
From fluid flow in cones
to boundry Harnack with RHS1

Henrik Shahgholian
KTH Royal Inst. of Tech.

PDEs and Geometric Measure Theory
ETH, Zurich,

October 29–November 2, 2018

Details with proofs will appear at:
https://www.scilag.net/profile/henrik-shahgholian

1Based on joint work with Mark Allen (Brigham Young University)



From fluid flow in cones to bdry Harnack with RHS

Flow inside cones,
Boundary Harnack Principle with RHS in cones
Application to FB regularity
Proof of BHP with RHS (sketch)
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Flow inside a cone
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Hele-Shaw flow

The standard model problem

Hele-Shaw flow concerns geometric motion of an initial
interface (boundary of fluid region) caused by pressure (in the
system) such as injection of more fluid.

This is a toy model of various flow problems in industrial
processes: Plastic industry (injection moulding), Reservoir
simulation (flow in porous medium), Thin film (lubrication) ...
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Hele-Shaw flow

The standard model problem

Specifically we consider pressure from the Green’s function

∆Gt = −δz in Ωt , Gt = 0 on ∂Ωt ,

where

z ∈ Ω0
⊂ Rn, and Ω0 = given initial state.

Ω0 evolves with time through injection of more fluid (or pressure
in the system), with speed V = |∇G| in the outward normal
direction.
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Klick to see the Video on Youtube
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https://www.youtube.com/watch?v=yTzwu_xP6QQ 


Hele-Shaw flow

Flow on a table

Consider now the Hele-Shaw flow on a table, where the top D
of the table has an arbitrary shape with edges and corners, and

Injection point z ∈ Ω0
⊂ D.

The liquid falls from the table when it reaches the edges and
the corners of the table.
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Hele-Shaw flow

Flow on a table

Figure: Flow on a table

Does the table get completely wet in finite time?
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Hele-Shaw flow

Reformulation of the PDE

Reformulate the problem by integrating in time

ut (x) = ut (x , t) =

∫ t

0
Gτdτ,

and obtain a new function ut , that solves2

∆ut = χΩt − χΩ0 − tδz , Ωt = {ut (x , t) > 0}.

This admits a variational formulation, and has a weak solution.

It is easier to work with ut , hence the reformulation.

2Formally ∆ut =
∫ t

0
∆Gτdτ =

∫ t

0
(|∇G|dσxb∂Ωτ−δz)dτ = χΩt − χΩ0 − tδz .
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Corner points

Theorem: Results in 2-dim. (Sh. 2004)

Suppose the origin is a corner point of the table, with interior
angle θ0.

The following hold.
(a) If θ0 ≤ π/2 then the fluid does not reach the origin in
finite time.

(b) If θ0 > π/2, then the origin can be reached by the fluid
in finite time.

Higher dimensional results: recent work with Mark Allen.
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Klick to see the Video on Youtube
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https://www.youtube.com/watch?v=JCtySeVKc7o&feature=youtu.be


Boundary Harnack
with RHS
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BHP with RHS

Rephrasing the above discussion

That the table gets wet in finite time means for large values of t

ut > 0 in D.

We localize the problem close to z1
∈ ∂D, since any interior

point obviously gets wet in finite time.
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BHP with RHS

Rephrasing the above discussion

Define ht , and k as

∆ht = 0 in D ∩ Br (z1),

with boundary values ht = ut . Define also

∆k = −1 in Br (z1) ∩ D,

with zero boundary values.

Obviously ut > ht
− k . Hence it suffices to show that for large t

ht
≥ k in Br (z1) ∩ D, for t > t0.
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BHP with RHS

Rephrasing the above discussion

Now suppose for some t0 there exists Ct0 such that3

Ct0ht0 ≥ k . (1)

Next, by the (standard) boundary Harnack principle

sup
Br/2(z1)∩D

ht0

ht ≤ C
ht0(z2)

ht (z2)
,

for a fixed interior point z2
∈ Br (z1) ∩ D.

3This is a kind of boundary Harnack!
15 / 39



BHP with RHS

Rephrasing the above discussion

Now suppose for some t0 there exists Ct0 such that3

Ct0ht0 ≥ k . (1)

Next, by the (standard) boundary Harnack principle

sup
Br/2(z1)∩D

ht0

ht ≤ C
ht0(z2)

ht (z2)
,

for a fixed interior point z2
∈ Br (z1) ∩ D.

3This is a kind of boundary Harnack!
15 / 39



BHP with RHS

Rephrasing the above discussion

Since
lim
t→∞

ht (z2) = ∞,

we choose t large enough so that

ht0 (z2)

ht (z2)
<

C−1

Ct
.

Then
sup

Br/2(z1)∩D

ht0

ht ≤ C
ht0 (z2)

ht (z2)
≤

CC−1

Ct0
=

1
Ct0

,

so that
ht
≥ Ct0ht0 (≥ k ) by (1),

which in turn implies ut > 0 in Br/2(z1) ∩ D, for t large.
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BHP with RHS

What we need to show

To make the previous argument intact we need to show (1)

Ctht
≥ k .

This is a boundary Harnack principle between solutions ht and
supersolutions k .

Smooth boundary case

If ∂D is C1,Dini , then we may invoke Hopf’s boundary point
lemma to conclude the above inequality.

17 / 39



BHP with RHS

What we need to show

To make the previous argument intact we need to show (1)

Ctht
≥ k .

This is a boundary Harnack principle between solutions ht and
supersolutions k .

Smooth boundary case

If ∂D is C1,Dini , then we may invoke Hopf’s boundary point
lemma to conclude the above inequality.

17 / 39



Main Result

Harmonic functions in cones (basics)

Let C be any open cone in Rn, with vertex at the origin such
that C ∩ Sn−1 is connected.

For u harmonic on C with u = 0 on ∂C, we have

u(r , θ) =

∞∑
k=1

rαk fk (θ), (2)

where fk are the eigenfunctions to the Laplace-Beltrami on
C ∩ ∂B1.

If u ≥ 0 and harmonic on C then for some C > 0

u = Crα1 f1(θ).
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Main Result

Theorem (Allen, Sh.)

Let C be as above. Let u be a positive harmonic function in C

with zero boundary values on (∂C) ∩ B1 and v satisfy

0 ≥ ∆v(x) ≥ −C0|x |γ in C ∩ B1,

v = 0 on ∂C ∩ B1,

|v | ≤ C0 in C ∩ B1,

with 2 − α1 + γ > 0. If x0
∈ C ∩ B1, then ∃ C: 4

v(x)

u(x)
≤ C

v(x0)

u(x0)
for any x ∈ C ∩ B1/2.

4depending only on C,2 − α1 + γ, dimension n, and dist(x0, ∂(C ∩ B1))
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Main Result

Theorem (Sharpness)

Let C be a cone in Rn with 2 − α1 + γ ≤ 0. Then the boundary
Harnack principle with right hand side does not hold.

Lipschitz domains

The result holds for general Lipschitz domains, with small
Lipschitz constant, that is given by the same condition as
above, replacing |x | with dist(x , ∂D), and 2 − α1 + γ > 0, for
every boundary point.
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Main Result

General cases

The proof employs the following standard techniques:

Compactness methods
Behavior of a nonnegative harmonic functions at the
boundary
A Liouville type result which is slightly non-standard
Properties of the domain should be invariant under scaling
PDEs converge to clean case

The approach seems plausible to be applied to more general
settings: Various PDEs, Parabolic problems, as well as more
general domains.
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Main Result

Hölder regularity of the quotient

For Lipschitz domains, with small Lip. norm from inside, there
exists β > 0 depending on (Lip.-norm) such that

∥∥∥∥v
u

∥∥∥∥
C0,β(B1/2∩D)

≤ C

(
‖v‖L∞(D) + ‖f‖L∞(D)

)
u(en/2)

. (3)

Theorem (Sharpness)

Let C be a cone in Rn with α1 ≥ 2 + γ. Then the boundary
Harnack principle with right hand side does not hold.
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Higher order

A result of De Silva and Savin:

If ∂Ω ∈ Ck ,β with ∆u = 0 and ∆v = f with u > 0 and both u, v
vanishing on ∂Ω ∩ B1, then∥∥∥∥v

u

∥∥∥∥
Ck ,β

(Ω ∩ B1/2) ≤ C(‖v‖L∞ + ‖f‖Ck−1,β).
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Application
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Regularity of Free Boundaries: Obstacle problem

Obstacle problem: Definition

Let v be a solution to the obstacle problem

∆v = hχ{v>0}, v ≥ 0 in B1.

We assume h ≥ c0 > 0 is Lipschitz, and a Dirichlet data on ∂B1

has been prescribed.

The domain D is now {v > 0}.
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Regularity of Free Boundaries: Obstacle problem

Lipschitz FB implies C1,α

If z ∈ ∂{v > 0} ∩ B1/2 is not a cusp point, then for some r > 0
and direction e, ve > 0 in the set {v > 0} ∩ Br (z), and that the
free boundary is Lipschitz in Br (z).

The BHP with r.h.s. allows us to deduce C1,α-regularity of the
free boundary for the obstacle problem, in an elementary way.5

5For constant h, this is due to Athanasopoulos-Caffarelli (1985)
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Regularity of Free Boundaries: Obstacle problem

How does it work?

Set H(x) := ve1 − Cv, which satisfies6

H > 0, ∆H = he1 − Ch ≤ 0 in {v > 0} ∩ Br (z).

Apply our BHP to H = ve1 − Cv , and ve ,7 where e ⊥ e1, and
γ = 0. This implies, for r small

ve

ve1 − Cv
=

ve

H
∈ Cα(Br (z) ∩ {v > 0}). (4)

6This conclusion is part of proving the Lipschitz regularity of the free
boundary.

7Actually we apply BHP to harmonic minorant H̃ ≤ H and and to ṽe ≥ ve

solving the PDE ∆ṽe = −f+
e .
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Regularity of Free Boundaries: Obstacle problem

How does it work?

Next fix a level surface8 v = l, and denote this surface by
x1 = G(x′).

Differentiating both side of

v(x1 −G(x′), x′) = l

gives
Ge =

ve

ve1

.

We want to show Ge is Cα for all directions e ∈ Rn−1.

8The level surface is smooth since ve1 > 0 there.
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Regularity of Free Boundaries: Obstacle problem

How does it work?

Rephrasing (4) and inserting this gives us

ve

ve1 − Cv
=

ve
ve1

1 − Cv
ve1

=
Ge

1 − Cl
ve1

,

is Cα, independent of l.

Since ve1 ≈
√

l we have that

ve

ve1 − Cv
=

Ge

1 − Cl
ve1

→ Ge , as l → 0.

Hence Ge is Cα.
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Speculations

Obstacle problem with continuous RHS

Let hε and vε be smooth approximation of RHS and the
solution, respectively.

Assume9 the approximate FB is as Lipschitz as the original
problem.

Hence C1,α-regularity of FB for each ε will follow from our
theorem, and the norm is independent of ε. So the limit
problem has the same property!

Speculation: Continuous RHS, and FB Lip. implies FB C1,α.

9This is the unclear and probably the hard part, that one needs to show.
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Proof of the theorem
(Sketch)
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Recalling the Theorem

Theorem (Allen, Sh.)

Let u = v = 0 on ∂C ∩ B1, with u positive harmonic and

0 ≥ ∆v(x) ≥ −C0|x |γ in C ∩ B1,

|v | ≤ C0 in C ∩ B1,

with 2 − α1 + γ > 0. If x0
∈ C ∩ B1, then ∃ C: 10

v(x)

u(x)
≤ C

v(x0)

u(x0)
for any x ∈ C ∩ B1/2.

10depending only on C,2 − α1 + γ, dimension n, and dist(x0, ∂(C ∩ B1))
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Proof of Theorem

Non-negative harmonic functions on cones

Recall that if u is any non-negative harmonic function on C with
u = 0 on ∂C, then (up to a multiplicative constant)

u(x) := u(r , θ) = rα1 f1(θ), (5)

where f1 is the first eigenfunction to the Laplace-Beltrami on
C ∩ ∂B1.
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Proof of Theorem

Simplification

Fix x0
∈ C ∩ B1/2.

1) Since u ≥ 0, by standard BHP we replace u with rα1 f(θ).

2) By the comparison principle we also replace v by a
solution to ∆v = −|x |γ.

3) It suffices to show: v(rx0) ≤ Cu(rx0) for all 0 < r ≤ 1/2.

4) Apply 3) to any ray emanating from a boundary point.
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Proof of Theorem

Blow-up device and indirect argument

Consider the function

wr (x) :=
v(rx) −

v(rx0)

u(rx0)
u(rx)

supB1∩C
|v(rx) −

v(rx0)

u(rx0)
u(rx)|

,

defined on B1/r , and use indirect argument.
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Proof of Theorem

Properties of wr

i) wr (x0) = 0 (by inspection).

ii) supB1∩C
|wr | = 1 (by inspection).

iii) The indirect argument implies ∃ rk → 0 such that

sup
B2j

|wrk (x)| ≤ Cj2jα1 for j = 1,2, ...

iv) Use 2 − α1 + γ > 0, and indirect argument to show

|∆wrk (x)| ≤ Cr2−α1+γ
k [ln(1/rk )]2|x |γ → 0.
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Proof of Theorem

The blow-up limit

The limit function w = limk wrk will satisfy

i) w(x0) = 0,

ii) supB1∩C
|w | = 1,

iii) w(x) ≤ C |x |α1 ln(|x |+ 1) for |x | ≥ 1.

iv) ∆w = 0.
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Proof of Theorem

Contradiction and conclusion

By property ii) we have that w is not identically zero.

By i), and iv) w changes sign, so that by (2) 11 we have

sup
BR

|w | ≥ CRα2 , for R ≥ 1. (6)

This, along with (iii) and that α2 > α1 gives us a contradiction:

CRα2 ≤ C sup
BR

w(x) ≤ sup
BR

|x |α1 ln(|x |+1) = o(Rα2), for large R .

Hence the theorem follows.

11Recall that (2) says u(r , θ) =
∑
∞

k=1 rαk fk (θ).
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Thank you for your attention

For open problems visit www.scilag.net
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