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Theme

Consider the PDE:
div µ = σ in D ′,

where

µ ∈M (Ω;Rd×d ) is a vector measure on Ω ⊂ Rd with values in Rm

“div” is the row-wise divergence

σ ∈M (Ω;Rd )

Prototype for A µ = σ with A general constant-coefficient linear PDE operator

Central question: What can be said about the singular part µs of solutions

µ = gL d + µs ?

µs = jumps, fractals, Cantor measures, . . . ?

GMT

Harmonic
Analysis PDEs



Restrictions on the polar

Theorem (De Philippis & R. ’16)

Let div µ = σ in D ′. Then,

rank

(
dµ

d|µ|
(x)

)
≤ d − 1 for |µs |-a.e. x ∈ Ω.

Corollary

Let div µ = σ in D ′. Assume that

rank

(
dµ

d|µ|
(x)

)
= d for |µ|-a.e. x .

Then, |µ| � L d .

Remark: This result is “dual” to Alberti’s Rank-One Theorem ’93
(u ∈ BV(Rd ;Rm), then rank

(
dDsu
d|Dsu|

)
= 1 almost everywhere w.r.t. |Dsu|).



Singular Density Theorem

Let
A µ :=

∑
|α|≤k

Aα∂
αµ = σ in D ′,

where Aα ∈ Rn×m, ∂α = ∂α1
1 . . . ∂

αd
d for each α = (α1, . . . , αd ) ∈ Nd

0 .

Examples: A = curl (BV), A = curl curl (BD), A = div

Tartar wave cone:

ΛA :=
⋃
|ξ|=1

ker Ak (ξ), Ak (ξ) :=
∑
|α|=k

(2πi)kAαξ
α.

Theorem (De Philippis & R. ’16)

Let A µ = σ in D ′. Then,

dµ

d|µ|
(x) ∈ ΛA for |µs |-a.e. x ∈ Ω.

Remark: Strong restriction on singularities!
(e.g.: A = curl: ΛA = {a⊗ b}, so Alberti’s Rank-One Theorem follows)



A = div

Theorem (from above)

Let div µ = σ in D ′. Then,

rank

(
dµ

d|µ|
(x)

)
≤ d − 1 for |µs |-a.e. x ∈ Ω.

Proof: Let µ = (µkj ) ∈M (Ω;Rd×d ) and let

div µ =

( d∑
j=1

∂jµ
k
j

)
k=1,...,d

= σ.

Then,
A(ξ)M = (2πi)Mξ, ξ ∈ Rd , M ∈ Rd×d ,

so that

Λdiv =
⋃
|ξ|=1

ker A(ξ)

=
⋃
|ξ|=1

{
M ∈ Rd×d : Mξ = 0

}
=
{
M ∈ Rd×d : rankM ≤ d − 1

}
.

The conclusion follows from the theorem on the previous slide.



Partial ellipticity

Assume A is a first-order operator:

A =
d∑
`=1

A`∂` and A(ξ) = A1(ξ) = (2πi)
d∑
`=1

A`ξ`.

Let A µ = 0 (σ 6= 0: just lower-order terms)

Let µ have the special structure

µ = P0 ν, P0 ∈ Rm fixed, ν ∈M +
loc(Rd ) scalar measure.

 This is approximately true locally around |µ|-a.e. x0 ∈ Ω.

Formally, via the Fourier transform,

A µ = 0 ⇔ A(ξ)P0ν̂(ξ) = 0 ∀ ξ ∈ Rd .

Hence, at each ξ 6= 0: either P0 ∈ ker A(ξ) or ν̂(ξ) = 0.

If P0 /∈ ΛA =
⋃
|ξ|=1 ker A(ξ), then

ν̂(ξ) = 0 ∀ξ 6= 0,

hence ν � L d . So, µ “locally” around x0 is like L d  no singularity!

Thus: P0 ∈ ΛA at singularities.



Variation I: Converses to Rademacher-type theorems



Differentiability of Lipschitz functions

Theorem (Rademacher)

Every Lipschitz function f : Rd → R is differentiable L d -almost everywhere.

Question: Given a positive measure ν on Rd such that every Lipschitz f : Rd → R is
differentiable ν-almost everywhere, what can be said about ν? Are there singularities
that are “not seen” by Lipschitz functions?

Conjecture (ACP conjecture, Alberti, Csörnyei & Preiss ’04, but older)

ν � L d .

Preiss ’90: There exists a null set E ⊂ R2 such that every Lipschitz function
f : R2 → R is differentiable at some point of E .

Preiss & Speight ’15: There exists a null set E ⊂ Rd such that every Lipschitz
map f : Rd → Rm with m < d is differentiable at some point of E .

Alberti, Csörnyei & Preiss, announced in ’04: Every null set in R2 is contained
in the non-differentiability set of some Lipschitz map f : R2 → R2

(also true for R1 → R1 by an easier argument of Zahorski ’46).

Csörnyei & Jones, announced in ’11: Every null set in Rd is contained in the
non-differentiability set of some Lipschitz map f : Rd → Rd .



Lipschitz differentiability spaces (LDS)

(X , ρ) separable, complete metric space

µ positive Radon measure on X

(U, ϕ) with U ⊂ X , ϕ : U → Rd Lipschitz is a d-chart

f : X → R is differentiable with respect to a d-chart (U, ϕ) at x0 ∈ U if there is
df (x0) ∈ Rd such that

lim sup
x→x0

|f (x)− f (x0)− df (x0) · (ϕ(x)− ϕ(x0))|
ρ(x , x0)

= 0

Definition (Cheeger ’99, Keith ’04)

(X , ρ, µ) is a Lipschitz differentiability space (LDS) if there is a countable family
{(Ui , ϕi )}i∈N of d(i)-charts with

X =
⋃
i

Ui

and every Lipschitz function f : X → R is differentiable with respect to every (Ui , ϕi )
at µ-a.e. x0 ∈ Ui (“Rademacher’s Theorem holds”).



Example of LDS: First Heisenberg group

H := (R3; ·), where

(x , y , t) · (x ′, y ′, t′) :=
(
x + x ′, y + y ′, t + t′ − 2(xy ′ − yx ′)

)
.

Then:
R3 = V1 ⊕ V2, V1 := span{X ,Y }, V2 := span{T},

where
X := ∂x + 2y∂t , Y := ∂y − 2x∂t , T := ∂t

. . . has Haar measure µH (just L 3 in coordinates).

Carnot–Carathéodory distance on H:

dCC (P,Q) := inf
{
HL(γ) : γ horizontal curve joining P,Q

}
,

where γ horizontal if γ̇ ∈ span{X ,Y } and HL(γ) is the horizontal
length.

Theorem (Chow–Rashevskii)

dCC is a metric on H that is not Lipschitz-equivalent to the
Eucliden metric.

Geodesics in H:

(image by Lerario–Rizzi ’14)



Cheeger’s conjecture

Conjecture (Cheeger ’99)

Let (X , ρ, µ) be a Lipschitz differentiability space and let (U, ϕ) be a d-chart. Then,

ϕ#(µ U)� L d

(“the measure ϕ#(µ U) is d-rectifiable”).

Structure theory of LDS, in particular questions on whether bi-Lipschitz (finite
distortion) embeddings exist.

Applications in complexity theory:

Many graph-cut problems (like SparsestCut) are NP-hard

`2
2-optimization problem  yields LDS

Can embed this metric into `1 via a theorem by Bourgain ’85 with distortion
O(log n) (n = number of vertices)

Goemans–Linial Conjecture: Can also do embedding with distortion O(1)
(bi-Lipschitz embedding with L-constant independent of n)

A positive solution would give a P-algorithm for approximation of SparsestCut
and other applications in polynomial approximation algorithms

Disproved by Khot–Vishnoi ’05 and Lee–Naor ’05



Lipschitz differentiability & currents

Normal 1-current: T = ~T‖T‖ ∈Mloc(Rd ;Rd ) with ∂T := d∗T ∈Mloc(Rd )

Theorem (Alberti & Marchese ’16)

If all Lipschitz functions f : Rd → R are ν-a.e. differentiable, then then there are d
normal 1-currents T1, . . . ,Td with

(i) ν � ‖Ti‖ for i = 1, . . . , d ,

(ii) for ν-a.e. x , span{ ~T1(x), . . . , ~Td (x)} = Rd .

Theorem (Bate ’16)

In a Lipschitz differentiability space (X , ρ, µ) with a d-chart (U, ϕ), then there are d
normal 1-currents T1, . . . ,Td with

(i) ϕ#µ� ‖Ti‖ for i = 1, . . . , d ,

(ii) for (ϕ#µ)-a.e. x , span{ ~T1(x), . . . , ~Td (x)} = Rd .

Remark: Proofs via Alberti Representations:

ν =

∫
curve fragments γ : K → Rd

νγ dπ(γ), νγ � H 1 (Im γ).



Structure of normal 1-currents

Theorem (Structure Theorem for 1D Normal Currents, De Philippis & R. ’16)

Let T1 = ~T1‖T1‖, . . . ,Td = ~Td‖Td‖ be normal 1-currents such that there exists a
positive Radon measure ν ∈M+(Rd ) with the following properties:

(i) ν � ‖Ti‖ for i = 1, . . . , d ,

(ii) for |ν|-a.e. x , span{ ~T1(x), . . . , ~Td (x)} = Rd .

Then, ν � L d .

Proof: ∂T ∈M ⇐⇒ div T = σ. Then, the theorem is (essentially) a corollary to:

Theorem (from earlier)

Let div µ = σ in D ′. Assume that rank
(

dµ
d|µ| (x)

)
= d for |µ|-a.e. x . Then, |µ| � L d .



Solution of ACP & Cheeger conjectures

Theorem (Lipschitz Differentiability Theorem, De Philippis & R. ’16)

Let ν ∈M+(Rd ) be a positive Radon measure such that every Lipschitz function
f : Rd → R is differentiable ν-almost everywhere. Then, ν � L d .

Theorem (De Philippis & Marchese & R. ’17)

Let (X , ρ, µ) be a Lipschitz differentiability space and let (U, ϕ) be a d-chart. Then,

ϕ#(µ U)� L d .



Variation II: Dimensions and rectifiability



Co-cancelling operators

A : general constant-coefficient linear PDE operator

Definition (van Schaftingen ’13)

The operator A is called co-cancelling if

Λ1
A :=

⋂
ξ∈Rd\{0}

ker Ak = {0}.

Theorem (van Schaftingen ’13)

Assume that A is homogeneous and co-cancelling. If

A (P0δ0) = 0 for some P0 ∈ Rm,

then P0 = 0.

Corollary

Let A µ = 0 in D ′. If µ is “ 0-rectifiable”, then µ = 0.

Conclusion: Other wave cones might give information about the dimension of µ. . .



Hierarchy of wave cones

A : general constant-coefficient linear PDE operator; recall ΛA :=
⋃
ξ 6=0 ker Ak (ξ).

Definition

Let Gr(`, d) be the Grassmanian of ` planes in Rd . For ` = 1, . . . , d we define the
`-dimensional wave cone as

Λ`A :=
⋂

π∈Gr(`,d)

⋃
ξ∈π\{0}

ker Ak (ξ),

where Ak is the principal symbol of A .

Equivalently:

P0 /∈ Λ`A ⇐⇒ (A π)P0 is elliptic for some π ∈ Gr(`, d),

where (A π)(ϕ) := A (ϕ ◦ pπ) with pπ the orthogonal projection onto π.

Inclusions:

Λ1
A =

⋂
ξ∈Rd\{0}

ker Ak (ξ) ⊂ Λj
A ⊂ Λ`A ⊂ Λd

A = ΛA , 1 ≤ j ≤ ` ≤ d .



Dimensional estimates

Theorem (Arroyo-Rabasa & De Philippis & Hirsch & R. ’18, on arXiv imminently. . .)

Let A µ = σ in D ′. If H `(E) = 0 for some ` ∈ {0, . . . , d}, then

dµ

d|µ|
(x) ∈ Λ`A for |µ|-a.e. x ∈ E .

Remark: For ` = d , this recovers the ’16 Singular Density Theorem.

Corollary

Let A µ = σ in D ′. Define

`A := max
{
` ∈ N : Λ`A = {0}

}
.

Then,
µ� H `A .

Remark: For ` = 1, this also improves the result of van Schaftingen ’13.



Rectifiability

Define the upper `-density of |µ|:

θ∗` (|µ|)(x) := lim sup
r→0

|µ|(Br (x))

(2r)`
.

Theorem (Arroyo-Rabasa & De Philippis & Hirsch & R. ’18)

Let A µ = σ in D ′ and assume
Λ`A = {0}.

Then, µ {θ∗` (|µ|) > 0} is concentrated on an `-rectifiable set R and

µ R = P(x) H `
x R,

where

P(x0) ∈
⋂

ξ∈(Tx0
R)⊥

ker Ak (ξ) for H `-a.e. x0 ∈ R (or |µ|-a.e. x0 ∈ R).

Here, Tx0R is the the approximate tangent plane to R at x0.

Proof: Via the Besicovitch–Federer rectifiability theorem.

Remark: Recovers rectifiability results for BV-maps (A = curl) and for
BD-maps (A = curl curl).



Rectifiability of varifolds and of defect measures

Corollary

Let div µ = σ in D ′. Assume that

rank

(
dµ

d|µ|
(x)

)
≥ ` for |µ|-a.e. x .

Then, |µ| � H ` and there exist an `-rectifiable set R ⊂ U such that

µ {θ∗` (|µ|) > 0} = P(x) H `
x R, rankP(x) = `.

Remark: Recovers several known rectifiability criteria for varifolds (Allard ’72,
Ambrosio–Soner ’97, Lin ’99, Moser ’03, De Philippis–De Rosa–Ghiraldin ’18).

Proof: Let µ̃ := (µ, σ) and A (µ̃) := div µ− σ. Then,

Λ`A =
⋂

π∈Gr(`,d)

{
M ∈ Rd ⊗ Rd : ker M ∩ π 6= {0}

}
× Rd

=
{
M ∈ Rd ⊗ Rd : dim ker M > d − `

}
× Rd

=
{
M ∈ Rd ⊗ Rd : rankM < `

}
× Rd .



Variation III: Liftings



BV-maps with jumps: Relaxation

Let Ω ⊂ Rd bounded Lipschitz domain, d ,m > 1, and

F [u] :=

∫
Ω
f (x , u(x),∇u(x)) dx , u ∈W1,1(Ω;Rm),

where f : Ω× Rm × Rm×d → [0,∞) with

0 ≤ f (x , y ,A) ≤ C(1 + |y |d/(d−1) + |A|).

Relaxation of F at u ∈ BV(Ω;Rm):

F∗∗[u] := inf

{
lim inf
j→∞

F [uj ] : (uj )j ⊂W1,1(Ω;Rm), uj  u

}
with “uj  u” meaning BV-weak* or L1-strong convergence.

Q: What is F∗∗? Does it have an integral representation? Jump paths matter!

6=

Previous work: Fonseca–Müller ’93, Ambrosio–Dal Maso ’92 and many other works
(Leoni, Bouchitté, Mascarenhas, . . . ).



Liftings

BV#(Ω;Rm) :=
{
u ∈ BV(Ω;Rm) : −

∫
Ω u(x) dx = 0

}
.

Definition (Jung & Jerrard ’04)

A lifting γ ∈ Lift(Ω× Rm) is a measure γ ∈M (Ω× Rm;Rm×d ) for which there exists
a (unique) u ∈ BV#(Ω;Rm) such that the chain rule holds:∫

Ω
∇xϕ(x , u(x)) dx +

∫
Ω×Rm

∇yϕ(x , y) dγ(x , y) = 0 for all ϕ ∈ C1
0(Ω× Rm).

This u is called the barycenter [γ ] of γ.
Weak* convergence of liftings means weak* convergence in M (Ω× Rm;Rm×d ).

6=

Lemma

π#γ = Du in M (Ω;Rm×d ) and π#|γ| ≥ |Du| in M +(Ω).



Elementary liftings

Definition (Elementary/Minimal Liftings)

Given u ∈ BV#(Ω;Rm), the associated ele-
mentary lifting γ[u ] ∈ Lift(Ω× Rm) is

γ[u ] := Du ⊗
∫ 1

0
δuθ dθ,

where uθ is the jump interpolant,

uθ(x) :=

{
θu−(x) + (1− θ)u+(x) if x ∈ Ju ,

ũ(x) otherwise.

So,

〈
ϕ, γ[u ]

〉
=

∫
Ω

∫ 1

0
ϕ(x , uθ(x)) dθ dDu(x) for all ϕ ∈ C0(Ω× Rm).



Chain rule

The liftings chain rule for the elementary lifting

γ[u ](dx , dy) := Du(dx)⊗
∫ 1

0
δuθ(x)(dy) dθ,

follows from usual BV-chain rule:

For ϕ ∈ C1
0(Ω× Rm):∫

Ω
∇xϕ(x , u(x)) dx +

∫
Ω×Rm

∇yϕ(x , y) dγ(x , y)

=

∫
Ω
∇xϕ(x , u(x)) dx +

∫
Ω

∫ 1

0
∇yϕ(x , uθ(x)) dθ dDu(x)

=

∫
Ω
∇x
[
ϕ(x , u(x))

]
dx

= 0.



Non-elementary liftings

6=

γ1 := Du ⊗
∫ 1

0 δuθaffine
dθ γ2 := Du ⊗

∫ 1
0 δuθsquiggle

dθ

Example:

uj =

, ,

γ[uj ]
∗
⇁ γ 6= γ[u ] for some γ ∈ Lift((−1, 1)× R2).

Lemma

Every lifting γ ∈ Lift(Ω× R) is elementary: γ = γ[u ] for some u ∈ BV#(Ω;R).



Compactness for liftings

Lemma (Compactness)

Let (γj )j ⊂ Lift(Ω× Rm) be such that supj |γj |(Ω× Rm) <∞. Then there exists a
subsequence (γjk )k ⊂ (γj )j and a limit γ ∈ Lift(Ω× Rm) such that

γjk
∗
⇁ γ in M (Ω× Rm;Rm×d ) and [γjk ]

∗
⇁ [γ ] in BV#(Ω;Rm).

Corollary (Lifting generation from BV)

Let (uj )j ⊂ BV#(Ω;Rm) be a bounded sequence with uj
∗
⇁ u in BV#(Ω;Rm). Then

there exists a (non-relabelled) subsequence and a limit γ ∈ Lift(Ω× Rm) with [γ ] = u
such that

γ[uj ]
∗
⇁ γ in Lift(Ω× Rm).



Structure theorem

Graph map: gru : x 7→ (x , u(x)) for u ∈ BV(Ω;Rm)

Pushforward: If µ ∈M (Ω) satisfying |µ| � H d−1 and |µ|(Ju) = 0, then the
pushforward gru# µ of µ under gru is well-defined as a measure on Ω× Rm.

(we will usually take µ = |Du| (Ω \ Ju))

Theorem (Structure Theorem for Liftings, R. & Shaw 2017)

If γ ∈ Lift(Ω× Rm) with u = [γ ], then γ admits the following decomposition into
mutually singular measures:

γ = γ[u ] ((Ω \ Ju)× Rm) + γgs.

Moreover, γgs ∈M (Ω× Rm;Rm×d ) satisfies

divy γ
gs = −|D ju| ⊗

nu

|u+ − u−|
(δu+ − δu− )

and it is graph-singular with respect to u in the sense that γgs is singular with respect
to all measures of the form gru# λ where λ ∈M (Ω) satisfies both λ� H d−1 and

λ(Ju) = 0.

(the Singular Density Theorem hence gives restrictions on γgs)



Perspective functionals

Proposition

Let γ ∈ Lift(Ω× Rm) with u = [γ ] be minimal in the sense that
|γ|(Ω× Rm) = |Du|(Ω). Then γ must be elementary, γ = γ[u ]. In particular, if
uj → u in BV#(Ω;Rm) strictly, then γ[uj ]→ γ[u ] strictly in Lift(Ω× Rm).

Define FL : Lift(Ω× Rm)→ R by

FL[γ] =

∫
Ω
f (x , [γ ](x),∇[γ ](x)) dx +

∫
Ω×Rm

f∞ (x , y , γs) .

For u ∈ BV#(Ω;Rm) we have by the structure theorem

FL[γ[u ]] =

∫
Ω
f (x , u,∇u) dx +

∫
Ω×Rm

f∞ (x , u,Dsu) = F [u].

Strategy: Study F via FL (via blowups / Young measures for liftings . . . ).



Relaxation theorem in BV

Theorem (R. & Shaw 2017, weak* version)

Let f : Ω× Rm × Rm×d → [0,∞) where d ≥ 2 and m ≥ 1 be such that

(i) f is a Carathéodory function whose recession function f∞ exists as a limit,

f∞ (x , y ,A) = lim
(x,yk ,Ak )→(x,y,A)

tk→∞

f (xk , yk , tkAk )

tk
;

(ii) 0 ≤ f (x , y ,A) ≤ C(1 + |y |d/(d−1) + |A|);

(iii) f (x , y , q) is quasiconvex for every (x , y) ∈ Ω× Rm.

Then the sequential weak* relaxation F∗∗ of F to u ∈ BV(Ω;Rm) is

Fw∗
∗∗ [u] =

∫
Ω
f (x , u,∇u) dx +

∫
Ω
f∞

(
x , u,

dDcu

d|Dcu|

)
d|Dcu|+

∫
J
Kf [u] dH d−1

where J is the jump set of u and

Kf [u](x) := inf

{
1

ωd−1

∫
Bd

f∞(x , ϕ(y),∇ϕ(y)) dy :

ϕ ∈ C∞(Bd ;Rm), ϕ|∂Bd = u±(x) if y · nu(x) ≷ 0

}

Remark: Improves classical weak*-relaxation theorem in BV by Fonseca & Müller ’92.



Coda

Question

Does the distance of dµ
d|µ| to the wave cone ΛA control (perhaps in a nonlinear way)

how “close” µ is to being singular?

Thank you for your attention!

www.ercsingularity.org



Encore: Pansu’s Theorem (work in progress with De Philippis & Ghiraldin)

Let H be the 1st Heisenberg group.

Dilation:
δλ(x , y , t) := (λx , λy , λ2t).

f : H→ H is Pansu-differentiable at x ∈ H if there exists a homogeneous
(dilation-invariant) group homorphism Lx : H→ H such that

lim
y→e

dH(f (x)−1f (xy), Lx (y))

dH(y , e)
= 0

where e is the identity element in H.

Theorem (Pansu ’89)

Every Lipschitz f : H→ H is Pansu-differentiable µH-almost everywhere (µH is the
Haar measure on H).

Theorem (De Philippis & Ghiraldin & R. ’17/’18, to be written up. . .)

Let µ be a positive Radon measure on H (or any Carnot groups) such that every
Lipschitz function f : H→ H is Pansu-differentiable µ-almost everywhere. Then,
µ� µH.



Encore 2: Dimension conjecture

For ` ∈ {0, . . . , d − 1} let us then define the cone

N `
A :=

⋃
π∈Gr(`,d)

⋂
ξ∈π⊥

ker Ak (ξ) =
⋃

π̃∈Gr(d−`,d)

⋂
ξ∈π̃

ker Ak (ξ).

Conjecture (also in Raita ’17)

Let A µ = σ in D ′. Then,

dimH (µ) ≥ `∗A := min
{
` ∈ N : N `

A 6= {0}
}
.

Sharpness: Our dimensional theorem is sharp for div, curl, curl curl, but the sharpness
is unclear for ∂3

1 + ∂3
2 + ∂3

3 .
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