H1) V > 0, and V ∈ L1loc(R3).
(H2) lim

t→∞
t
(

inf
|x |=t

V (x )) =∞.
(H3) lim

|x |→∞
V (x ) = 0.

For ex, V (x ) = Z /|x |p , with p < 1, Z > 0 constant.Theorem (Alama-B-Choksi-Topaloglu)
Under hypotheses (H1)–(H3), for any M > 0, EV attains its minimum among Ω ⊂ R3

(Caccioppoli) with |Ω| = M .

The proof uses concentration-compactness methods to ensure that mass does not escapeto infinity.More about that later. . .
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Extension to TFDW
Thomas-Fermi-Dirac-von Weizsäcker (TFDW):
EV (u) := ˆ

R3

(
|∇u|2 + |u|10/3 − |u|8/3−V (x )|u|2)dx + 1

2

ˆ
R3

ˆ
R3

|u(x )|2|u(y )|2
|x − y | dxdy ,

u ∈ H1(R3), ˆ
R3

u2 = M .

I Frank-Nam-van den Bosch (2016): for Coulomb potentials, V (x ) = Z /|x |, there existsa constant C > 0 so that there exist minimizers only if M < Z + C .
I Nam-van den Bosch (2017): For potentials which decay faster than Coulomb,

V (x )|x | −−−→
|x |→∞

0, nonexistence of a minimizer for large M .
Theorem (ABCT)
If V satisfies the long-range conditions (H1)–(H3), then EV attains its minimizer for all
masses M > 0.
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Another generalization: Riesz potential interactions
For the more general Gamov-type model, with the Coulomb interaction replaced by amore general Riesz potential:

Es
V (Ω) = Per(Ω) + ˆΩ

ˆ
Ω

dx dy
|x − y |s −

ˆ
Ω V (x ) dx ,

with 0 < s < d .

I We assume V ∈ L1
loc , V (x ) ≥ 0, V (x ) −−−→

|x |→∞
0 but with slow decay compared to theRiesz kernel |x |−s

I for example, V (x ) = Z
|x |p , 0 < p < s;

Again, Es
V attains its minimum for any mass M > 0.

I The question remains (in all cases,) what do minimizers look like?
I To try to answer this, we study the concentration-compactness structure ofminimizing sequences. . .
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The basic splitting lemma
We use the following fundamental results for sequences of sets of finite perimeter: AssumeΩn ⊂ Rd are sets with volume |Ωn| = M > 0 and bounded perimeter Per(Ωn) ≤ C , for all
n.

I Local compactness: There exists a subsequence, a set U ⊂ Rd of finite perimeter,and translations xn ∈ Rd such that
Ωn − xn −→ U, locally (L1

loc ).

I Splitting: There exists disjoint decomposition Ωn − xn = Un ∪ Vn , with
Un → U globally, and Vn → ∅ locally,

so that
Per(Ωn) = Per(Un) + Per(Vn) + o(1), D (Ωn) = D (Un) + D (Vn) + o(1),

where D (Ω) = ˆΩ
ˆ

Ω
dx dy
|x − y | .(Frank-Lieb 2016)
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Concentration compactness structure
EV (Ω) = Per Ω + ´Ω ´Ω 1

|x−y |dx dy −
´Ω V (x ) dx , |Ω| = M

Concentration Theorem (Alama-B-Choksi-Topaloglu)Let 0 ≤ V ∈ L1
loc , lim|x |→∞ V (x ) = 0, and let Ωn be a minimizing sequence for EV . Theneither:

I there exist xn ∈ R3 so that (Ωn − xn) −→ S0, globally (L1),where S0 attains the minimum in eV (M).
I there exists a subsequence, N ≥ 2, masses mi with ∑N

i=0 mi = M , and points
{xn,i}i=1,...,N with |xη,i − xη,j | → ∞ so that:∣∣∣∣∣Ωn 4

[
S0 ∪

N⋃
i=1

(Si + xn,i )]∣∣∣∣∣ −→ 0,

where S0 minimizes eV (m0) and Si minimizes e0(mi ) for each i = 1, . . . ,N .
I lim

n→∞
EV (Ωn) = eV (m0) + n∑

i=1

e0(mi ).
We may use this theorem with V of long range to prove existence of minimizers for all
M > 0.
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Remarks on the concentration theorem
Define: M0 := {

m > 0 : e0(m) admits a minimizer}.

Definition [Knupfer-Muratov-Novaga]A generalized minimizer of EZ is:

I a disjoint union of sets Si , i = 0, 1, . . . ,N , |Si | = mi , and ∑n
i=0 mi = M ;

I S0 minimizes eV (m0) and Si ∈M0 minimizes e0(mi );
I e0(M) = eV (m0) +∑n

i=1 e0(mi ).

I K-M-N showed for Gamow that for every M there exists a generalized minimizer.
Corollary (A-B-C-T)
Let 0 ≤ V ∈ L1

loc , lim|x |→∞ V (x ) = 0. Then, every minimizing sequence for EV , has a
subsequence which converges to a generalized minimizer.

So the Concentration Theorem characterizes (up to subsequences) all possible minimizingsequences of EV , including the Gamow functional E0 .
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Exploring the structure of minimizers
To understand the geometry of minimizers, we consider a 1-parameter family oflong-range potentials,

V (x ) = VZ (x ) = Z
|x |p , 0 < p < 1,

EZ (Ω) = Per Ω + ˆΩ
ˆ

Ω
1

|x − y |dx dy −
ˆ

Ω
Z
|x |p dx , |Ω| = M

I Define:
eZ (M) := min{EZ (Ω) : |Ω| = M}, e0(M) := inf{E0(Ω) : |Ω| = M}

I By Theorem above, we have existence for all M > 0, all Z > 0:
∃ ΩZ ⊂ R3 , EZ (ΩZ ) = eZ (M).

I If Z → 0+ , we recover Gamow in the limit, and nonexistence for M > mc3 large.
I For large M , we have dichotomy (splitting) of the minimizers as Z → 0, so we expectthat minimizers of EZ will be disconnected for small Z > 0. . .
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Droplet interactions
I We may determine the scale and geometry of the multi-droplets via their interactionenergy.

I Ansatz: (upper bound construction)

I Take a generalized minimizer for EZ : S0 minimizes eZ (m0), and S1, . . . ,SN minimize
e0(mi ).

I Fix t > 0 and vectors {yi}i=1,...,N with y0 = 0.
I Define Ωt = S0 ∪

N⋃
i=1

(Si + t yi ).

I We calculate EZn (Ωt ):
EZn (Ωt ) ' eZ (m0) + N∑

i=1

e0(mi )− Zn

ˆ
S0

|x |−p dx + t−1
N∑

i, j=0
i 6=j

mi mj

|yi − yj |
− t−pZn

N∑
i=1

mi

|yi |p

I Minimize over t > 0, get t = tn = Z
− 1

1−p
n , the optimal scale of the pattern;

I EZn (Ωtn ) ' eZ (m0) + N∑
i=1

e0(mi )− Zn

ˆ
S0

|x |−p dx + Z
p

1−p
n Fm(y1, . . . , yN ) + o(Z p

1−p
n ),

with Fm(y1, . . . , yN ) = N∑
i, j=0
i 6=j

mi mj

|yi − yj |
−

N∑
i=1

mi

|yi |p
.
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Main Theorem (Alama-B-Choksi-Topaloglu)
Theorem
Let M /∈M0 , and Ωn := ΩZn , Zn → 0. Then, there is a subsequence along which:∣∣∣∣Ωn 4

[
S0 + N⋃

i=1

(Si + x i
n)]∣∣∣∣ −→ 0

eZ (m0) = EZ (S0), e0(mi ) = E0(Si ), i = 1, . . . ,N ;(
∂Ωn − x i

n

)
−→ ∂Si in C1,α{

Z
1

1−p
n x i

n −→ yi as n→∞, i = 1, . . . ,N,
where (0, y1, . . . , yN ) minimize Fm .

Remark: Fm attains its min for any choice of masses m.
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Two important issues
I The Concentration Theorem is not enough to study droplet interactions: the o(1)error might overwhelm the interaction terms.

I How do we choose the masses m = (m0,m1, . . . ,mN )?Both issues involve regularity theory, via ω-minimality (DeGiorgi, Miranda,. . . )
I Minimizers Ωn of EZn are uniformly ω-minimizing, hence converge to the limit sets Silocally as C1,α graphs.
I Splitting occurs cleanly, with no residual o(1) terms; errors will be o(Z p

1−p
n ).

I Euler-Lagrange equation H∂Ωn + vΩn = λn holds on each connected component, andpasses to the limit.
I Each Si satisfies same EL eqn, with the same Lagrange multiplier.
I If the Lagrange multiplier determines the solution to the Gamow problem, then eachdroplet is identical.
I This is true when the minimizers are balls.
I We don’t know if this is the case for Gamow, but it is for Riesz potential functionalswith 0 < s < s̄(d ) (Bonacini-Cristoferi 2014)
I We conjecture that the masses are always equal.
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