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Zürich

2018

Nikolai Nadirashvili (Marseille, France) (2013)Isoperimetric inequalities for spectrum of Laplacian on surfaces 2018 1 / 1



Let M be a closed surface and g be a Riemannian metric on M. Let us
consider the Laplace-Beltrami operator

∆f = − 1√
|g |

∂

∂x i

(√
|g |g ij ∂f

∂x j

)
,

and its eigenvalues

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 λ3(M, g) 6 . . . (1)

Let us denote by m(M, g , λi ) the multiplicity of the eigenvalue λi (M, g),
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Let M be a closed surface and g be a Riemannian metric on M. Let us
consider the Laplace-Beltrami operator

∆f = − 1√
|g |

∂

∂x i

(√
|g |g ij ∂f

∂x j

)
,

and its eigenvalues

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 λ3(M, g) 6 . . . (2)

Let us denote by m(M, g , λi ) the multiplicity of the eigenvalue λi (M, g),
Let us consider a functional

λ̄i (M, g) = λi (M, g)Area(M, g),

where Area(M, g) is the area of M with respect to metric g .
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Isoperimetric inequalities for Λi

Hersch (1970)
λ̄1(S2, g) ≤ 8π.
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Neumann spectrum

Let Ω ⊂ Rn be a bounded domain with smooth boundary,
0 = µ0 < µ1 ≤ µ2 ≤ . . . be the eigenvalues of the Neumann problem in Ω.

1. Isoperimetric inequality for µ1: n = 2, Szegö, 1954; n ≥ 2, Weinberger,
1956
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0 = µ0 < µ1 ≤ µ2 ≤ . . . be the eigenvalues of the Neumann problem in Ω.

1. Isoperimetric inequality for µ1: n = 2, Szegö, 1954; n ≥ 2, Weinberger,
1956

2. Isoperimetric inequality for µ2: n = 2, A. Girouard, N.N, I. Polterovich,
2009

3. Isoperimetric inequality for µ2: n ≥ 2 D. Bucur, A. Henrot
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Neumann spectrum

Let Ω ⊂ Rn be a bounded domain with smooth boundary,
0 = µ0 < µ1 ≤ µ2 ≤ . . . be the eigenvalues of the Neumann problem in Ω.

1. Isoperimetric inequality for µ1: n = 2, Szegö, 1954; n ≥ 2, Weinberger,
1956

2. Isoperimetric inequality for µ2: n = 2, A. Girouard, N.N, I. Polterovich,
2009

3. Isoperimetric inequality for µ2: n ≥ 2 D. Bucur, A. Henrot

4. Polya conjecture:

µk ≤ 4πk/Area Ω
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Yang and Yau proved (1980) that if M is an orientable surface of genus γ
then

λ̄1(M, g) 6 8π

[
γ + 3

2

]
,
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Yang and Yau proved (1980) that if M is an orientable surface of genus γ
then

λ̄1(M, g) 6 8π

[
γ + 3

2

]
,

Korevaar proved (1993) that there exists a constant C such that for any
i > 0 and any compact surface M of genus γ the following upper bound
holds,

λ̄i (M, g) 6 C (γ + 1)i .
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Yang and Yau proved (1980) that if M is an orientable surface of genus γ
then

λ̄1(M, g) 6 8π

[
γ + 3

2

]
,

Korevaar proved (1993) that there exists a constant C such that for any
i > 0 and any compact surface M of genus γ the following upper bound
holds,

λ̄i (M, g) 6 C (γ + 1)i .

It follows that the functionals λ̄i (M, g) are bounded from above and it is a
natural question to find for a given compact surface M and number i ∈ N
the quantity

Λi (M) = sup
g
λ̄i (M, g),

where the supremum is taken over the space of all Riemannian metrics g
on M.
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Isoperimetric inequalities for Λ1

Hersch (1970)
Λ1(S2) = 8π.
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Isoperimetric inequalities for Λi

Hersch (1970)
Λ1(S2) = 8π.

Li and Yau (1982)
Λ1(RP2) = 12π
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Isoperimetric inequalities for Λ1

Hersch (1970)
Λ1(S2) = 8π.

Li and Yau (1982)
Λ1(RP2) = 12π

Λ1(M) is also known for T2 (equilateral torus) N.N., K2 (Lawson torus),
Jakobson, N.N., Polterovich; ElSoufi, Giacomini, Jazar, T2#T2 (Bolza
surface): Jakobson, Levitin, N.N., Nigam, Polterovich; Nayatani, Shoda,
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Isoperimetric inequalities for Λi

Theorem (N.N.)

Λ2(S2) = 16π.

Extension for Sn, Petrides
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Isoperimetric inequalities for Λi

Theorem (N.N.)

Λ2(S2) = 16π.

Extension for Sn, Petrides

Theorem (N.N., Y.Sire)

Λ3(S2) = 24π.
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Isoperimetric inequalities for Λi

Theorem (N.N.)

Λ2(S2) = 16π.

Extension for Sn, Petrides

Theorem (N.N., Y.Sire)

Λ3(S2) = 24π.

Theorem (M. Karpukhin, N.N., A. Penskoi, I. Polterovich)

The following holds
Λk(S2) = 8πk ,

for k = 1, 2, . . . .
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Isoperimetric inequalities for Λi

Theorem (M. Karpukhin, N.N., A. Penskoi, I. Polterovich)

The following holds
Λk(S2) = 8πk ,

for k = 1, 2, . . . .

Corollary

For the Neumann problem

µk ≤ 8π/Area Ω

Known for the flat case: P. Kröger

Nikolai Nadirashvili (Marseille, France) (2013)Isoperimetric inequalities for spectrum of Laplacian on surfaces 2018 1 / 1



Isoperimetric inequalities for Λi

Theorem (M. Karpukhin, N.N., A. Penskoi, I. Polterovich)

The following holds
Λk(S2) = 8πk ,

for k = 1, 2, . . . .

Corollary

For the Neumann problem

µk ≤ 8π/Area Ω

Known for the flat case: P. Kröger

Theorem (N.N., A. Penskoi)

Λ2(RP2) = 20π.
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Multiplicity of eigenvalues
For eigenvalue λi of ∆ on (M, g) denote by mi its multiplicity

Cheng proved (1976)
mi ≤ C (i , χ(M))

on S2

mi ≤ 2i + 1

Sharp bounds for m1 are known for χ(M) ≥ −3:
Besson, N.N., Sévennec
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Multiplicity of eigenvalues
For eigenvalue λi of ∆ on (M, g) denote by mi its multiplicity

Cheng proved (1976)
mi ≤ C (i , χ(M))

on S2

mi ≤ 2i + 1

Sharp bounds for m1 are known for χ(M) ≥ −3:
Besson, N.N., Sévennec

Theorem (Colin de Verdière)

sup
g

mi ≥ chr(M)− 1 = [
1

2
(7 +

√
49− 24χ(M))]− 1

Conjecture. (Colin de Verdière)

sup
g

mi = chr(M)− 1
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Conjecture. (Colin de Verdière)

sup
g

mi = chr(M)− 1 = [
1

2
(7 +

√
49− 24χ(M))]− 1

Theorem (N.N., A.Penskoi)

On RP2 the inequality holds
m2 ≤ 5

Conjecture.
mi ≤ C (χ(M))

√
i
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Theorem (Courant Nodal Domain Theorem)

An eigenfunction corresponding to the eigenvalue λi has at most i + 1
nodal domains.

Theorem (Bers, 1955)

Let (M, g) be a compact 2-dimensional closed Riemannian manifold and
x0 is a point on M. Then there exist its neighborhood chart U with
coordinates x = (x1, x2) ∈ U ⊂ R2 centered at x0 such that for any
eigenfunction u of the Laplace-Beltrami operator on M there exists an
integer n > 0 and a non-trivial homogeneous harmonic polynomial Pn(x)
of degree n on the Euclidean plane R2 such that u(x) = Pn(x) +O(|x |n+1)

Proposition Let u be an eigenfunction corresponding to the eigenvalue λi .
Let xj , j = 1, . . . , n, be zeroes of u of order mj > 1. Then

i + 1 > χ(M)− n +
n∑

j=1

mj .
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Maximizing metrics and bubbling phenomena
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Maximizing metrics and bubbling phenomena

Extremal cases reveals interesting structures
L.C. Evans.
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Maximizing metrics and bubbling phenomena

Extremal cases reveals interesting structures
L.C. Evans.

Theorem ( N.N., 1996, El Soufi, Ilias, 2000 )

Let (M, g) be a sufficiently regular Riemannian surface with a metric g
maximizing (or extremalizing) λ̄k . Then (M, g) is isometric to a minimal
submanifold Euclidian sphere.
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Maximizing metrics and bubbling phenomena

Theorem. ( N.N., Y.Sire, R.Petrides, 2010 - 2015) Let (M, g) be a
Riemannian surface. For any k > 1 and a sequence of metrics
{g ′i }i>1 ∈ [g ] of the form g ′i = µ′ig such that

lim
i→∞

λk(g ′i ) = Λk(M, [g ])

there exists a subsequence of metrics {gn}n>1 = {g ′in}n>1 ∈ [g ], where
gn = µng , such that

lim
n→∞

λk(gn) = Λk(M, [g ])

and a probability measure µ such that

µn ⇀
∗ µ weakly in measure as n→ +∞.
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Moreover, the following decomposition holds,

µ = µr + µs

where µr is a nonnegative C∞ function and µs is the singular part given, if
not trivial, by the formula

µs =
K∑
i=1

ciδxi

for some K > 1, ci > 0 and some “bubbling points” xi ∈ M. Furthermore,
the number K satisfies the bound

K 6 k − 1.

If we denote by U the eigenspace of the Laplace-Beltrami operator on
(M, µrg) associated to the eigenvalue Λk(M, [g ]), then there exists a
family of eigenvectors {u1, . . . , ul} ⊂ U such that the map

ϕ = (u1, . . . , ul) : M → Rl

is a harmonic immersion into the sphere Sl−1.
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Harmonic maps from S2 to S4 and their singularities

Definition

Let (M, g) and (N, h) be Riemannian manifolds. A smooth map
f : M −→ N is called harmonic if f is an extremal for the energy
functional E [f ] =

∫
M |df (x)|2 dVolg .

Proposition A harmonic map S2 # Sn is automatically conformal and
hence minimal in the induced metric.
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Definition

Let (M, g) and (N, h) be Riemannian manifolds. A smooth map
f : M −→ N is called harmonic if f is an extremal for the energy
functional E [f ] =

∫
M |df (x)|2 dVolg .

Proposition A harmonic map S2 # Sn is automatically conformal and
hence minimal in the induced metric.

Corollary

For any k ∈ N there is a disconnected union Σ = (S2, g1) ∪ · · · ∪ (S2, gm),
Area Σ = 1 such that (S2, gi ), i = 1 . . .m, are isometric to a minimal
submanifolds of Euclidian spheres Snri and λk(Σ) = Λk(S2).

Corollary

For any k ∈ N there is a union Σ = (RP2, g0) ∪ (S2, g1) ∪ · · · ∪ (S2, gm),
Area Σ = 1 such that (S2, gi ), i = 1 . . .m, are isometric to a minimal
submanifolds of Euclidian spheres Snri and λk(Σ) = Λk(RP2).
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Proposition Let M = (RP2, g) be a smooth connected Riemannian
surface with a metric g maximizing λ2. Then either M is isometric to a
minimal surface with branch points F : RP2 −→ Sn, or M is a union
Σ = (RP2, g0) ∪ (S2, g1), where (RP2, g0) and (S2, g1) are minimal
submanifolds of Euclidean spheres.
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Theorem (Calabi1967, Barbosa1975)

Let F : S2 −→ Sn be a harmonic immersion with branch points such that
the image is not contained in a hyperplane. Then

(i) the area of S2 with respect to the induced metric (S2,F ∗g) is an
integer multiple of 4π;

(ii) n is even, n = 2m, and

Area(S2,F ∗g) ≥ 2πm(m + 1).

Definition

If Area(S2,F ∗g) = 4πd , then we say that F is of harmonic degree d .

We obtain immediately a lower bound for the harmonic degree.
Proposition Let F : S2 −→ S2m be a harmonic immersion with branch
points such that the image is not contained in a hyperplane. Then
d > m(m+1)

2 .
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Proposition Let M = (RP2, g) be a smooth connected Riemannian
surface with a metric g maximizing λ2. Then M is given by a harmonic
immersion with branch points F : S2 −→ S4 (such that the image is not
contained in a hyperplane) of harmonic degree d > 3.
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Proposition Let M = (RP2, g) be a smooth connected Riemannian
surface with a metric g maximizing λ2. Then M is given by a harmonic
immersion with branch points F : S2 −→ S4 (such that the image is not
contained in a hyperplane) of harmonic degree d > 3.

Definition (Penrose twistor map)

T : CP3 −→ HP1 ∼= S4, T ([z0 : z1 : z2 : z3]) = [z0 + z1j : z2 + z3j ].

Let z be a conformal parameter on S2.

Definition

Let us call a curve

f : S2 −→ CP3, f (z) = [f0(z) : f1(z) : f2(z) : f3(z)],

horizontal if
f ′1f2 − f1f

′
2 + f ′3f4 − f3f

′
4 = 0.
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Theorem (Bryant 1982)

For each harmonic immersion with branch points F : S2 −→ S4 there exist
either holomorphic or antiholomorphic horizontal curve f : S2 −→ CP3,
such that T ◦ f = F ,
For each (anti)holomorphic horizontal curve f : S2 −→ CP3 the map
F = T ◦ f : S2 −→ S4 is a harmonic immersion with branched points.
If a harmonic immersion F : S2 −→ S4 has a holomorphic
(antiholomorphic) horizontal curve f : S2 −→ CP3, then A ◦ F : S2 −→ S4

has an antiholomorphic (holomorphic) horizontal curve.

Definition

An (anti)holomorphic horizontal curve f appearing in Bryant Theorem is
called the lift of an harmonic immersion F .
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Theorem (Bryant 1982)

Let F : S2 −→ S4 be a harmonic immersion with branched points of
harmonic degree d with holomorphic lift f : S2 −→ CP3. Then
f : S2 −→ CP3 is an algebraic curve of degree d .
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Theorem (Bryant 1982)

Let F : S2 −→ S4 be a harmonic immersion with branched points of
harmonic degree d with holomorphic lift f : S2 −→ CP3. Then
f : S2 −→ CP3 is an algebraic curve of degree d .

Theorem (Bolton-Woodward 2001)

For a linearly full holomorphic horisontal curve in CP3 of degree d
if d = 3 then F does not have neither branch points nor umbilics,
if d > 3 then F has at least one branch point or umbilic.
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Definition

Let (M, g) and (N, h) be Riemannian manifolds and ∇M and ∇N be the
corresponding Levi-Civita connections.
Let F : M −→ N be an immersion. Then a) the second fundamental form
IIF of F is defined by the formula

∇N
dF (X )dF (Y ) = dF (∇M

X Y ) + IIF (X ,Y );

b) a point p ∈ M is called an umbilic point if there exists a vector
v ∈ TF (p)N such that at the point p one has

IIFp (X ,Y ) = gp(X ,Y ) · v . (3)
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Corollary

A point p ∈ S2 is an umbilic of a harmonic immersion F : S2 −→ S4 if and
only if for a conformal parametr z

IIFp (∂/∂z , ∂/∂z) = 0. (4)

and hence fzz(p) is a linear combination of fz(p) and fz̄(p), where f is a
Bryant lift of F .
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Theorem (Ejiri 1998)

Let F : S2 −→ S2m be a linearly full harmonic immersion with branched
points of harmonic degree d > 1 Then

N(2) ≥ d + 1
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