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The following are equivalent (co-dimension 1):

Geometry:

(G1) E is uniformly rectifiable

(G2) P. Jones β, X. Tolsa α coefficient characterizations

Analysis:

(H1) all singular integral operators are bounded in L2(E )

(H2) usual square function estimates for the Cauchy kernel

(H3) the Riesz transform is bounded in L2(E )

PDEs:

(P1) harmonic measure ω is A∞ (absolutely continuous) w.r.t. the
Lebesgue measure (but this, and only this, requires some a
priori topology!)

(P2) all bounded solutions satisfy Carleson measure estimates

(P3) all bounded solutions are ε-approximable

(P4) uniform square function/non-tan. max function estimates
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The following are equivalent (co-dimension bigger than 1):

Geometry:

(G1) E is uniformly rectifiable

(G2) P. Jones β, X. Tolsa α coefficient characterizations

Analysis:

(H1) all singular integral operators are bounded in L2(E )

PDEs:

NEW IDEAS: (non)-Harmonic measure and ADR black holes
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Harmonic measure

for E ⊂ ∂Ω, X ∈ Ω, ωX (E ) is a
solution to

−∆u = 0 in Ω, u
∣∣∣
∂Ω

= 1E

evaluated at point X , that is, u(X ).

ωX (E ) is the probability for a
Brownian motion starting at X ∈ Ω to
exit through the set E ⊂ ∂Ω

the solution to
−∆u = 0 in Ω, u

∣∣∣
∂Ω

= f

is realized as u(X ) =
´
∂Ω f dωX

(pictures of M. Badger)
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Harmonic measure

Key issues

What is the dimension and the structure of the support of ω?

Is ω absolutely continuous with respect to Lebesgue measure?

A∞ condition (quantitative abs continuity):
∀Q ⊆ ∂Ω and every Borel set F ⊂ Q, we have

ωXQ (F ) ≤ C

(
|F |
|Q|

)θ
ωXQ (Q),

where XQ is the “corkscrew point” relative to Q.
In other words, we want Brownian travelers to “see” portions of
the boundary proportionally to their Lebesgue size. That is,
nothing is shielded and nothing receives unfair attention.

You can guess that dimension
and connectivity will be in the
center of attention
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Dimension of harmonic measure

Carleson, 1973: in R2, for a simply connected domain
bounded by a continuum, dimω > 1/2 + ε
Makarov, 1985: in R2, for a simply connected domain
bounded by a continuum, dimω = 1
Jones-Wolff, 1988: in R2, for any planar domain (no
connectivity), dimω ≤ 1

Bourgain, 1987: in Rn, n ≥ 2, dimω < n

Wolff, 1991: but even for connected
domains we can have dimω > n − 1 (Wolff
snowflake) (Filoche et al., PNAS 2008)

Somewhere between 2 and 3 there is a number giving the
dimension of harmonic measure in R3...
Remark:

topology matters: connectivity, continuum
our knowledge is n > 2 is notoriously incomplete: dimω
somewhere strictly between n − 1 and n
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Structure of the support of harmonic measure, co-dim 1

Let’s say that 0 < Hn−1(E ) <∞, ω ≈ σ. What do we know about
E? Can every set of dimension n − 1 host the harmonic measure?
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Looking towards absolute continuity of ω w.r.t. σ

A closed set E is d-Ahlfors-David regular (ADR) if the measure of
E is any ball B(x , r),

Hd(B(x , r) ∩ E ) ≈ rd

E is uniformly d-dimensional (very far from regularity in the sense
of smoothness!)

Part I: d = n − 1

Part II: d < n − 1 (possibly fractional)

A set E ⊂ Rn is rectifiable if it can be
covered by a countable union of Lipschitz
graphs, modulo a set of measure zero

A set E is uniformly rectifiable if in any
B(x , r) 1% of E lies on a Lipschitz image,
with relevant constants uniform in x , r
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When ω is absolutely continuous w.r.t. Hn−1? (A∞)

Dimension 2:

F.&M.Riesz, 1916: Ω ⊂ R2, simply connected, rectifiable
Lavrent’ev, 1936: quantifiable analogue
Bishop, Jones, 1990: “local F. & M. Riesz” Ω ⊂ R2, ∂Ω on a
continuum, E ⊂ ∂Ω is rectifiable

Connectivity is important:

Bishop, Jones, 1990: counterexample
∂Ω is rectifiable, yet ω is singular w.r.t. σ

Higher dimension:

Dahlberg, 1977: Lipschitz domain
David, Jerison; Semmes 1990; Badger, 2012, NTA domain
Hofmann, Martell, 2013; Azzam, Hofmann, Martell, Nyström,
Toro, 2014; UR+1-sided NTA

Bottom line:

Unif Rectifiability + some connectivity =⇒ ω ∈ A∞

Unif Rectifiability 6=⇒ ω ∈ A∞
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Structure of harmonic measure, codim 1: PDE → geom

“Free boundary problem”:
necessary conditions for absolute continuity of ω

Kenig-Toro’1997–2003: if ∂Ω is Reifenberg flat, k = dω
dσ ,

log k ∈ VMO ⇐⇒ ν ∈ VMO

Hofmann-Martell’2015: if ∂Ω is Ahlfors-David regular and
satisfies interior cork-screw condition,
ω ∈ A∞ =⇒ ∂Ω is uniformly rectifiable

Theorem (Azzam, Hofmann, Martell, S.M., Mourgoglou, Tolsa,
Volberg, 2016)

For any open set Ω ⊂ Rn, n ≥ 2, any E ⊂ ∂Ω, 0 < Hn−1(E ) <∞,
if ω is abs continuous w.r.t. Hn−1 then ω|E is rectifiable.

10



Structure of harmonic measure, codim 1: PDE → geom

“Free boundary problem”:
necessary conditions for absolute continuity of ω

Kenig-Toro’1997–2003: if ∂Ω is Reifenberg flat, k = dω
dσ ,

log k ∈ VMO ⇐⇒ ν ∈ VMO

Hofmann-Martell’2015: if ∂Ω is Ahlfors-David regular and
satisfies interior cork-screw condition,
ω ∈ A∞ =⇒ ∂Ω is uniformly rectifiable

Theorem (Azzam, Hofmann, Martell, S.M., Mourgoglou, Tolsa,
Volberg, 2016)

For any open set Ω ⊂ Rn, n ≥ 2, any E ⊂ ∂Ω, 0 < Hn−1(E ) <∞,
if ω is abs continuous w.r.t. Hn−1 then ω|E is rectifiable.

11



Structure of harmonic measure, codim 1: PDE → geom

Theorem (Azzam, Hofmann, Martell, S.M., Mourgoglou, Tolsa,
Volberg, 2016)

For any open set Ω ⊂ Rn, n ≥ 2, any E ⊂ ∂Ω, 0 < Hn−1(E ) <∞,
if ω is abs continuous w.r.t. Hn−1 then ω|E is rectifiable.

1st full converse to F. & M. Riesz

no dimension restriction, no topological restriction, no
connectivity restriction, local/global...

uses David-Semmes Conjecture (now
Nazarov-Tolsa-Volberg’2014 theorem):
finiteness of the Riesz transform

Rµ(x) =

ˆ
E

x − y

|x − y |n+1
dµ(y)

implies rectifiability.
n = 1: Melnikov, Verdera, 1990’s; David-Léger, 1999
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Structure of harmonic measure, codim 1: PDE → geom

Theorem (Azzam, Hofmann, Martell, S.M., Mourgoglou, Tolsa,
Volberg, 2015)

For any open set Ω ⊂ Rn, n ≥ 2, any E ⊂ ∂Ω, 0 < Hn−1(E ) <∞,
if ω is abs continuous w.r.t. Hn−1 then ω|E is rectifiable.

Nazarov-Tolsa-Volberg’2014 theorem:
bounds on the Riesz transform imply rectifiability.

Rµ(x) =

ˆ
E
∇E(x − y) dµ(y)

∇G (x , y) = ∇E(x − y)−
ˆ
∂Ω
∇E(x − z) dωy (z)

Here E(x) = cn|x |1−n is the fundamental solution for −∆.

Apply the Riesz transform characterization with dµ = dω!
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Necessary and sufficient

Theorem (Azzam, Hofmann, Martell, Mourgoglou, Tolsa, 2018)

Let Ω ⊂ Rn be an open set with n − 1-AD-regular boundary. The
weak-A∞ condition for harmonic measure holds if and only if ∂Ω is
uniformly n − 1-rectifiable and the weak local John condition is
satisfied.
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What about higher co-dimension?

0 < Hd(E ) <∞, E ⊂ Rn, d < n − 1
(integer)
Think: a curve in R3, DNA, “big data”

harmonic functions do not “see” sets
of higher co-dimension

harmonic measure makes no sense

Need “harmonic functions”

how to not miss small E?

you need to attract Brownian
travelers!

Idea

build harmonic measure from L = − div 1
distn−d−1

E

∇

NB: L = −∆ when n = d + 1
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What about higher co-dimension?

0 < Hd(E ) <∞, E ⊂ Rn, d < n − 1 (integer)
Think: a curve in R3

Idea

build harmonic measure from L = div 1
distn−d−1

E

∇

Question (G. David, S.M.)

Prove or disprove that our harmonic measure is absolutely
continuous w.r.t. Lebesgue measure (in fact, A∞) if and only if the
set is uniformly rectifiable (of dimension d < n − 1)

topology is now a friend: note the difference with d = n − 1
when Bishop-Jones give counterexamples to ω ∈ A∞ on
uniformly rectifiable sets. We do not expect topological
difficulties of access of d = n − 1 case.

equation is now an enemy or at least a mystery...
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There are two big parts of what is coming:

Basic elliptic theory: traces, extensions, weak solutions,
Poincare, Caccioppoli, Harnack, maximum principle...
There are many forerunners and alternative approaches: for
degenerate PDEs: Fabes-Kenig-Serapioni; Jerison-Kenig, and
others; for p-Laplacian and other quasilinear PDEs: Lewis,
Vogel, Nystrom, and others; for higher order PDEs: S.M.,
Maz’ya and others; function spaces: Maz’ya, Jonsson-Wallin.
We did it from scratch, in the full generality of

L = − div
1

distn−d−1
E

A(x)∇,

where A is an elliptic matrix and for all ADR sets, of possibly
fractional dimension, but all this is fairly predictable.

Our big goal was different: find one “elliptic” operator (one A) for
which harmonic measure is absolutely continuous with respect to
the Hausdorff measure on lower dimensional sets. Ours is the first
result of this type, even for a Lipschitz curve.
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Caffarelli-Silvestre extension

A big portion of the forthcoming discussion applies to

L = − div
1

distn−d−1+β
E

A(x)∇,

where β ∈ (0, 1).

In the particular case A = I , d = n − 1, E = Rd = Rn−1, this is
the Caffarelli-Silvestre extension operator, and the corresponding
Dirichlet-to-Neumann operator on E is the fractional Laplacian
(−∆)γ , 2γ = 1 + β.

Thus, our results are likely to further yield a new fractional
Laplacian, on extremely rough sets, including lower dimensional
ones – to be discussed further.
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Theorem I = Theorems 1-25...

Γ is d - Ahlfors-David regular of some dimension d < n − 1:

C−1
0 rd ≤ Hd(Γ ∩ B(x , r)) ≤ C0r

d for x ∈ Γ and r > 0.

“quantifiably d-dimensional” (d possibly not integer for now)

Define a divergence form operator L = −divA∇ on Ω = Rn \ Γ
with the ellipticity condition of a different homogeneity:

dist(x , Γ)n−d−1A(x)ξ · ζ ≤ C1|ξ| |ζ| for x ∈ Ω and ξ, ζ ∈ Rn,

dist(x , Γ)n−d−1A(x)ξ · ξ ≥ C−1
1 |ξ|

2 for x ∈ Ω and ξ ∈ Rn.

This yields a comprehensive elliptic theory:
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Theorem I = Theorems 1-25...

Γ is d − ADR, d < n − 1, Ω = Rn \ Γ, L = −divA∇

Set δ(x) = dist(x , Γ), w(x) = δ(x)−n+d+1,
and W = Ẇ 1,2

w (Ω) the weighted Sobolev space with

||u||W =
{ ˆ

Ω
|∇u(x)|2w(x)dx

}1/2

and H = Ḣ1/2(Γ) with

||g ||2H =

ˆ
Γ

ˆ
Γ

|g(x)− g(y)|2

|x − y |d+1
dσ(x)dσ(y)

Trace/Extension theorems:
we construct two bounded linear operators T : W → H (a
trace operator) and E : H →W (an extension operator), such
that T ◦ E = IH .

Existence and uniqueness of weak solutions for g ∈ H there is
a unique weak solution u ∈W of Lu = 0 such that Tu = g .
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Theorem I = Theorems 1-25...

Γ is d − ADR, d < n − 1, Ω = Rn \ Γ, L = −divA∇
quantitative boundedness of solutions (Moser estimates),
interior and at the boundary

quantitative Hölder continuity (De Giorgi-Nash estimates),
interior and at the boundary

Think about it: in co-dim one continuity (and even more so Hölder
continuity) at the boundary requires fatness of the complement of
the domain: a cusp can be bad.
Recall Wiener criterion: fatness, massiveness of the complement
(capacity estimates) is necessary and sufficient for continuity.
Further Hölder continuity requires almost being a Lipschitz domain.

Here we have tiny complement: Ω = Rn \ Γ, e.g., a complement of
a curve in R3 and yet it is perceived as very massive by solutions

21



Theorem I = Theorems 1-25...

Γ is d − ADR, d < n − 1, Ω = Rn \ Γ, L = −divA∇
quantitative boundedness of solutions (Moser estimates),
interior and at the boundary
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Theorem I = Theorems 1-25...

Γ is d − ADR, d < n − 1, Ω = Rn \ Γ, L = −divA∇
we always have Poincaré inequality: 

B(x ,r)
|u(y)|dy ≤ Cr−d

ˆ
B(x ,r)

|∇u(y)|w(y)dy

for u ∈W , x ∈ Γ, and r > 0 such that Tu = 0 on Γ ∩ B(x , r),
as well as its interior analogue
we always have Harnack chains (there is plenty of access)
Harnack inequality

All this and the maximum principle yield the definition of the
harmonic measure ω = ωL so that u(x) =

´
Γ gdω

x is the value at
x of the solution of the Dirichlet problem

Lu = 0 in Ω with Tr u = g on Γ

doubling
comparison principle
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Theorem I = Theorems 1-25...

Lemma (Nondegeneracy)

For any x ∈ E , r > 0,

ωA∆r (x)(∆r (x)) ≥ C .

Lemma (Doubling)

For any x ∈ E , r > 0, for any Y ∈ Ω \ B2r (x , 0),

ωY (∆2r (x)) ≤ C ωY (∆r (x)).

Lemma (Change of Pole)

For any x ∈ E , r > 0, for any Y ∈ Ω \ B2r (x , 0), and any ball
∆′ ⊂ ∆ := ∆r (x) we have

ωA∆(∆′) ≈ ωY (∆′)

ωY (∆)
.
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Theorem I = Theorems 1-25...

All this and the maximum principle yield the definition of the
harmonic measure ω = ωL so that u(x) =

´
Γ gdω

x is the value at
x of the solution of the Dirichlet problem

Lu = 0 in Ω with Tr u = g on Γ

non-degeneracy

doubling

change of pole

comparison principle

definition and estimates for the Green function

connection between the harmonic measure and the gradient of
the Green function
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Theorem (G. David, J. Feneuil, S.M., 2017)

Γ is a d-dimensional Lipschitz graph with a small Lipschitz
constant, d < n − 1, integer, Ω = Rn \ Γ, L = − divD(x)d+1−n∇.
Then ω ∈ A∞(σ).

Here, D is equivalent to the distance:

c1 dist(x , Γ) ≤ D(x) ≤ c2 dist(x , Γ)

but more intricately built: Dα(X ) =
{ ´

Γ |X − y |−d−αdσ(y)
}−1/α

,

D(x) = dist(x , Γ) would not work except for n = 3
for similar reasons as β∞ coefficients.
You have to gently guide your Brownian travelers.

Conjecture, G. David, S.M.

Γ is a d-dimensional uniformly rectifiable set, d < n − 1, integer,
Ω = Rn \ Γ, L = − divD(x)d+1−n∇. Then ω ∈ A∞(σ).

No topological assumptions! – magic...
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Is there a converse? More magic

joint with G. David, M. Engelstein
We discussed that having ω ∈ A∞ on all uniformly rectifiable sets
is magic (compared to co-dim 1). But there is more...

For n > d − 2 (at least co-dimension 2) and a particular value of a
parameter α = n − d − 2 our distance

Dα(X ) =
{ˆ

Γ
|X − y |−d−αdσ(y)

}−1/α

is a solution vanishing at the boundary: LDα = 0, and hence,

Our distance D is exactly the Green function with a pole at infty!

Think: how many formulas for Green function do you know?! -
this is explicit on arbitrary domains

The only analogue for co-dimension 1 is xn+1 on Rn+1
+ but that is

a unique lucky strike, the situation is much murkier in more
general domains.
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Is there a converse? More magic

For n > d − 2 (at least co-dimension 2) and a particular value of a
parameter α = n − d − 2 our distance

Dα(X ) =
{ˆ

Γ
|X − y |−d−αdσ(y)

}−1/α

is a solution vanishing at the boundary: LDα = 0, and hence,
distance is exactly the Green function with a pole at infty!
From here it is possible to prove that in the exceptional case
α = n − d − 2 we have ω = ωLα ∈ A∞ on all Ahlfors regular sets!
(Regardless of uniform rectifiability), ∂ω

∂σ ≈ 1.

It could be that this is exceptional and for all other α > 0 we have

ω = ωLα ∈ A∞ ⇐⇒ uniform rectifiability

Why do we have a hope?
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Riesz transforms

Theorem (G. David, M. Engelstein, S.M., 2018)

Let n > d + 1, and let Γ be d-ADR. Then Γ is rectifiable if and
only if n.t. limits of ∇Dα exist a.e. on E

To compare: when n = d + 1, Γ is rectifiable iff p.v. limits of R1
exist a.e. on E (Tolsa 2008) (or iff R is bounded on L2(E ))

formally taking α = n− d − 2 and d = n− 1, we arrive at the
the usual Riesz transform R1. It is, however, not allowed by
our higher co-dim method.
for d < n − 1 and any α > 0 ∇Dα =: ∇Dα1 yields a new
rescaled hypersingular operator:

∇Dαf (X ) = d+α
α

´
Γ

(X−y)
|X−y |d+α+2 f (y)dσy

( ´
Γ |X − y |−d−αdσy

)− 1
α
−1

Contrary to the usual Riesz transform, this operator is always
bounded in L2(E ), on all ADR sets, in the sense of supε>0

over ε-truncations, and yet the existence of limε→0 is
necessary and sufficient for rectifiability (NB: n.t., NOT p.v.)
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And finally, magic square (function)

In co-dimension 1 one of the major characterizations of uniform
rectifiability at heart of many, many results connecting it to PDEs
is the usual square function estimate (USFE), David-Semmes’94:

Let Sf (x) := Cn

´
Γ |x − y |2−nf (y) dσy . Then Γ is n − 1 uniformly

rectifiable if and only if |∇2S1(x)|2 dist(x) is a Carleson measure.

That is, for all balls¨
B
|∇2S1(x)|2 dist(x) dx ≤ Crn.

What is so remarkable about it?

this is one operator characterizing uniform rectifiability
(nowadays we also know that the Riesz transform does, but
this was way before - 1994)
Sf is the harmonic single layer potential
the kernel E(x , y) = Cn |x − y |2−n is the harmonic
fundamental solution
∇Sf = Rf is the Riesz transform
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And finally, magic square (function)

Theorem (G. David, S. Semmes, 1994)

Let Sf (x) := Cn

´
Γ |x − y |2−nf (y) dσy . Then Γ is n − 1 uniformly

rectifiable if and only if |∇2S1(x)|2 dist(x) is a Carleson measure.

What about the higher co-dimension?

there is no global fundamental solution analogue of
E(x , y) = Cn |x − y |2−n (−∆xE(x − y) = δx(y) in Rn)
the operator L = − divD(x)−n+d+1∇ does not make sense
when there is no domain (D is the distance to the boundary
of the domain)
there is no single layer potential, no Riesz transform;
the analogue with Sf (x) := Cd

´
Γ |x − y |1−d f (y) dσy fails

But there is

Theorem (G. David, M. Engelstein, S.M., 2018)

Let n > d + 1, and let Γ be d-ADR. Then Γ is uniformly rectifiable
if and only if |∇|∇D(x)|2| dist(x) is a Carleson measure.
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And finally, magic square (function)

Theorem (G. David, M. Engelstein, S.M., 2018)

Let n > d + 1, and let Γ be d-ADR. Then Γ is uniformly rectifiable
if and only if |∇|∇D(x)|2| dist(x) is a Carleson measure.

in the special case α = n − d − 2 this connects back to the
solutions (because Dα is then a solution)

in fact, if we choose a special case α = n − d − 2 and then
formally let n = d + 1, we will see exactly the usual USFE
from co-dimension 1 (but these choices are incompatible)

it is important to take |∇|∇D(x)|2| and not ∇2D (a more
naive analogue of co-dimension 1) because the latter is not
Carleson: our radial direction is very different from angular
direction.
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Theorem II

Theorem (G. David, J. Feneuil, S.M., 2017)

Γ is a d-dimensional Lipschitz graph with a small Lipschitz
constant, d < n − 1, integer, Ω = Rn \ Γ, L = − divD(x)d+1−n∇.
Then ω ∈ A∞(σ).

How would you prove this?

Make a change of variables to get from
L = − divD(x)d+1−n∇ on Rn \ Γ to
L = − div D̃(x)d+1−nA(x)∇ on Rn \ Rd

(A is a matrix depending on the change of variables)

treat L = − div D̃(x)d+1−nA(x)∇ on Rn \ Rd

The challenge: create a change of variables for which
L = − div D̃(x)d+1−nA(x)∇ gives rise to an absolutely continuous
elliptic measure (not all A’s are good!)
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Theorem II

Theorem (G. David, J. Feneuil, S.M., 2017)

Γ is a d-dimensional Lipschitz graph with a small Lipschitz
constant, d < n − 1, integer, Ω = Rn \ Γ, L = − divD(x)d+1−n∇.
Then ω ∈ A∞(σ).

Two main approaches in co-dimension 1:

t 7→ t + ϕ(x) – requires t-independence of the matrix of
coefficients. The distance, however, is not t-independent, in
fact, |t| is its major part!
t 7→ ct + Pt ∗ ϕ(x)
t|∇A|2 is a Carleson measure – too much torsion in t in
higher co-dimension.

Our approach:

ρ(x , t) = (x ,P|t| ∗ ϕ(x)) + h(x , t)Rx ,|t|(0, t) where Rx ,r is a

linear isometry of Rn mapping Rd to the d-plane P(x , r)
tangent to a smoothened Γr and h is a positive (subtle, slowly
varying, and vital) “corrector”.

34



Conjecture, G. David, S.M.

Γ is a d-dimensional uniformly rectifiable set, d < n − 1, integer,
Ω = Rn \ Γ, L = − divD(x)d+1−n∇. Then ω ∈ A∞(σ).

The major steps:

Prove the result on a Lipschitz graph with a small Lipschitz
constant (G. David, J. Feneuil, S.M., 2017).

Bite out from a uniformly rectifiable set bad parts and replace
them with something better, which feels like a Lipschitz graph
with a small Lipschitz constant.
Corresponding to any relatively flat saw-tooth region there is
a replacement set which is Reifenberg flat and which can be
parametrized as a small Lipschitz graph.

Compare harmonic measure of a replacement set to the
original one.

Use some (upgraded) extrapolation ideas to manage all scales
and iterate flatness by induction until it is not flat any more.
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Inspirations

(G. David, J. Feneuil, S.M., 2017)
Γ is a d-dimensional Lipschitz graph with a small Lipschitz
constant. Then ω ∈ A∞(σ).

This result for harmonic functions on usual Lipschitz domains
(with co-dimension 1 boundary) is due to Dahlberg, 1977.

Our approach is closer to later developments, in particular,
due to Kenig-Koch (Kircheim)-Pipher-Toro in 2000, 2014,
which brought together more systematically Carleson measure
bounds, square functions, absolute continuity.

We pioneer a new “change of variables” (even for co-dim 1)
which “guides” the Brownian travelers and changes the game.

The full version of this result for our generality of elliptic
operators is new even in co-dimension 1.
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Inspirations

Corresponding to any relatively flat saw-tooth region there is
a replacement set which is Reifenberg flat and which can be
parametrized as a Lipschitz graph.

This uses some ideas of David-Toro Hölder parametrization of
Reifenberg flat sets.

However, we need to carefully, “seamlessly”, execute the
replacement.

And we need the parametrization to be very well-controlled, in
particular, to be Lipschitz, with a very careful control of
Lipschitz constants (depending on parameters of the
saw-tooth).
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Inspirations

Compare harmonic measure of a replacement set to the
original one.

Use some (upgraded) extrapolation ideas to iterate flatness
until it is not flat any more.

This goes back to Dahlberg-Jerison-Kenig 1984 (work through the
saw-tooth), extrapolation (Carleson-Garnett, 1975; Lewis-Murray
1995), but really we use a much later and cleaner version perfected
in the work of Hofmann-Martell, 2014. However:

Our extrapolation is more delicate: we can only afford to work
with very particular sawtooth regions built above.

We are in higher co-dimension.

Saw-tooth per se is a wild domain of mixed dimension, we
never can work on it directly.

Working instead with a replacement is a pain: how far is the
impact of a replacement felt? Our operators are non-local!
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