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a) A review  of the general regularity

a) Non local versions of Monge Ampere

b) Fractional kernels adapted to the geometry of a 
solution

Main topic of the presentation: 

The Monge Ampere equation and non local Processes



The  Monge Ampere equation

MA(u(x)) =  det D2 u(x) =Π λj

is a monotone function of D2u  provided that u in convex  
(i.e. all eigenvalues of D2 are  positive)

We can also define 

MA(u(x)) = Inf{Lu / among Lu=aij (x)Dij u with the 
matrix  n. aij (x) being an affine
transformation of the identity of 
determinant one}
(a volume preserving transformation of the Laplacean)



About right hand sides, there are  different important 
degrees of regularity 

Det D2  (u(x)) =  f(x, u,..) ,  
(If smooth we expect regularity of u)

(or)                     0 < h < Det D2  (u(x)) < H

(bounded measurable RHS) important for  basic theory, 
invariant under dilations and deformations)

Det D2  (u(x)) a doubling measure 

(natural in case of free boundary, when boundary and  
interior interact, for instance, with harmonic measure: 
D.Jerison)



About fully non linear equations
We will only consider Concave Fully Non-Linear eqs. ,of the form

Inf α of  aijα (x) Dij (u(x)), 

where the index α indicates that aijα is in some set of positive 
matrices, for instance between two multiples of the identity 
(Ex. Pucci extremal operator)

In the non-local case, (second) derivatives are replaced by 
kernels of the form  

∫ [u(x+y)-u(x)] Kx (y) dy
K is a positive, symmetric  kernel that compares the density at 
y with such  at x: For instance in a process with random 
jumps instead of walks



The final  (non linear) equation is invariant under
translations since the same family of  α’s is tested at all x.

à the derivatives of u satisfy a similar equation, 
but for “bounded measurable kernels”

Moreover, from the concavity of the operator, second order
incremental quotients are subsolutions this same 
discontinuous equation.

à That is one of the reasons why it is so important to find 
regularity properties for equations with discontinuous
coefficients 



A fundamental development occurred in the early ’80s
from the work of Krylov-Safanov on the regularity of
solutions to fully non linear equations:

their main theorem showed the Harnak Inequality
property for solutions of equations with measurable
coefficients in non divergence form, and that implied
applied to second derivatives (Evans-Krylov) C2, α

regularity of u.

Fundamental to this theorem is the ABP theorem, and the
role of the Monge Ampere equation being the potential of
a volume controlled mapping, with simultaneously non
divergence and divergence structure, allows to connect the
size of the volume of the map in the interior

(det D2 w with the slope at the boundary).



Approaches to regularity for fully non linear equations

For equations with a comparison principle there are two
ways to study regularity issues: 
1- Regularity inherited from the boundary and 
2-Interior Regularity

The first one requires regularity of  the domain and of the  data  
along the boundary and often some form of translation 
invariance of the equation  to obtain interior regularity through a 
maximum or comparison principle.

Interior regularity, in turn, has deeper result. The Harnack
inequality  for instance: It establishes that for a non negative 
solution in say, a ball of radius one, the Sup and Inf in the ball 
of radius ½ are comparable.



Back to the MA equation partially fits in the discussion 
above: 
It is a (degenerate) fully non linear equation.

Further  (det B)1/n  is a concave function of  matrices B 
(as long as B stays positive)

In between Laplace and Monge Ampere we have the 
symmetric functions of the Hessian

∑m =  ∑ !d1 dl2….  !dm

Each one has a cone of monotonicity in the first quadrant 
and  ( ∑m) 1/m is concave.
They are degenerate and harder than both, Monge
Ampere and Laplacean.



Likewise, the solution of  MA(u(x) = det Dij u = f(x) can 
also be defined in the first quadrant as  

Mu(x) = infaij aij(f(x))Diju(x) = f(x) 

where the infimum is taken among all the positive matrices 
aij with det aij = the appropriate function of  f(x).

In other words, we minimize all measure preserving affine 
transformation of the Laplacean.

For D 2u restricted to the first quadrant u(x) results convex 
(important for ellipticity) and MA vanishes along the 
boundary.



• After the work of Krylov and Safanov, the regularity 
inherited from the boundary for solutions of MA was 
attained in different ways, but mainly from boundary 
regularity

• A completely different question emerged with Yann
Brenier’s “Polar factorization and monotone 
rearrangement of vector valued functions” Lacking  the 
familiar “ boundary conditions“ created the need of a   
different “ local” treatment ” of the solution

• Also optimal transportation does not see “ singular 
measures”



The Monge Ampere in a local context geometry and 
regularity

à Good & Bad:

• Very degenerated (bad)

• Very rich family of invariants (good):
The family of “bounded, measurable RHS” 

0 < t  < det D2 u < T 

Is invariant under Measure preserving affine 
transformations (of determinant one) dilations, rigid 
motions. ( as many invariances as the Laplacean)



Regularity of weak solutions to Monge Ampere 

Dichotomy:

• It may flat in a set with no extremal points in 
the interior (i.e. is generated only by convex 
combinations of boundary points)

or

• It is strictly convex (tangent planes have a single 
contact point) and it is C1,α

• ( Flat at most in  a set of dimension  n-2



Sketch of the main dicotomy arguments

• Main lemma: The set  of contact points (where u vanishes) 
cannot have interior extremal points.
In other words, the zero set, if not a point, it is a convex 
combination of points in the  boundary of  the domain 
of definition …..



Some preliminary: John’s Lemma and renormalization

John’s Lemma: Any convex set S with non empty interior 
can be trapped between two ellipsoids multiple of each other:
• E1 contained in S,  contained in t(n) E1, where t 

depends only on the dimension n

Renormalization: Given a solution, u(x), of  

0 < m <  det D2(u(x)) < M ,

and an affine transformation Ax, then  

uA =  (det-1A) u (Ax) ,

also satisfies        0 < m <  det D2(uA(x)) < M  



John’s Lemma + affine renormalization



Proof: the 2D picture really corresponds to an 
nD configuration with n > 2.

Assume we have the following geometry:



If we have an extremal point , we can slice
the solution u with a plane of very small  slope



Since the slope is very small the distance, 
d1 is much smaller than d3



Renormalize as discussed above, so the domain becomes 
equivalent  to a ball. A quadratic barrier pushes the min of
(-l+u) to be of order -1,  at a point in ∏*2



On the other hand, we have a lower barrier that says that 
u–l is bounded below by its distance to the boundary:

W =  ( |x’|2 - C) y 2/n

where y is in the direction orthogonal to ∏2 ( horizontal in 
our picture) and x’ tangential to ∏2 , 

à that contradicts the previous configuration

And so this completes the proof.



This observation becomes much stronger if we supplement 
it with compactness:
Assume that u is very close to zero in a fixed neighborhood 
of the origin,   say  u < ε in Br (0). 
• If ε goes to zero within the fixed Br (0), u is forced to 

converge to zero  in a much larger set, generated all the 
way to the boundary of the domain

• The counterpart is:  if u is not flat all the way to the 
boundary of the domain, then u is strictly convex in the 
interior.

In other words, the eccentricity of the level surfaces of u
changes in a controlled fashion



An important geometric element of solutions of Monge
Ampere eqs.  is then its sections:
• Given a point x (say x = 0 , the origin), we may substract

a plane l(x), supporting the graph of u at 0 and consider 
the level surfaces  

S t   of  u* = u-l,       (S t  =  {u* < t } )

The surfaces   S t  have a doubling property and adjacent  
sections  are “comparable”:

• That is  S2t is trapped between two multiples bigger than 
one of S t  and also  a multiple of S t  engulfs its adjacent  
sections of comparable height.



• This sets the geometry in a structure that allows to
develop real analysis replacing balls by sections of u.

• It connects, in some way,  the domain of 
definition D, with its image by the transport map

(see the fundamental work of De Philippis, Figalli and Savin)



Two Monge Ampere like

fractional equations



A first Monge Ampere fractional equation  
considers the 

inf of (Fk (u (x)) ,      where 

Fk(x) consists of all affine transformations of 
determinant one, but the equation is now  the 
fractional s-Laplacean



Existence and regularity: we prescribe a simple geometry : 
a smooth convex, strict subsolution !, asymptotic to a cone
of strictly convex smooth trace, and solve the equation

MA(u) = u-!

• Requires the s >1/2  for integrability at infinity,
• May also assume that " is a smoothing by convolution
of  G



Main steps:

• Existence of solutions: Construct appropriate sub and 
super solution barriers:

From below, ! does, from above is more delicate

• Regularity: Solutions are semiconcave, i.e second 
derivatives  are bounded above ( controls comes from 
infinity and concavity of the  operator)

• Along each line the fractional Laplacean is bounded above 
and, on the other hand, strictly positive ( this replaces
convexity by a sort of Fractional convexity)



• The  operators that are close to the infimum remain 
strictly Elliptic.

• A non local version of Krylov Safanov and
Evans Krylov applies.



The first assertion, the fact that the 
• Fractional Laplacean is positive along any line  
is proven by contradiction .

Say e is a “bad line” where the average becomes negative.

By convolving (testing) u with an admissible kernel that is 
“heavily” charged in the bad direction e .

From the semi-concavity the  contribution of the rest cannot 
make the whole integral positive, and so  a contradiction
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for C1,C2 defined in (3.12) and (3.13), and

µ1 = 1 − s
2

∫

R

min{2L |t |,C |t |2}
|t |1+2s dt = L2−2s

2s − 1

(
C
2

)2s−1

. (3.9)

Remark 3.4 Proposition 3.3 yields (3.4) in the limit as s → 1 since lims→1 µ0 = µ̄0/2
(with µ̄0 defined by (3.5)), lims→1 µ1 = C/2 and

lim
s→1

(1 − s)
∫

R

u(te) − u(0)
|t |1+2s dt = uee(0)

2
.

Proposition 3.5 Assume ϵ1, . . . , ϵn are positive constants such that
∏n

j=1 ϵ j = 1.
Then, in the same hypotheses of Theorem 3.1, we have,

(1 − s)
∫

Rn

u(y) − u(0)
(∑n

j=1 ϵ2
j y

2
j

) n+2s
2

dy ≥ µ0 ωn

2n
·

n∑

j=1

1

ϵ2s
j

,

with µ0 defined in (3.8).

Remark 3.6 Proposition 3.5 implies (3.7), which yields (3.6) in the limit as s → 1
since

lim
s→1

(1 − s)
∫

Rn

u(y) − u(0)
|A−1y|n+2s dy = ωn

4n
trace(AAt D2u(x)).

Propositions 3.3 and 3.5 (that we prove below) allow to prove the main result of
this section, Theorem 3.1.

Proof of Theorem 3.1 Consider a symmetric matrix A > 0 with det A = 1 and
λmin(A) < 1

k . We can write A = P J Pt , and denote ũ(y) = u(Py). Observe that then
Proposition 3.5 (see also (3.7)) implies

∫

Rn

u(y) − u(0)
|A−1y|n+2s dy =

∫

Rn

u(Py) − u(0)
|J−1y|n+2s dy =

∫

Rn

ũ(y) − ũ(0)
(∑n

j=1 ϵ2
j y

2
j

) n+2s
2

dy

>
µ0 ωn

2n(1 − s)
k

2s
n−1

and we get the estimate

inf
{∫

Rn

u(y) − u(0)
|A−1y|n+2s dy

∣∣∣∣ A > 0, det A = 1, λmin(A) <
1
k

}
≥ µ0 ωn

2n(1 − s)
k

2s
n−1 .

(3.10)
Observe that by choosing A = I , Proposition 3.3 yields

123

To show that the competing kernels are bounded,
the crucial estimate is

This implies that it is enough to have just  one  epsilon 
small to makes the configuration ineligible to be a  
minimizer,    which also implies that all directions are 
comparable



Comment:
A natural question is what happens with an equivalent of 
the full family of equations of eigenvalues of the Hessian?

Yijing Wu has existence and regularity results for the 
second form:

∑  ! i !j

In general, it reduces to an:  “inverse problem”    from  
“the corresponding Grassmanian induced by the 
operator”   into the size of the “fractional operator” itself.



In the second instance, instead of considering 
measure preserving “affine transformations”
take instead just measure presseving kernels
“each level surface can have a completely different, highly 
discontinuous image”

The only condition is that the infimum is among all 
measure preserving transformations of the fractional s-
Laplacean kernel (the s-Laplacean kernel is the common 
rearrangement
of all of these “test” kernels )



We start again with a fixed kernel:
• Choose again the Fractional Laplacean kernel
Fs(x)=  (1-s)/|x|n+2s but now look at the equation

Mas(u((x)) = Infk ∫  [u(x+y) –(u(x)+∇u(x).y] K(y)dy

where the infimum runs now among all K that are 
a measure preserving rearrangement of K0

The solution of this problem must be a  convex
function, (the infimum would be  - ∞  otherwise)
and although apparently disorganized, it ends up
having a beautiful description:



If Kα is such a kernel,

|{Kα(t)>}| = |{Ks(t)>}| = t -n/n+2s

The equation is now

Maα(u(x)) = infα ∫ [u(x+y)-(u(x) +∇u(x).y)] Kα(y)dy

We prove existence, C1,1 regularity of the solution and 
convergence to the classic MA when s à 1.

In fact, the  cones Kα that realize the minimum  have a 
very strong connection with the  geometry of the 
solution:



This is due to the fact that in order to minimize 
the result the level surfaces of the kernel Kx(y),  
i.e. the kernel that minimizes at x

∫ [u(x+y) – u(x)] K(y) dy

must align its level surfaces to those of

[u(x+y) – u(x) – grad(u(x).y)] 



For every t we have a !, such that K> t and u< ! have the 
same volume, and then they have to match
i.e. we have a ! (t) or a t(!)  that matches the 
corresponding level surfaces  - Assume they do not 
coincide, then rearranging K,   we would get a smaller 
value

We can  then find a formula for K x(y)  as  function of u:



Let  us find a formula for K in terms of the level surfaces of u:  
• We integrate in !, the levels of u.

• Then t (!) is the value that matches |{K>t}| with " (!), the volume 
of the level surface of u :  

• We get:      " (!)  must be = |{K>t}| = t-n/n+2s =  |{x< t-1/n+2s}|



And the equation  becomes an equation in
the distribution function of the solution itself :

(1-s)∫! (")"- (n+2s)/nd" = -n/2s (1-s) ∫"- (2s)/n(!)d!=f

where ! (") is the high that corresponds to a 
section of area  "

Note that for sà1, the formula  applied to u(x)=|x|2 

near the origin and  linear growth near infinity   à
converges to standard Monge Ampere 



Comment:  Instead of prescribing data at infinity, one 
may  truncate the kernel and in particular make 
the equation translation invariant

Is there a Jorgens  Calabi Theorem for this 
equation, i.e global solutions are quadratic 
polynomials?



A third problem:

Non local kernels adapted to the geometry of a 
solution to the  Monge Ampere equation



This third case is in collaboration with Rafeyel
Teymurazyan and Jose Miguel Urbano and has to do
with non local kernels that adapt to the level
surfaces a solution to Monge Ampere:

It is somewhat based in work I did with Gutierrez
where we notice that the level surfaces of a solution to
the MA (called sections) have a geometry of “balls”
that provides the structure for a Calderon
Zygmund type harmonic analysis theory



In this third issue ,then,we are given roughly a (global) 
solution φ of 

0 < p < MA φ < P

and we  are interested in solutions of 

L(u(x)) = infA ∫ [u(x+y)-u(x)] Ks,x (Ay) dy

Where now  the argument Ay adapts the level surfaces 
of the kernel to those of the “sections” of φ

If the solution φ to MA  were  C |x| 2, K would be the 
standard Fractional Laplacean, where existence and 
regularity are well known.



• If we would have  a bounded measurable kernel, or the 
corresponding fully non linear non local equations the 
regularity would follow.

• The problem is hidden in the proof of the Harnack
Inequality for the  fractional  bounded measurable kernel.

• We use there a Calderon Zigmund decomposition lemma 
argument that involves many scales.

• In the Eulidean case they are all comparable, but when we 
have the level surfaces of a solution to Monge-Ampere the 
geometry of small sections and large sections start to  
diverge and they have equal weight.

• The solution was to develop  covering  lemmas that control 
interaction among the sections involved.

• This is done with a somehow involved diadic decomposition.



• We prove an ABP theorem  and Harnack 
Inequalities  for such solutions and C1,h  for the 
fully non linear ones.

Comment: This work seems to be related to optimal 
Transporting  Levi processes.



Thank you, very much for your attention















In between Laplace and Monge Ampere we have
the symetric functions of the Hessian
∑m =  ∑ !d1 dl2….  !dm

Each one has a cone of monotonicity containing
the first quadrant and  ( ∑m) 1/m is concave
They are degenerate and harder than both 
Monge Ampere and Laplacean.



And engulf adjacent slices of the same size



Thank you very much for your attention!









The level surfaces on Monge Ampere as a basis for 
analysis:
The level surfaces of u provides a structure that 
allows to develop real analysis, replacing balls by 
sections of u
This connects in some way the domain of definition 
D with its image by the  transport map ( if you have’t
yet, see the fundamental work of De Philippis,Figalli
and Savin on harmonic analysis of Monge Ampere)



Probably the main difficulty is  to adapt to this geometry the
non local APP and Harnak inequality of C. Silvestre, 
valid up to second order, due to the deformation of the kernels 
that  difficult  the interactions in the covering lemma.

We use special covering lemmas in deforming media where
The space is split in areas of different eccentricity



In this case we non local kernels Kα whose 
level surfaces reproduce now the sections of 
a given (convex) solution to the second order 
Monge Ampere equation
In other words, in a medium where space 
deforms by the D2 of a solution to MA, the 
kernels above are a natural Levy process 
with good basic regularity
We can think of this geometry as linked  to 
optimal transportation (by grad (φ)) of a 
standard Levy process



It also suggests connecting  Monge Ampere to non local 
operators, in two different ways:
Providing , with its level surfaces a geometric bases that replaces
the standard bases of balls and cubes  to do harmonic analysis:
covering lemmas , singular integrals

To give a parallel:

The domains obtained by slicing the parabola P(x) = x2 with planes
( the balls with all centers and radia) is substituted  by slices of
a non degenerate solution u(x) of Monge Ampere 



Fully non linear  non local equations with kernels 
decaying along the level surfaces of a solution to Monge Ampere

Given now a solution, w, to the MA equation we consider its
level surfaces, sections) provided by vx(y) <m, with vx the linear 

function

vx(y) = w(y) – w(x) - ∇(w(x).y-x

We will consider functions u (x) super and sub solutions of the extremal Pucci
operators associated to the function,w:

P+ (u) > 0 and  P- (u) <0
With 

P+ (u (x)) = ∫ (2-α) [" #+ +  $ #- ]  vx(y) –(n+α)/2 dy ( extremal Puci along the level 
sets of w)



First step:
The non negative solution,  u (x) , is in Lε

Main bound: u>0, u(0) =1 , then u is less than M in a portion of any
nearby cube

B1(0)







In the non local case, there is at least one ring where the contact of
u + ! with the convex envelope,E, covers a good portion of the ring and further
forces flatness of the convex envelope in one of the rings
To get u to be Lεwe need a covering lemma scale by scale




































