Isoperimetric inequalities for spectrum of Laplacian on surfaces

Nikolai Nadirashvili (Marseille, France)

Zürich

2018

Let M be a closed surface and g be a Riemannian metric on M. Let us consider the Laplace-Beltrami operator

$$\Delta f = -rac{1}{\sqrt{|g|}}rac{\partial}{\partial x^i}\left(\sqrt{|g|}g^{ij}rac{\partial f}{\partial x^j}
ight),$$

and its eigenvalues

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \leqslant \lambda_2(M,g) \leqslant \lambda_3(M,g) \leqslant \dots$$
(1)

Let us denote by $m(M, g, \lambda_i)$ the multiplicity of the eigenvalue $\lambda_i(M, g)$,

・ 何 ト ・ ヨ ト ・ ヨ ト

Let M be a closed surface and g be a Riemannian metric on M. Let us consider the Laplace-Beltrami operator

$$\Delta f = -\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x^{j}} \right),$$

and its eigenvalues

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \leqslant \lambda_2(M,g) \leqslant \lambda_3(M,g) \leqslant \dots$$
 (2)

Let us denote by $m(M, g, \lambda_i)$ the multiplicity of the eigenvalue $\lambda_i(M, g)$, Let us consider a functional

$$ar{\lambda}_i(M,g) = \lambda_i(M,g) Area(M,g)^{,}$$

where Area(M,g) is the area of M with respect to metric g.

Hersch (1970)

 $\bar{\lambda}_1(\mathbb{S}^2,g) \leq 8\pi.$

3

イロト イボト イヨト イヨト

Neumann spectrum

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary, $0 = \mu_0 < \mu_1 \le \mu_2 \le \ldots$ be the eigenvalues of the Neumann problem in Ω .

1. Isoperimetric inequality for μ_1 : n = 2, Szegö, 1954; $n \ge 2$, Weinberger, 1956

Neumann spectrum

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary, $0 = \mu_0 < \mu_1 \le \mu_2 \le \ldots$ be the eigenvalues of the Neumann problem in Ω .

1. Isoperimetric inequality for μ_1 : n = 2, Szegö, 1954; $n \ge 2$, Weinberger, 1956

2. Isoperimetric inequality for μ_2 : n = 2, A. Girouard, N.N, I. Polterovich, 2009

3. Isoperimetric inequality for μ_2 : $n \ge 2$ D. Bucur, A. Henrot

< 回 > < 回 > < 回 > <

Neumann spectrum

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary, $0 = \mu_0 < \mu_1 \le \mu_2 \le \ldots$ be the eigenvalues of the Neumann problem in Ω .

1. Isoperimetric inequality for μ_1 : n = 2, Szegö, 1954; $n \ge 2$, Weinberger, 1956

2. Isoperimetric inequality for μ_2 : n = 2, A. Girouard, N.N, I. Polterovich, 2009

- 3. Isoperimetric inequality for μ_2 : $n \ge 2$ D. Bucur, A. Henrot
- 4. Polya conjecture:

$$\mu_k \leq 4\pi k / Area \ \Omega$$

< 回 > < 回 > < 回 > <

Yang and Yau proved (1980) that if ${\it M}$ is an orientable surface of genus γ then

$$ar{\lambda}_1(M,g)\leqslant 8\pi\left[rac{\gamma+3}{2}
ight],$$

э

A D N A B N A B N A B N

Yang and Yau proved (1980) that if ${\it M}$ is an orientable surface of genus γ then

$$ar{\lambda}_1(M,g)\leqslant 8\pi\left[rac{\gamma+3}{2}
ight],$$

Korevaar proved (1993) that there exists a constant C such that for any i > 0 and any compact surface M of genus γ the following upper bound holds,

$$\bar{\lambda}_i(M,g) \leqslant C(\gamma+1)i.$$

(4 何) トイヨト イヨト

Yang and Yau proved (1980) that if M is an orientable surface of genus γ then

$$ar{\lambda}_1(M,g)\leqslant 8\pi\left[rac{\gamma+3}{2}
ight],$$

Korevaar proved (1993) that there exists a constant C such that for any i > 0 and any compact surface M of genus γ the following upper bound holds,

$$\bar{\lambda}_i(M,g) \leqslant C(\gamma+1)i.$$

It follows that the functionals $\bar{\lambda}_i(M,g)$ are bounded from above and it is a natural question to find for a given compact surface M and number $i \in \mathbb{N}$ the quantity

$$\Lambda_i(M) = \sup_g \bar{\lambda}_i(M,g),$$

where the supremum is taken over the space of all Riemannian metrics g on M.

Hersch (1970)

$$\Lambda_1(\mathbb{S}^2) = 8\pi.$$

э

<ロト <問ト < 目と < 目と

Hersch (1970)

$$\Lambda_1(\mathbb{S}^2) = 8\pi.$$

Li and Yau (1982)

$$\Lambda_1(\mathbb{R}P^2) = 12\pi$$

3

イロト イポト イヨト イヨト

Hersch (1970)

$$\Lambda_1(\mathbb{S}^2) = 8\pi.$$

Li and Yau (1982)

$$\Lambda_1(\mathbb{R}P^2) = 12\pi$$

 $\Lambda_1(M)$ is also known for \mathbb{T}^2 (equilateral torus) N.N., \mathbb{K}^2 (Lawson torus), Jakobson, N.N., Polterovich; ElSoufi, Giacomini, Jazar, $\mathbb{T}^2 \# \mathbb{T}^2$ (Bolza surface): Jakobson, Levitin, N.N., Nigam, Polterovich; Nayatani, Shoda,

Hersch (1970)

$$\Lambda_1(\mathbb{S}^2) = 8\pi.$$

Li and Yau (1982)

$$\Lambda_1(\mathbb{R}P^2) = 12\pi$$

 $\Lambda_1(M)$ is also known for \mathbb{T}^2 (equilateral torus) N.N., \mathbb{K}^2 (Lawson torus), Jakobson, N.N., Polterovich; ElSoufi, Giacomini, Jazar, $\mathbb{T}^2 \# \mathbb{T}^2$ (Bolza surface): Jakobson, Levitin, N.N., Nigam, Polterovich; Nayatani, Shoda,

Theorem (N.N.)

 $\Lambda_2(\mathbb{S}^2) = 16\pi.$

Extension for \mathbb{S}^n , Petrides

イロト 不得 トイラト イラト 一日

Theorem (N.N.)

 $\Lambda_2(\mathbb{S}^2) = 16\pi.$

Extension for \mathbb{S}^n , Petrides

Theorem (N.N., Y.Sire)

 $\Lambda_3(\mathbb{S}^2) = 24\pi.$

イロト イヨト イヨト イヨト 三日

Theorem (N.N.)

$$\Lambda_2(\mathbb{S}^2) = 16\pi.$$

Extension for \mathbb{S}^n , Petrides

Theorem (N.N., Y.Sire)

$$\Lambda_3(\mathbb{S}^2)=24\pi.$$

Theorem (M. Karpukhin, N.N., A. Penskoi, I. Polterovich)

The following holds

$$\Lambda_k(\mathbb{S}^2)=8\pi k,$$

for k = 1, 2, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (M. Karpukhin, N.N., A. Penskoi, I. Polterovich) The following holds

$$\Lambda_k(\mathbb{S}^2)=8\pi k,$$

for k = 1, 2, ...

Corollary

For the Neumann problem

$$\mu_k \leq 8\pi/A$$
rea Ω

Known for the flat case: P. Kröger

2018 1/1

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (M. Karpukhin, N.N., A. Penskoi, I. Polterovich)

The following holds

$$\Lambda_k(\mathbb{S}^2)=8\pi k,$$

for k = 1, 2, ...

Corollary

For the Neumann problem

 $\mu_k \leq 8\pi/A$ rea Ω

Known for the flat case: P. Kröger

Theorem (N.N., A. Penskoi)

$$\Lambda_2(\mathbb{R}P^2)=20\pi.$$

Nikolai Nadirashvili (Marseille, Fralsoperimetric inequalities for spectrum of Lapl

2018 1/1

Multiplicity of eigenvalues

For eigenvalue λ_i of Δ on (M, g) denote by m_i its multiplicity

Cheng proved (1976)

$$m_i \leq C(i, \chi(M))$$

on \mathbb{S}^2

$$m_i \leq 2i+1$$

Sharp bounds for m_1 are known for $\chi(M) \ge -3$: Besson, N.N., Sévennec

イロト イヨト イヨト 一座

Multiplicity of eigenvalues

For eigenvalue λ_i of Δ on (M, g) denote by m_i its multiplicity

Cheng proved (1976)

$$m_i \leq C(i, \chi(M))$$

on \mathbb{S}^2

$$m_i \leq 2i+1$$

Sharp bounds for m_1 are known for $\chi(M) \ge -3$: Besson, N.N., Sévennec

Theorem (Colin de Verdière)

$$\sup_{g} m_{i} \geq chr(M) - 1 = [\frac{1}{2}(7 + \sqrt{49 - 24\chi(M)})] - 1$$

Conjecture. (Colin de Verdière)

$$\sup_{g} m_i = chr(M) - 1$$

Nikolai Nadirashvili (Marseille, Fralsoperimetric inequalities for spectrum of Lapl

2018 1/1

- 3

< 回 > < 回 > < 回 > <

Conjecture. (Colin de Verdière)

$$\sup_{g} m_{i} = chr(M) - 1 = \left[\frac{1}{2}(7 + \sqrt{49 - 24\chi(M)})\right] - 1$$

Theorem (N.N., A.Penskoi)
$$On \mathbb{R}P^2$$
 the inequality holds $m_2 \leq 5$

Conjecture.

 $m_i \leq C(\chi(M))\sqrt{i}$

3

<ロト <問ト < 目と < 目と

Theorem (Courant Nodal Domain Theorem)

An eigenfunction corresponding to the eigenvalue λ_i has at most i + 1 nodal domains.

Theorem (Bers, 1955)

Let (M, g) be a compact 2-dimensional closed Riemannian manifold and x_0 is a point on M. Then there exist its neighborhood chart U with coordinates $x = (x^1, x^2) \in U \subset \mathbb{R}^2$ centered at x_0 such that for any eigenfunction u of the Laplace-Beltrami operator on M there exists an integer $n \ge 0$ and a non-trivial homogeneous harmonic polynomial $P_n(x)$ of degree n on the Euclidean plane \mathbb{R}^2 such that $u(x) = P_n(x) + O(|x|^{n+1})$

Proposition Let *u* be an eigenfunction corresponding to the eigenvalue λ_i . Let x_j , j = 1, ..., n, be zeroes of *u* of order $m_j > 1$. Then

$$i+1 \ge \chi(M) - n + \sum_{j=1}^n m_j.$$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

3

イロト イヨト イヨト イヨト

Extremal cases reveals interesting structures L.C. Evans.

< □ > < □ > < □ > < □ > < □ > < □ >

3

Extremal cases reveals interesting structures L.C. Evans.

Theorem (N.N., 1996, El Soufi, Ilias, 2000)

Let (M, g) be a sufficiently regular Riemannian surface with a metric g maximizing (or extremalizing) $\overline{\lambda}_k$. Then (M, g) is isometric to a minimal submanifold Euclidian sphere.

Theorem. (N.N., Y.Sire, R.Petrides, 2010 - 2015) Let (M, g) be a Riemannian surface. For any $k \ge 1$ and a sequence of metrics $\{g'_i\}_{i\ge 1} \in [g]$ of the form $g'_i = \mu'_i g$ such that

$$\lim_{i\to\infty}\lambda_k(g'_i)=\Lambda_k(M,[g])$$

there exists a subsequence of metrics $\{g_n\}_{n \ge 1} = \{g'_{i_n}\}_{n \ge 1} \in [g]$, where $g_n = \mu_n g$, such that

$$\lim_{n\to\infty}\lambda_k(g_n)=\Lambda_k(M,[g])$$

and a probability measure μ such that

 $\mu_n \rightharpoonup^* \mu$ weakly in measure as $n \rightarrow +\infty$.

くぼう くほう くほう しほ

Moreover, the following decomposition holds,

$$\mu = \mu_r + \mu_s$$

where μ_r is a nonnegative C^{∞} function and μ_s is the singular part given, if not trivial, by the formula

$$\mu_{s} = \sum_{i=1}^{K} c_{i} \delta_{x_{i}}$$

for some $K \ge 1$, $c_i \ge 0$ and some "bubbling points" $x_i \in M$. Furthermore, the number K satisfies the bound

$$K \leqslant k-1.$$

If we denote by U the eigenspace of the Laplace-Beltrami operator on $(M, \mu_r g)$ associated to the eigenvalue $\Lambda_k(M, [g])$, then there exists a family of eigenvectors $\{u_1, \ldots, u_l\} \subset U$ such that the map

$$\varphi = (u_1, \ldots, u_l) : M \to \mathbb{R}^l$$

is a harmonic immersion into the sphere \mathbb{S}^{l-1} .

Nikolai Nadirashvili (Marseille, Fralsoperimetric inequalities for spectrum of Lapl

Harmonic maps from \mathbb{S}^2 to \mathbb{S}^4 and their singularities

Definition

Let (M, g) and (N, h) be Riemannian manifolds. A smooth map $f: M \longrightarrow N$ is called harmonic if f is an extremal for the energy functional $E[f] = \int_M |df(x)|^2 dVol_g$.

Proposition A harmonic map $\mathbb{S}^2 \hookrightarrow \mathbb{S}^n$ is automatically conformal and hence minimal in the induced metric.

Definition

Let (M, g) and (N, h) be Riemannian manifolds. A smooth map $f: M \longrightarrow N$ is called harmonic if f is an extremal for the energy functional $E[f] = \int_M |df(x)|^2 dVol_g$.

Proposition A harmonic map $\mathbb{S}^2 \hookrightarrow \mathbb{S}^n$ is automatically conformal and hence minimal in the induced metric.

Corollary

For any $k \in \mathbb{N}$ there is a disconnected union $\Sigma = (\mathbb{S}^2, g_1) \cup \cdots \cup (\mathbb{S}^2, g_m)$, Area $\Sigma = 1$ such that (\mathbb{S}^2, g_i) , $i = 1 \dots m$, are isometric to a minimal submanifolds of Euclidian spheres $\mathbb{S}_{r_i}^n$ and $\lambda_k(\Sigma) = \Lambda_k(\mathbb{S}^2)$.

Corollary

For any $k \in \mathbb{N}$ there is a union $\Sigma = (\mathbb{R}P^2, g_0) \cup (\mathbb{S}^2, g_1) \cup \cdots \cup (\mathbb{S}^2, g_m)$, Area $\Sigma = 1$ such that (\mathbb{S}^2, g_i) , $i = 1 \dots m$, are isometric to a minimal submanifolds of Euclidian spheres $\mathbb{S}_{r_i}^n$ and $\lambda_k(\Sigma) = \Lambda_k(\mathbb{R}P^2)$. **Proposition** Let $M = (\mathbb{R}P^2, g)$ be a smooth connected Riemannian surface with a metric g maximizing λ_2 . Then either M is isometric to a minimal surface with branch points $F : \mathbb{R}P^2 \longrightarrow \mathbb{S}^n$, or M is a union $\Sigma = (\mathbb{R}P^2, g_0) \cup (\mathbb{S}^2, g_1)$, where $(\mathbb{R}P^2, g_0)$ and (\mathbb{S}^2, g_1) are minimal submanifolds of Euclidean spheres.

Theorem (Calabi1967, Barbosa1975)

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^n$ be a harmonic immersion with branch points such that the image is not contained in a hyperplane. Then

- (i) the area of S² with respect to the induced metric (S², F*g) is an integer multiple of 4π;
- (ii) n is even, n = 2m, and

$$Area(\mathbb{S}^2, F^*g) \geq 2\pi m(m+1).$$

Definition

If $Area(\mathbb{S}^2, F^*g) = 4\pi d$, then we say that F is of harmonic degree d.

We obtain immediately a lower bound for the harmonic degree. **Proposition** Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^{2m}$ be a harmonic immersion with branch points such that the image is not contained in a hyperplane. Then $d \ge \frac{m(m+1)}{2}$.

Proposition Let $M = (\mathbb{R}P^2, g)$ be a smooth connected Riemannian surface with a metric g maximizing λ_2 . Then M is given by a harmonic immersion with branch points $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ (such that the image is not contained in a hyperplane) of harmonic degree d > 3.

Proposition Let $M = (\mathbb{R}P^2, g)$ be a smooth connected Riemannian surface with a metric g maximizing λ_2 . Then M is given by a harmonic immersion with branch points $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ (such that the image is not contained in a hyperplane) of harmonic degree d > 3.

Definition (Penrose twistor map)

$$T: \mathbb{CP}^3 \longrightarrow \mathbb{HP}^1 \cong \mathbb{S}^4, \quad T([z_0:z_1:z_2:z_3]) = [z_0 + z_1j:z_2 + z_3j].$$

Let z be a conformal parameter on \mathbb{S}^2 .

Definition

Let us call a curve

$$f:\mathbb{S}^2\longrightarrow\mathbb{CP}^3,\quad f(z)=[f_0(z):f_1(z):f_2(z):f_3(z)],$$

horizontal if

$$f_1'f_2 - f_1f_2' + f_3'f_4 - f_3f_4' = 0.$$

Nikolai Nadirashvili (Marseille, Fralsoperimetric inequalities for spectrum of Lapl

Theorem (Bryant 1982)

For each harmonic immersion with branch points $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ there exist either holomorphic or antiholomorphic horizontal curve $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$, such that $T \circ f = F$, For each (anti)holomorphic horizontal curve $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ the map $F = T \circ f : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ is a harmonic immersion with branched points. If a harmonic immersion $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ has a holomorphic (antiholomorphic) horizontal curve $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$, then $A \circ F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ has an antiholomorphic (holomorphic) horizontal curve.

Definition

An (anti)holomorphic horizontal curve f appearing in Bryant Theorem is called the lift of an harmonic immersion F.

くぼう くほう くほう しほ

Theorem (Bryant 1982)

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ be a harmonic immersion with branched points of harmonic degree d with holomorphic lift $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$. Then $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ is an algebraic curve of degree d.

Theorem (Bryant 1982)

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ be a harmonic immersion with branched points of harmonic degree d with holomorphic lift $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$. Then $f : \mathbb{S}^2 \longrightarrow \mathbb{CP}^3$ is an algebraic curve of degree d.

Theorem (Bolton-Woodward 2001)

For a linearly full holomorphic horisontal curve in \mathbb{CP}^3 of degree d if d = 3 then F does not have neither branch points nor umbilics, if d > 3 then F has at least one branch point or umbilic.

Definition

Let (M, g) and (N, h) be Riemannian manifolds and ∇^M and ∇^N be the corresponding Levi-Civita connections.

Let $F: M \longrightarrow N$ be an immersion. Then a) the second fundamental form \mathbf{II}^F of F is defined by the formula

$$\nabla^{N}_{dF(X)}dF(Y) = dF(\nabla^{M}_{X}Y) + \Pi^{F}(X,Y);$$

b) a point $p \in M$ is called an umbilic point if there exists a vector $v \in T_{F(p)}N$ such that at the point p one has

$$\mathbf{H}_{p}^{F}(X,Y) = g_{p}(X,Y) \cdot v.$$
(3)

Corollary

A point $p \in \mathbb{S}^2$ is an umbilic of a harmonic immersion $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^4$ if and only if for a conformal parametr z

$$\mathbf{H}_{p}^{F}(\partial/\partial z, \partial/\partial z) = 0.$$
(4)

and hence $f_{zz}(p)$ is a linear combination of $f_z(p)$ and $f_{\overline{z}}(p)$, where f is a Bryant lift of F.

Theorem (Ejiri 1998)

Let $F : \mathbb{S}^2 \longrightarrow \mathbb{S}^2 m$ be a linearly full harmonic immersion with branched points of harmonic degree d > 1 Then

 $N(2) \ge d+1$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶