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Plan of the talk

Central idea:

Ideas and techniques developed for the analysis of stationary problems in fluid
mechanics hold the key to unlock certain evolution problems.

I Vortex structures in smooth fluid flows

I.s Knotted vortex structures in stationary 3D Euler [E., Peralta-Salas]
I.d Vortex reconnection for 3D Navier–Stokes: creation and destruction of vortex

structures [E., Lucà, Peralta-Salas]

II Fluid-squeezing singularities in free-boundary Euler

II.s Stationary fluid-squeezing interfaces [Córdoba, E., Grubic]
II.d Formation of cusps (and drops!) [Córdoba, E., Fefferman, Grubic]



I. Vortex structures in smooth fluid flows

I.s. Knotted vortex structures in stationary 3D Euler



The stationary Euler equation in 3D

Stationary Euler equations on R3:

(u · ∇)u = −∇p , div u = 0 .

What does one mean by “vortex structures”? (Vorticity: ω := curl u)

I Vortex lines (VL): periodic integral curves dx
ds = ω(x).

I Vortex tubes (VT): a surface T ⊂ R3 homeomorphic to a 2-torus consisting
of vortex lines (equivalently, an invariant torus of ω).

N.B.: Vorticity is smooth, and in principle not supported on these sets!



Setting up the problem

Question

Are there stationary solutions to the Euler equation with knotted/linked vortex
lines and tubes?

Motivation

I Lord Kelvin’s conjecture (1875): knotted and linked thin vortex tubes can
arise in stationary solutions to the Euler equation.

I Arnold’s conjecture (1965): vortex lines of any knotted topology and
“Hamiltonian-type chaos” can appear in a specific kind of stationary Euler
flows called Beltrami fields.

I Lagrangian theory of turbulence and experimental evidence.



Figure: One of the vortex tubes experimentally constructed by Irvine–Kleckner (2013).



Figure: One of the vortex tubes experimentally constructed by Irvine–Kleckner (2013).



Beltrami fields

We will resort to a particular class of stationary solutions to the Euler equation
known as Beltrami fields:

curl u = λu , λ nonzero real constant.

One can check that any such u(x) solves Euler with pressure p = − 1
2 |u|

2, and
that Beltrami fields also satisfy the Helmholtz equation

∆u + λ2u = 0 .

Why Beltrami?

I The Beltrami equation is linear (although not quite elliptic).

I Arnold’s structure theorem (1965).



The realization theorem

Tε(γ) :=
{
x ∈ R3 : dist(x , γ) < ε

}
Realization theorem (E. & Peralta-Salas, 2015)

Let {γi}Ni=1 be (nonintersecting, possibly knotted and linked) closed curves in R3.
For all small enough ε and some nonzero λ, the collection of disjoint tubes of
width ε {Tε(γi )}Ni=1 can be transformed using a diffeomorphism Φ of R3,
arbitrarily close to the identity in the Cm norm, so that {Φ[Tε(γi )]}Ni=1 are vortex
tubes and {Φ(γi )}Ni=1 are vortex lines of a Beltrami field u, which satisfies
curl u = λu in R3 for some λ > 0 with the sharp decay rate |u(x)| < C/|x |.



Strategy of proof

The construction of stationary solution to Euler with invariant tori is a problem
with both PDE and topological aspects. Topological techniques are too “soft” to
capture what happens inside a PDE.

Strategy

1. Construct a local Beltrami field v (that is, in a neighborhood of the tube)
with a prescribed set of vortex tubes (or invariant tori).

2. Check that these invariant tori are robust (that is, they are preserved under
small perturbations of the field v).

3. Approximate the local solution v by a global Beltrami field u (defined in all
R3 and with the sharp fall off at infinity).

The proof involves fine PDE estimates to apply a KAM theory with small twist
(almost KAM-degenerate situation =⇒ hard PDE analysis), and a global
approximation theorem with decay. The result for VL is considerably simpler and
we proved it in 2012.

Major open question: A conjecture of Arnold (1965)

Is there chaos inside the tubes??
(At some point we will hopefully address this question, which turns out to be much harder than what we had originally expected.)



I. Vortex structures in smooth fluid flows

I.d. Vortex reconnection for 3D Navier–Stokes:
creation and destruction of vortex structures



Vortex reconnection in Navier–Stokes

Setting: Take the Navier–Stokes equations on T3 with a smooth initial datum:

∂tu + (u · ∇)u − ν∆u = −∇p , div u = 0 , u(x , 0) = u0(x) .

Here ν > 0 is a possibly small but fixed positive constant. We’ll assume that
div u0 = 0 and

∫
T3 u0 dx = 0.

Fact 1: In Euler (ν = 0), vorticity is transported

If the solution to the Euler equations remains smooth, the topology of the
(frozen-time) vortex structures of the fluid does not change in time.

Fact 2: there is reconnection (:= change of topology) of vortex structures

In a smooth solution to the Navier–Stokes equations, its vortex structures (say VL
and VT) can break down or be created without a loss of regularity.

How do we know that there is vortex reconnection?

I Overwhelming experimental evidence.

I Overwhelming numerical evidence.



Vortex reconnection in Navier–Stokes

Figure: A possible scenario of vortex reconnection.



Vortex reconnection in Navier–Stokes

Figure: An actual experiment of Kleckner–Irvine (Nature Phys., 2013).

The enemy:

To come up with a rigorous mechanism of VR, the enemy is that arbitrary
diffeomorphisms are tricky to control: how can one make sure that an a VL is
gone, and not just still in the picture but with a diameter of 10−80?



A cascade of vortex reconnections

Theorem (E., Lucà & Peralta-Salas, 2017)

Given any constants 0 =: T0 < T1 < · · · < Tn and M > 0, for each odd integer k
in [1, n] let us denote by Sk any finite collection of closed curves and toroidal
domains contained in the unit ball of T3.
Then there is a global C∞ solution, with a high-frequency initial datum of norm
‖u0‖L2 = M, which, for each odd integer k ∈ [1, n], exhibits at time Tk a set of
VT/VL diffeomorphic to Sk that is not homeomorphic to any of the VL/VT at
time Tk±1. This scenario of vortex reconnection is structurally stable.

More visually: For a suitably chosen smooth but highly oscillatory u0, at time Tk

with k even all the VL/VT wind around a direction of the torus, while at time Tk

with k odd the solution has VL/VT of any prescribed knot types and contained in
a small ball. Hence the VL/VT must have been created at some time between
Tk−1 and Tk and are destroyed between Tk and Tk+1. This phenomenon is
physically observable.

I The construction is a high-frequency argument but it does not involve a
transition to higher frequencies. Hence it is smooth, “non-turbulent” VR and
will not survive in the inviscid limit ν → 0.



Heuristics: A dead wrong proof of vortex reconnection (I)

I VR occurs in NS (even for small data) but not in Euler. Hence it should be
driven by the linear diffusion. Hence we’ll first prove it for the (vector-valued)
heat equation on T3:

∂tu = ν∆u , u|t=0 = u0 .

I With j = 0, 1, let Wj(x) be vector fields of frequency Nj (i.e.,
∆Wj = −N2

j Wj) with ‖Wj‖L2 = 1. If

u0(x) := MW0(x) + δW1(x) ,

then
u(x , t) = M e−νN

2
0 tW0(x) + δe−νN

2
1 tW1(x) .

I If δ � M, at time 0 we have u(x , 0) ≈ MW0(x), so the flow at time 0
should look like W0.

I However, if N0 � N1 (depending on ν,T ,M and δ), u(x ,T ) ≈ cTW1(x), so
the flow at time T should look like W1.

I Therefore, if the flows of W0 and W1 are not conjugate, there must have
been a change of topology in the time interval [0,T ]: that’s VR.



Heuristics: A dead wrong proof of vortex reconnection (II)

I The proof, of course, is wrong. We have taken an easier PDE than NS, but
we saw that the enemy here is not the strong nonlinearity of the equation but
the fact that arbitrary diffeomorphisms are very hard to control. This is not
easier for the heat equation.

I What’s wrong is that small perturbations of Wj are not, in general, conjugate
to Wj , so the whole argument fails. This is not a just a sophisticated
technicality, but a very real problem.

But just look on the bright side of life:

The idea of “transition to lower frequencies” will, however, turn out to be useful
to construct VR in an easy, general way. But for that we will to fight the real
enemy first.



Steps of the proof of vortex reconnection

1. A useful observation is that if W is a Beltrami field,

curlW = NW ,

then the solution w to NS with w |t=0 = MW is global, explicit and
exponentially decaying in time:

w(x , t) = M e−νN
2tW(x) .

2. We’ll use a suitable stability theorem to control the behavior of solutions to
NS whose initial datum is a small perturbation of a Beltrami field:

u0 = MW0 + δ1W1 + · · ·+ δnWn ,

where curlWj = NjWj . We’ll choose δj ,Nj such that u(x ,Tj) ≈ cjWj(x) for
each 1 6 j 6 n via “transition to lower frequencies” as before.

3. Key step: by ensuring that the Beltrami field Wj is “stably non-equivalent”
to Wj±1 we will then prove that VR occurs. We’ll even create and destroy
VT/VL of prescribed topology.



The first family of Beltramis

In our argument we will play with two families Beltrami fields of high prescribed
frequency, which we will call B and W . Recall that a general Beltrami field of
frequency N 6= 0 is a nontrivial solution to

curlV = NV ,

which means that N = ±|k | with k ∈ Z3, and that these are stationary solutions
to the Euler equations on the torus. The most general Beltrami field of
frequency N is a vector-valued trigonometric polynomial of the form

W =
∑
|k|=|N|

(
bk cos(k · x) +

bk × k

N
sin(k · x)

)
,

where bk ∈ R3 are vectors orthogonal to k : k · bk = 0. R

The first family of Beltramis

With N a large integer, consider the Beltrami of frequency N given by

BN := (sinNx3, cosNx3, 0) .



The second family of Beltramis

Lemma (The second family of Beltramis)

For every odd 1 6 k 6 n, let Sk ⊂ B1 be any finite collection of closed curves and
tubes. Then for any large enough odd integer Nk there are Wk on T3 such that:

1. curlWk = Nk Wk .

2. Wk has a collection of VL and VT that is diffeomorphic to Sk , uniformly
structurally stable and contained in the ball B1/Nk

of radius 1/Nk .

3.
1

CNk
< ‖Wk‖L2 <

C√
Nk

.

Lemma (Robust non-equivalence)

There is ε0 independent of N and Nk such that, If W ′ and B ′ are any
divergence-free vector fields on T3 with

‖Wk −W ′‖H7 + ‖BN − B ′‖H7 < ε0 ,

then W ′ has a collection of VL/VT diffeomorphic to Sk and B ′ does not have any
contractible VL/VT.



Proof of the Robust Non-equivalence Lemma (I)

1. Starting point: result on R3 (E., Peralta-Salas, 2015): There is a Beltrami
field w on R3 satisfying

curlw = w

which falls off at infinity as |w(x)| 6 C/|x | and has a structurally stable set
S ′ ⊂ BR of VL/VT diffeomorphic to S.

2. Herglotz theorem: By the sharp decay, there exists f ∈ L2(S2) such that

w(x) =

∫
S2

f (ξ) e ix·ξ dσ(ξ) .

Necessarily, f (ξ) = f (−ξ) and iξ × f (ξ) = f (ξ).

3. Approximate by a smooth density: Take a function g ∈ C∞(S2) with
‖f − g‖L2(S2) < ε (small), so

w1(x) :=

∫
S2

g(ξ) e ix·ξ dσ(ξ)

satisfies w ≈ w1 in C 0. We can assume that g(ξ) = g(−ξ) (w1 real).



Proof of the Robust Non-equivalence Lemma (II)

4. Uniformly distributed rationals (Duke, 2003): The subset of rationals

XN := {ξ ∈ S2 ∩Q3 : height(ξ) = N} ⊂ {ξ ∈ S2 ∩Q3 : Nξ ∈ Z3}
becomes uniformly distributed as N →∞ through the odd integers and

N

C
< |XN | < CN2 .

5. Discrete sum: Then for a large enough odd integer N, in C 0(B2R)

w1(x) ≈ w2(x) :=
1

|XN |
∑
ξ∈XN

g(ξ) e ix·ξ . (1)

Since w , w1 and w2 satisfy the Helmholtz equation ∆w + w = 0, in fact

‖w − w2‖C 6,α(BR ) < Cε . (2)

6. Field on T3: The field W̃ (x) :=
1

|XN |
∑
ξ∈XN

g(ξ) e ix·(Nξ) is bounded as

1

CN
< ‖W̃ ‖L2 <

C√
N
, and

∥∥∥∥W̃( x

N

)
− w(x)

∥∥∥∥
C 6,α(BR )

< Cε .



Proof of the Lemma

7. Algebraic fine-tuning of the field: Since W̃ is not Beltrami but almost, one
can now set

W :=
curl(curl W̃ + NW̃ )

2N2
.

(The idea of converting solutions of Helmholtz into Beltramis goes back to
Chandrasekhar.)



Comments and remarks

I As the non-equivalence follows from a non-contractibility argument, it is key
to consider Navier–Stokes on T3 instead of R3.

I The proof is essentially linear (i.e., driven by eνt∆u0), which is not surprising
given that it is a viscosity effect, and works with minor modifications for
different diffusive terms (e.g., (−∆)s instead of −∆)..

I If we drop the condition that the phenomenon be structurally stable
(“physically observable”), VR can happen instantaneously (and the proof also
holds on R3):

Theorem (Instantaneous VR: E., Lucà & Peralta-Salas, 2017)

Given any M > 0, there is a global C∞ solution of the Navier–Stokes equations u,
with initial datum of norm ‖u0‖L2 = M and of zero mean, having a vortex tube at
time 0 that breaks instantaneously.



Did we get lucky with the Beltramis on the torus?
A quantum mechanical detour

Since we employ the nontrivial topology of T3 to prove VR, to some extent one
can argue that key in the proof of VR is the fact that we managed to transplant
what we know about Beltramis on R3 (and their knotted VL/VT) to T3.

Philosophy: Inverse localization

Beltramis: “The behavior of a BF on R3 in a ball B can be reproduced, modulo a
rescaling and up to controllable errors, by a BF on T3 of arbitrarily large
frequency.”

Scalar analog: “The behavior of a monochromatic wave on Rn (∆ϕ+ ϕ = 0) in a
ball B can be reproduced, modulo a rescaling and up to controllable errors, by a
Laplace eigenfunction on Tn of arbitrarily large frequency.”

Rule of thumb: Still true if we replace “BFs” or “Laplace eigenfunctions” on the
torus by eigenfunctions of any other “superintegrable” problem.

Evidence: BFs on S3 work even better than on T3. Of course, trivial if we replace
“eigenfunctions” by “quasimodes”, without “superintegrability”.



A conjecture of Berry

Setting: Eigenvalue problem for a Schrödinger operator on R3:

HVψ = Eψ , HV := −∆ + V (x) , x ∈ R3 , ψ ∈ H2(R3) .

Conjecture (Berry, 2001)

Given any knot γ, there is a potential V on R3 and an eigenfunction ψ of HV

such that a connected component of its nodal set ψ−1(0) is diffeomorphic to γ.

1. Berry found a complex-valued eigenfunction of the Coulomb potential
(V = −2/|x |) with nodal set given by a trefoil knot or a Hopf link.

2. Physical motivation: the nodal set determines the locus of phase dislocations
(singularities of the phase Im(ψ∇ψ).)

3. Why hard? It is essentially a question about degenerate eigenvalues, since
otherwise the eigenfunctions are all real and generically their nodal set is a
surface, not a curve. But degenerate eigenvalues are non-generic too!
(Uhlenbeck, 1976).



A realization theorem

Let us denote the eigenvalues of the operator HV by EN , N > 0.

Theorem (E., Hartley & Peralta-Salas, 2018)

Let the potential be either the harmonic oscillator V (x) = |x |2 or the Coulomb
potential V (x) = −2/|x |, and let S be a finite link (collection of closed curves).
Then for any large enough N there is an eigenfunction satisfying HVψ = ENψ
such that Φ(S) is the union of connected components of the nodal set ψ−1(0),
where Φ is a diffeomorphism (almost a rescaling).

And now we close the quantum mechanical detour and go back to vortex
reconnection . . .



A look ahead: observing vortex reconnections

Major open problem: How does vortex reconnection occur?

In our theorems, we did not say a word about the actual way vortex structures
break down. Can one describe how VR happens? There are physically relevant
open questions in 2D and 3D.



Remember who the enemy is!

As a first step in our program, we have recently developed a powerful
approximation theory for linear parabolic equations:

Theorem (E., Garćıa-Ferrero, Peralta-Salas, 2018)

1. If ∂tv −∆v = 0 on a compact spacetime set K ⊂ Rn+1
+ whose intersection

with any time slice is connected, then ∃ f ∈ C∞0 (Rn) such that u := et∆f
satisfies ‖u − v‖C r (K) < δ.

2. If γ : R→ Rn is any continuous curve and δ : R→ (0,∞) is continuous, ∃ a
solution of ∂tu −∆u = 0 on Rn+1 that has at all times t ∈ R a local hot
spot Xt (:= local maximum of u(·, t)) with |Xt − γ(t)| < δ(t).

However, prescribing local extrema (or even level sets) is comparatively easy: even
in the case of the (vector-valued) heat equation, prescribing a VR scenario is a
very hard open problem!



II. Fluid-squeezing singularities
in the free-boundary Euler equation



Setting: the free-boundary Euler equation with two fluids

In each domain Ωj(t) (j = 1, 2), the fluid flow is governed by the incompressible,
irrotational Euler equations; that is, the respective velocities uj(x , t) and the
corresponding pressures pj(x , t) satisfy

ρj(∂tu
j + uj · ∇)uj = −∇pj − gρj e2 in Ωj(t), (3a)

∇ · uj = 0 and ∇⊥uj = 0 in Ωj(t), (3b)

p1 − p2 = −σK on ∂Ω(t) (3c)

(∂tz − uj) · (∂αz)⊥ = 0 on ∂Ω(t), (3d)

where ∂Ω(t) = {z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R}.



Which kind of evolution problem do we have?

Without getting into technicalities, let us recall that if one linearizes the problem
about the trivial equilibrium z = 0, u = 0 and writes the perturbed interface as a
graph

z(α, t) = (α, h(α, t)) ,

the linearized problem can be rewritten as the nonlocal dispersive equation

∂tth + g |∂α|h − σ∂αα|∂α|h = 0 ,

where |∂α| := (−∂αα)1/2 = H∂α, with H the Hilbert transform. (Here g > 0 and
σ > 0.)



Formation of splash singularities

Theorem (Castro, Córdoba, Fefferman, Gancedo, Gómez-Serrano, 2011)

The free-boundary Euler equation with one fluid develops singularities. More
precisely, there are smooth initial data for which the interface self-intersects in
finite time T ∗. The velocity and the interface remain smooth up to T ∗.



How can one prove that splash singularities do form?

I The water wave equations are invariant under time reversal, so one can take
the splash configuration as the initial datum and (try to) solve the equations
backwards in time. This is a local existence problem.

I If one can choose the “splash-type” initial datum so that the normal
component of the velocity on the interface at t = 0 is positive, the splash
opens up and we win.

I One can prove local existence from a splash-type initial datum, morally,
because the region where one needs to estimate things is Ω2, where the fluid
lives, which is “inner regular”. An efficient way of seeing this is by means of
the conformal map P(w) :=

√
tan w

2 , which opens up the splash domain.



Squeezing a fluid

The above argument fails if there is a fluid in the region Ω1, which is not
“inner-regular”. In particular, conformal maps cannot save the day. And it is not
hard to see why, physically: this situation would correspond to squeezing an
incompressible fluid.

Question:

How can one squeeze an incompressible fluid?

(It should be feasible: that is the way a water drop forms.)



Squeezing singularities involve a loss of regularity

Theorem (No splash singularities with two fluids; Fefferman, Ionescu & Lie 2016)

If supt∈[0,T ](‖z(·, t)‖C 4 + ‖uj(·, t)‖C 3 ) <∞ and the interface does not
self-intersect at t = 0, it does not self-intersect at t = T either.

Proof: Consider the vorticity curl u(x , t) =: ω(α, t)δ(x − z(α, t)):

1. The regularity assumption implies that supt∈[0,T ] ‖ω(·, t)‖L∞ < C because ω
satisfies a variant of the Burgers equation.

2. As the interface moves with the fluid, the boundedness of ω implies that the
inverse of the chord-arc distance, F (t) := 1/CA(t) can be controlled as∣∣∣∣dFdt

∣∣∣∣ 6 C |F | log(|F |+ 2) ,

remaining therefore bounded at t = T .



II. Fluid-squeezing singularities in the free-boundary Euler equation

II.s Stationary fluid-squeezing interfaces



Back to the stationary case

In each domain, the fluid flow is governed by the stationary, incompressible,
irrotational Euler equations; that is, the respective velocities v j and the
corresponding pressures pj satisfy

ρj(v
j · ∇)v j = −∇pj − gρj e2 in Ωj , (4a)

∇ · v j = 0 and ∇⊥v j = 0 in Ωj , (4b)

v j · (∂αz)⊥ = 0 on ∂Ω, (4c)

p1 − p2 = −σK on ∂Ω. (4d)

We assume that the interface satisfies periodicity conditions

z1(α + 2π) = z1(α) + 2π, z2(α + 2π) = z2(α)

and is symmetric with respect to the x2-axis:

z1(−α) = −z1(α), z2(−α) = z2(α).



Rewriting the stationary equations

The unknowns are z(α) (the parametrized interface) and ω(α) (the vorticity on
the interface). To fix the parametrization, we use the hodograph transform with
respect to the lower fluid. Then, as long as there is no self-intersections, finding a
stationary solution of the two-fluid system amounts to finding 2π-periodic
functions ω(α) and z(α)− (α, 0) satisfying

2|∂αz |2M(z) + ε ω(ω − 2) = 2,

2 BR(z , ω) · ∂αz + ω = 2,

BR(z , ω) · ∂⊥α z = 0,

where BR(z , ω) and M(z) are given by

BR(z , ω) :=
1

2π
PV

∫
R

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
ω(α, t)dα

M(z) := −εqK (z)− 2gz2 + 1,

q := σ
ρ2

and ε := 2ρ1

ρ2−ρ1
are essentially the surface tension and the density of the

second fluid, and K (z) is the curvature of the interface.



The capillary case: ε = g = 0

I The system decouples and one recovers pure capillary waves. Family of exact
solutions depending on the parameter q (Crapper, 1958):

zA(α) = α +
4i

1 + Ae−iα
− 4i , q =

1 + A2

1− A2
.

To find ω, one inverts the equation

2BR(zA, ω) · ∂αzA + ω = 2

I For A = A0 ' 0.45, the curve zA(α) exhibits a splash, while for A < A0 the
curve does not self-intersect and for A slightly larger than A0 the curve
intersects at exactly two points, and the intersection is transverse.

Vacuum

Fluid 

A=0

Vacuum

Fluid 

0<A<A0

Fluid 

A=A 0,45460      

Vacuum

Splash point

~~



Stationary splash and almost-splash solutions

One can readily believe that, with some work, one can perturb the Crapper waves
using the implicit function theorem to get solutions with small positive values of ε
and g :

Theorem (Córdoba, E. & Grubic, 2016)

For any small enough g there is some σ for which there exists a stationary
solution such that the interface ∂Ω has a splash point.

Likewise, for any small enough ρ1 > 0 and g there is some σ for which there exists
a stationary solution such that the interface ∂Ω has is an almost-splash.

In a way, the key step is to control the inverse of the operator

Aω := ω + 2BR(z , ω) · ∂αz .

This was first done by Baker, Meiron and Orszag (1982) for H3 curves without
self-intersections, which one can apply after opening up the splash domain if
necessary using a conformal transformation.



Stationary fluid-squeezing singularities

Theorem (Córdoba, E. & Grubic, preprint)

For any small enough ρ1 > 0, g there is some σ for which there exists a stationary
solution such that the interface ∂Ω has a splash point. The interface ∂Ω is of
class C 2,α, 0 < α < 1

2 .

The proof hinges on new weighted estimates for the inverse of the operator A
when the curve z has a cusp, which owe much to the work of Maz’ya. E.g., with
suitably chose parameters, we show that

A : W 1
p,β → Xβ,µ

is invertible for a certain Xβ,µ ⊂W 1
p,β , where

f ∈W 1
p,β ⇐⇒ ‖|x |βf ‖Lp + ‖|x |β+1∂x f ‖Lp <∞.



II. Fluid-squeezing singularities in the free-boundary Euler equation

II.d Formation of cusps (and drops!)



Formation of fluid-squeezing singularities

“Theorem” (Córdoba, E., Fefferman & Grubic, in progress)

Figure: At times t = 0 and t = T .

Sketch of proof:

I Goal: to prove local existence starting from a fluid-squeezing (cusped) splash.

I Key point: to obtain a priori estimates for a carefully chosen energy
functional within suitably weighted Sobolev spaces.

I Show that one can choose an initial data that opens the splash.



Bonus!

Convexity of Whitham’s highest cusped wave



Non-smooth traveling waves for Whitham’s equation

Whitham’s equation is the very weakly dispersive 1D shallow water wave model

∂tv + ∂x(Lv + v2) = 0 , (5)

where L is the Fourier multiplier L̂f (ξ) := (tanh ξ/ξ)1/2 f̂ (ξ). This reproduces the
full dispersion relation of water waves.

The traveling wave ansatz v(x , t) := ϕ(x − µt), where µ is the velocity, leads to
the equation

Lϕ− µϕ+ ϕ2 = 0 .

There is a whole family of solutions ϕ ∈ C∞(T), T := R/2πZ (or any other
period), but the highest in the family shouldn’t be smooth:

Non-smooth traveling waves

Conjecture (Whitham, 1967): There is a sharp crest: ϕ ∈ C 1/2(T) but not
better.

Theorem (Ehrnström, Wahlén 2015): Indeed . . .
Conjecture (Ehrnström, Wahlén 2015): . . . and ϕ can be taken convex .



Why convex?

In the case of the Euler equations, it is a landmark result that the corresponding
non-smooth traveling (or Stokes) waves are convex (Plotnikov, Toland 2004). But
the proof hinges on complex analysis, using the connection between free-boundary
Euler and harmonic functions on the plane, while here one must exclusively deal
with real-variable methods for nonlocal equations:

Theorem (E., Gómez-Serrano, Vergara 2018)

There is a convex highest cusped wave ϕ ∈ C 1/2(T).

Key ingredient: (different) weighted estimates and a very carefully constructed
approximate solution to the equation.



Thank you for your attention!


