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The Onsager Conjecture

Now a Theorem. We consider weak solutions v of the incompressible
Euler equations on the periodic 3-dimensional torus T3

∂tv + div (v ⊗ v) +∇p = 0

div v = 0 .
(1)

The kinetic energy is

E(t) :=
1
2

∫
|v |2(x , t) dx (2)

Theorem

(a) If v ∈ C0,α with α > 1
3 , then E is constant.

(b) For every α < 1
3 ∃v ∈ C0,α with E is strictly decreasing.
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The Onsager Conjecture II

(a) proved by Constantin, E and Titi in 1994, after important work of
Eyink.

The solutions in (b) are rather counterintuitive!

I Scheffer 1993, L2
t (L2

x ), nonconservative.
I Shnirelmann 2000, L∞t (L2

x ), dissipative.
I D-Székelhyidi 2008, L∞, dissipative.
I D-Székelyhidi 2012, C0, dissipative.
I D-Székelyhidi 2013, C

1
10−ε, dissipative.

I Buckmaster-D-Isett-Székelyhidi 2014, C
1
5−ε, dissipative.

I Buckmaster-D-Székelyhidi 2015, L1
t (C

1
3−ε
x ), nonconservative.

I Daneri-Székelyhidi 2016.
I Isett 2016, C

1
3−ε, nonconservative.

I Buckmaster-D-Székelyhidi-Vicol 2017, C
1
3−ε, dissipative.
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Analogy with isometric embeddings

D-Székelyhidi 2012: C0 dissipative solutions of Euler through an
iteration similar to that used by Nash in 1954 for isometric embeddings.

(Σ,g) smooth (C2) Riemannian manifold. u : Σ→ RN is an isometry if
it preserves the length of curves:

`g(γ) = `e(γ) ∀γ ⊂ Σ .

In coordinates, for u ∈ C1:∫ √
gγ(t)(γ̇(t), γ̇(t)) dt =

∫ ∣∣∣∣ d
dt

(u(γ(t))

∣∣∣∣︸ ︷︷ ︸
=|Du(γ(t))·γ̇(t)|

dt

γ(t) = p, γ̇(t) = v arbitrary
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Isometric embeddings II

u ∈ C1 is thus an isometry iff

g(v , v) = |Du · v |2

for every tangent vector v .

Note:

|Du(p) · v |2 = vT · (Du(p))T · Du(p)︸ ︷︷ ︸
=:A

·v

= Aijv iv j .

g(v , v) = gijv iv j .

Thus u ∈ C1 is an isometry if and only if gij = Aij = (DuT Du)ij , namely

gij = (DuT Du)ij = ∂iu · ∂ju . (3)
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Isometric embeddings III

Remark
If u ∈ C1 is an isometry, then it is an immersion. If Σ is compact
injective isometries are embeddings.

Remark
u : Σ→ RN , dim (Σ) = n.
n(n+1)

2 equations in N unknowns.

Expect:
I local existence and a certain rigidity if N = n(n+1)

2 (Schläfli’s
conjecture: proved by Janet, Bursztin for real analytic metrics,
open for C∞!);

I no solutions if N < n(n+1)
2 ;

I many solutions if N > n(n+1)
2 .
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The Nash-Kuiper Theorem

And yet...

Corollary (Nash 1954 (N ≥ n + 2), Kuiper 1955 (N ≥ n + 1))

If Σ is compact and there are immersions (resp. embeddings) in RN ,
then there are isometric immersions (resp. embeddings) in RN .

In fact the Nash-Kuiper theorem is even more striking.

Definition
u : Σ→ RN is short if it decreases the length of curves.

u ∈ C1 short ⇐⇒ DuT Du ≤ g.
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The Nash-Kuiper Theorem II

Theorem (Nash-Kuiper)

Assume (Σ,g) is compact and w : Σ→ RN a short immersion (resp.
embedding) with N ≥ dim(Σ) + 1.
For every ε > 0 there is an isometric immersion (resp. embedding) u
such that ‖u − w‖C0 < ε.

Remark
Any 2d surface Σ can be isometrically embedded in an arbitrarily small
ball Bε(0) ⊂ R3.

But, Gauss’ Theorem: if Σ is a positively curved sphere and u ∈ C2 is
isometric, then u(Σ) has positive principal curvatures, i.e. u(Σ) is
convex.

Conclusion: the Nash-Kuiper theorem cannot produce C2 isometries.
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Critical Hölder exponent

Problem
Is there a Hölder threshold C1,α0 for the Nash-Kuiper theorem?

Conjecture (Gromov)

Yes and moreover α0 = 1
2

.

Theorem (D-Inauen 2018)

In an appropriate sense (to be explained later) 1
2 is a critical exponent

for the Nash-Kuiper construction
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Strong form of criticality

Conjecture

(a) If (Σ,g) is a positively curved 2d surface and u : Σ→ R3 a C1, 1
2 +ε

isometric immersion, then u(Σ) is locally convex.
(b) If α < 1

2 and (Σ,g) is a compact 2d surface, then every short
immersion (resp. embedding) w : Σ→ R3 can be uniformly
approximated with C1,α isometric immersions (resp. embedding).

From now on:
I “(a) holds for C1,α” is a “convexity theorem for C1,α”;
I (b) is the Nash-Kuiper C1,α approximation property.

Widely open: best exponents are 1
5 from below and 2

3 from above.
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Borisov’s Theorem

Theorem (Borisov 1958)

The convexity theorem holds for C1,α whenever α > 2
3 .

The proof is given in four papers, which reduce the theorem to a
known result of Pogorelov.

Conti-D-Székelyhidi 2011: much simpler proof (taking advantage of
the Constantin-E-Titi commutator estimate used in the proof of the
positive part of the Onsager conjecture!).
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Borisov’s theorem II

Assume u : Σ→ R3 is a smooth isometric immersion, let N be the unit
normal to u(Σ).

Gauss’ Theorem: Gauss curvature κ equals det dN.

Area formula: for Ω ⊂ Σ Lipschitz open set and ϕ ∈ C∞c (S2 \ N(∂Ω)),∫
Ω
ϕ(N)κdvolg =

∫
S2
ϕ(y)

∑
z∈N−1(y)∩Ω

sign (det dN) . (4)

∑
z∈N−1(y)∩Ω sign (det dN) is the Brouwer degree of N|Ω: deg(N,Ω, y).

The Brouwer degree is defined even for N continuous, hence both
sides of (4) make sense when g ∈ C2 and u ∈ C1.
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Weak Gauss’ Theorem

Theorem (Conti-D-Székelyhidi 2011)

The “weak Gauss identity” (4) holds for C1, 2
3 +ε isometric immersions of

C2 Riemannian surfaces in R3.

A simple effect

Corollary
If in addition κ ≥ 0, then deg(N,Ω, y) ≥ 0 for every Ω and every
y ∈ S2 \ N(∂Ω) and thus ∑

i

|N(Ei)| ≤
∫
⋃

i Ei

κ (5)

for every Ei pairwise disjoint Borel subsets of Σ.
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Pogorelov’s theorem

(5) = “u(Σ) has bounded extrinsic curvature in the sense of Pogorelov”.

Theorem (Pogorelov)
Bounded extrinsic curvature and positive orientation of the Gauss map
implies local convexity of u(Σ).

Furthermore:
I estimates for Monge-Ampère imply higher regularity of u

according to the regularity of g;
I if Σ is topologically a sphere, u(Σ) is a closed convex surface and

hence uniquely determined up to rigid motions (Cohn-Vossen and
Herglotz).
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Olbermann and Züst theorem: digression on degree

Theorem (Olbermann 2016, Züst 2016)
Let U ⊂ Rn be bounded and Lipschitz and let z ∈ Cα(U,Rn) with
α > n−1

n . Then deg(z,U, ·) ∈ Lp for every p < n
n−1α.

D-Inauen 2017, simple (and elementary) alternative proof.

Remark
I z ∈ C1 ⇒ deg ∈ BV ⊂ L

n
n−1 .

I z ∈ C
n−1

n + ⇒ deg ∈ L1+.

Guess Sobolev regularity behind integrability. Beware:
z 7→ deg(z,U, ·) is a not a linear map, interpolation is not possible!

Theorem (D-Inauen 2017)

If z ∈ Cα, deg ∈W β,p for every 0 ≤ β < n
p −

n−1
α and p ≥ 1
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Towards 1
2 from above

Using Olbermann-Züst estimate + Conti-D-Székelyhidi

Theorem

If (Σ,g) is a C2 surface and u ∈ C1, 1
2 +ε(Σ,R3) an isometry, then∫

deg(N,Ω, y) dy =

∫
Ω
κdvolg ∀Ω ⊂⊂ U Lipschitz. (6)

(4) allows for two families of tests (Lipschitz open sets Ω and smooth
ϕ), (6) allows just for one!
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Towards 1
2 from above II

Conjecture (De Lellis - Székelyhidi)

Let z ∈ Cα(U,R2) with U ⊂ R2 and α > 1
2 . If∫

R2
deg(z,Ω, y) dy ≥ 0

for every open set Ω ⊂⊂ U with Lipschitz boundary, then
deg(z,Ω, y) ≥ 0 ∀Ω and ∀z 6∈ R2 \ z(∂Ω).

D-Inauen, forthcoming: the conjecture holds for α > 2
3 (not obvious

from Conti-D-Székelyhidi, because the argument there uses more
structure).

To be checked (but should be OK): the full conjecture implies a
convexity theorem for C1, 1

2 +ε isometric immersions of positively curved
surfaces.
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Flexibility: low exponents

Theorem (Borisov 1963, announcement)
(Σ,g) Riemannian manifold with:

I Σ diffeomorphic to the n-dimensional ball;
I g real analytic.

Then the Nash-Kuiper C1,α approximation property holds for
α < 1

1+n(n+1) .

Note, n = 2, α < 1
7 .

Borisov 2004, proof with n = 2 and α < 1
13 .
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Flexibility: low exponents II

Theorem (Conti-D-Székelyhidi 2011)

(Σ,g) Riemannian manifold with g ∈ C2 and dimension n. The
Nash-Kuiper C1,α approximation property holds

I for α < 1
1+n(n+1) if Σ is diffeomorphic to a ball;

I for α < 1
1+n(n+1)2 for general compact Σ.

The annoying discrepancy between the two cases has been recently
removed.
[Cao-Székelyhidi 2018] + [Cao-Székelyhidi, forthcoming]: α < 1

1+n(n+1)

for general n-dimensional compact Σ.
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Flexibility: low exponents

Finally, combining conformal geometry and Nash-Kuiper:

Theorem (D-Inauen-Székelyhidi 2015)

Let (Σ,g) be a C2 Riemannian manifold diffeomorphic to a
2-dimensional disk. Then the Nash-Kuiper C1,α approximation
property holds for α < 1

5 .

Summarizing, on isometric embedding of positively curved surfaces in
R3:

I 0 ≤ α < 1
5 Nash-Kuiper approximation property;

I 1
5 ≤ α ≤

2
3 unknown;

I 2
3 ≤ α convexity theorem.

I Clues pointing at the criticality of 1
2 .
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A philosophical slide

Onsager conjecture (theorem):
I The Euler equations come with an additional conservation law

(the energy identity), valid only for solutions above a certain
threshold regularity.

I Rigidity in isometric embeddings is a much stronger property. In
Euler a close analog would be uniqueness of solutions (which is
known to hold for C1 solutions and known to fail below C

1
3 as a

byproduct of the convex integration methods proving the Onsager
conjecture).

I Rigidity is ad-hoc for some special geometries.
I It uses the Gauss identity, where the second derivatives of u are

involved, while the original equations involve only first derivatives.
I The energy identity in Euler involves as many derivatives as there

are in the equations.
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Parallel transport

Consider a smooth isometric embedding u : Σ→ RN of a smooth
Riemannian manifold.
Classical result in differential geometry:

Theorem
The Levi-Civita connection ∇g of (Σ,g) is induced by the Euclidean
connection ∇e.

Fix vector fields X and Y on Σ and identify them with du(X ) and du(Y )
(“X = du(X )”...), namely identify the tangent T Σ and the tangent to
u(Σ).

∇Σ
X Y = πT Σ(∇e

X Y ) .

Using u∗X for du(X ), the correct version is

u∗(∇Σ
X Y ) = πTu(Σ)(∇e

u∗X u∗Y ) .
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Extrinsic and intrinsic parallel transport

Fix an arc γ ⊂ Σ with endpoints x and y and a C1,α isometric
immersion u : Σ→ RN .

The intrinsic parallel transport is given by a vector field X such that
∇g
γ̇X = 0.

The “extrinsic parallel” transport can be defined via a discretization
procedure:

I Take a mesh x = x0, x1, . . . , xN on γ;
I Set X̃0 := dux0(X (0));
I Define inductively X̃n = πTu(xn)u(Σ)(X̃n−1).

I Interpolate to get a map X̃ : γ → RN .
I Refine the mesh and take limits.
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Extrinsic and intrinsic parallel transport II

Problem
How much regularity is needed to ensure that the discretization above
converges to u∗X?

We expect C1, 1
2 +ε.

Theorem (D-Inauen)

If u ∈ C1,α for α >
√

5−1
2 , then the discretization converges to u∗X.

√
5− 1
2

<
2
3

⇐⇒
√

5
2

<
7
6
⇐⇒ 3

√
5 < 7 ⇐⇒ 45 < 49 .
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Back to Levi-Civita

Fix (Σ,g) smooth and γ ⊂ Σ smooth curve. Consider X smooth vector
field on Σ and u : Σ→ RN C1, 1

2 +δ isometric immersion.

t 7→ X̃ (t) = u∗(X (γ(t))) is in C
1
2 +δ

t 7→ d
dt

X̃ (t) is in C−
1
2 +δ

t 7→ L(t) := Tu(t)u(Σ) is in C
1
2 +δ

Conclusion:

t 7→ Z (t) = πL(t)

(
d
dt

X̃ (t)
)

is well-defined as distribution.
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Back to Levi-Civita II

The following is a weak version of “Levi Civita of the Euclidean ambient
induces Levi Civita of the Riemannian manifold”.

Theorem (D-Inauen 2018)

Since u ∈ C1, 1
2 +δ is an isometry, the following identity holds:

Z (t) = u∗ (∇γ̇X (t)) .
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Polar caps

Consider the standard S2 = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1} and denote by

σ the standard metric (induced by the euclidean one).

For a ∈]0,1[ set
Σa := Σ ∩ {x3 ≥ a} .

The Riemannian manifold (Σa, σ) is a polar cap.

We set γ := ∂Σa and from now on we consider isometric embeddings
u : Σa → RN with the additional constraint

u(x1, x2,a) = (x1, x2,a, . . . ,0) ∀(x1, x2,a) ∈ γ .
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Infinitesimal rigidity

Consider now the unit tangent vector τ(t) to γ(t).

∇Σ
τ τ is orthogonal to τ in Σa and if Y is the unit normal to γ in Σ,

g(∇Σ
τ τ,Y ) = kg ,

the geodesic curvature of γ = ∂Σa in Σa.
Observe next that d

dt u
∗(τ(t)) is a vector in the plane

{x3 = x4 = . . . = 0} ⊂ RN normal to γ and with length 1√
1−a2

.

If u is smooth, 〈
d
dt

u∗(τ(t)),u∗Y
〉

= kg .
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Infinitesimal rigidity II

If u ∈ C1, 1
2 +δ the previous computations are still valid!

Corollary

Let u ∈ C1, 1
2 +δ(Σa,RN) with δ > 0 be an isometric embedding of the

polar cap which maps ∂Σa onto
{(x1, x2,a,0, . . . ,0) : x2

1 + x2
2 = (1− a2)}. If Y is the exterior unit

normal to γa in ∂Σa and Z is the exterior unit normal to ∂Σa in the
plane {(x1, x2,a,0, . . . ,0)}, then

〈u∗Y ,Z 〉 = a .

For N = 3, this means that the tangents to u(Σa) at γa are determined
and coincide (up to symmetry) with the ones of the standard
embedding.
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Flexibility

The first to prove that a suitable version of the Nash-Kuiper Theorem
holds in the constrained case are Hungerbühler and Wasem in 2017
(C1 version).

Gaining a Hölder exponent is more subtle. Using some ideas of [Källen
1978] we can prove:

Theorem

For any δ > 0 there is u ∈ C1, 1
2−δ(Σa,R14) isometric embedding of the

polar cap with the following properties:
I u maps ∂Σa onto {(x1, x2,a,0, . . . ,0) : x2

1 + x2
2 = (1− a2)}.

I If Y is the exterior unit normal to γa in ∂Σa and Z is the exterior
unit normal to ∂Σa in the plane {(x1, x2,a,0, . . . ,0)}, then

〈u∗Y ,Z 〉 = 1 > a .
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Thank you

for your attention!
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