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The thin obstacle problem
for nonparametric minimal surfaces

Notation: x = (x1, . . . , xn+1) = (x ′, xn+1) ∈ B1 ⊂ Rn+1,

B ′1 = B1 ∩ {xn+1 = 0}, B+
1 = B1 ∩ {xn+1 > 0}

The problem: minv∈Ag

∫
B1

√
1 + |∇v |2 dx

where

I g ∈ C 2(B1) is given such that

g(x ′, xn+1) = g(x ′,−xn+1) and g |B′1 ≥ 0;

I Ag :=
{
v ∈ Lip(B1) : v |∂B1 = g |∂B1 , v(x ′, xn+1) = v(x ′,−xn+1), v |B′1 ≥

0
}

.



Thin vs Classical obstacle problem

Classical obstacle problem

min
v∈Bφ,g

∫
B1

√
1 + |∇v |2 dx

where

- φ : B1 → R is a given obstacle;

- g ∈ C 2(B1) is given such that g |∂B1 ≥ φ;

- Bφ,g :=
{
v ∈ Lip(B1) : v |∂B1 = g |∂B1 , v ≥ φ

}
.

Thin obstacle because the unilateral constraint is imposed only on a lower
dimensional space:

v |B′1 ≥ 0.



J. Nitsche
“How to fashion a cheap hat for Giacometti’s brother”

According to Nitsche (ARMA ’69), Pogorelov rephrased the classical obstacle
problem for the area functional in practical terms as:
“Given a rigid rim, how should a person’s hat be fashioned in order to minimize
the amount of fabric needed for it?”

“One may be inclined to hold that there are no fellow creatures with shapes
such as to motivate our present investigation.
Alberto Giacometti’s superb portrait of his brother Diego, which is depicted in
the figure below, provides evidence to the contrary.”
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The thin obstacle problem

min
v∈Ag

∫
B1

√
1 + |∇v |2 dx

Ag =
{
v ∈ Lip(B1) : v |∂B1

= g |∂B1
, v(x ′, xn+1) = v(x ′,−xn+1), v |B′1 ≥ 0

}

Main questions

I Existence and uniqueness

I Regularity:

I of the solution u;
I of the free boundary Γ(u): the boundary of the contact set

Λ(u) :=
{

(x ′, 0) ∈ B′1 : u(x ′, 0) = 0
}

in the relative topology of B′1, i.e. Γ(u) = ∂B′1
Λ(u).



Broader context: the scalar Signorini problem

The scalar Signorini problem, introduced in the ’50s, is a simplified model for
elastic bodies at rest on a surface and it consists in minimizing the linearized
Dirichlet energy

min
v∈Ag

∫
B1

|∇v |2 dx .

It arises in several contexts in applied mathematics and it is related to nonlocal
operators, because v |B′1 can be interpreted as the localization of the solution to

the obstacle problem for (−∆)
1
2 .

More generally, one can consider the weighted energies

min
v∈Ag

∫
B1

|∇v |2|xn+1|a dx , a ∈ (−1, 1)

v |B′1 is the localization of the solution to the obstacle problem for (−∆)s with

s = 1−a
2

.
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Previous results

Signorini problem

I Existence: direct method.

I Regularity of u:

- u ∈ C1,α
loc (B+

1 ∪ B′1) for some
α > 0: Caffarelli ’79;

- u ∈ C
1, 1

2
loc (B+

1 ∪ B′1) optimal:
Athanasopoulos and Caffarelli ’04

h(x) = Re
[
(xn + i |xn+1|)

3
2

]
with h|B′1≥0

I Regularity of Γ(u):
- Regular points: Athanasopoulos,

Caffarelli & Salsa ’08;

- Singular points: Garofalo &
Petrosyan ’09; Colombo, Spolaor
& Velichkov ’18.

- Other points: Focardi – S. ’18.

Nitsche’s problem

I Existence: Giusti ’71-’72;

I Regularity of u:

- ∂iu ∈ C1
loc(B+

1 ∪ B′1) if
i ∈ {1, . . . , n}, : Frehse ’77.

- ∇u ∈ C1
loc(B+

1 ∪ B′1) if n = 1:
Frehse ’77.

I Regularity of Γ(u)?
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Main results

Theorem (Focardi and S. ’18)

Let u ∈ Lip(B1) be a solution to the thin obstacle problem for nonparametric
minimal surfaces. Then,

(i) u ∈ C
1, 1

2
loc (B+

1 ∪ B ′1);

(ii) the same regularity of Γ(u) as for the Signorini problem holds: e.g.,

(ii)1 Γ(u) is has locally Hn−1 finite measure and it is countably
Hn−1-rectifiable;

(ii)2 the regular part of the free boundary Reg(u) is a C 1,α submanifold of
dimension n − 1 in B ′1.



Sketch of the proof

I Regularity of u:

(A1) blowup analysis and C1 regularity;
(B1) penalized problem and W 2,2 regularity;
(C1) De Giorgi’s metheod and C1,α regularity;
(D1) two valued minimal graphs and optimal regularity.

I Regularity of the free boundary Γ(u):

(A2) the frequency function and the classification of free boundary points;
(B2) classification and rigidity of homogeneous solutions;
(C2) spatial oscillation of the frequency;
(D2) Naber–Valtorta’s technique.
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Regularity of u



Regularity of u: (A1) C 1-regularity

Proposition

Let u ∈W 1,∞(B1) be a solution to the thin obstacle problem. Then,
u|B+

1 ∪B
′
1
∈ C 1

loc(B+
1 ∪ B ′1).

Proof.

1. We show that for every zk ∈ Γ(u) and tk ↓ 0 it holds

uk(x) :=
u(zk + tkx)

tk
→ 0 in L∞.

2. ∀ a > 0 ∃ ε0 > 0 s.t. wε : B1 → R solution to the thin obstacle problem
with wε|∂B1 = gε(x) = −a|xn+1|+ ε with ε ∈ (0, ε0) satisfies

wε|B′
1/2
≡ 0.

Remark: for both points Frehse’s result (1977) plays a crucial role.
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Regularity of u: (B1) the penalized problems

Let β, χ ∈ C∞(R) be s.t. ∀ t ∈ R

|t| − 1 ≤ |β(t)| ≤ |t| ∀ t ≤ 0, β(t) = 0 ∀ t ≥ 0, β′(t) ≥ 0 ,

χ(t) =

{
0 for t ≤ Lip(u),
1
2

(t − 2Lip(u))2 for t > 3Lip(u),
χ′′(t) ≥ 0 .

Consider

βε(t) := ε−1β(t/ε), Fε(t) :=

∫ t

0

βε(s) ds

and set

Eε(v) :=

∫
B1

(√
1 + |∇v |2 + χ(|∇v |)

)
dx +

∫
B′1

Fε(v(x ′, 0)) dx ′ .

The unique minimizer uε ∈ g + H1
0 (B1) of Eε satisfies∫

B+
1

( ∇uε√
1 + |∇uε|2

+χ′(|∇uε|)
∇uε
|∇uε|

)
·∇η dx+

∫
B′1

βε(uε) η dx ′ = 0 ∀ η ∈ H1
0 (B1).

Lemma
uε → u converge weakly in H1(B1) as ε ↓ 0



Regularity of u: (B1) W 2,2-regularity

Proposition

If either v = uε or v = u∫
B+
r (x0)

|∇2v |2 dx ≤ C

∫
B+

2r (x0)

|∇′v |2 dx (1)

∀ x0 ∈ B+
1 ∪ B ′1, ∀ 0 < r < 1−|x0|

2
, for some C = C(n, g).

The Euler-Lagrange conditions for u hold in the sense of traces:
div
(

∇u√
1+|∇u|2

)
=

2∂xn+1
u(x′,0)√

1+|∇u|2
Hn B ′1 D ′(B1),

∂xn+1u(x ′, 0) ≤ 0 B ′1,

u(x ′, 0) ∂xn+1u(x ′, 0) = 0 B ′1.
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Regularity of u: (C1) C 1,α
loc -regularity

Proposition

Let u be the solution to the Signorini problem, then for some constant
C = C(n, g) > 0 the function v = ±∂iu, i = 1, . . . , n + 1, satisfies for all k ≥ 0∫

B+
r (x0)∩{v>k}

|∇v |2 dx ≤ C

r 2

∫
B+

2r (x0)

(v − k)2
+ dx

∀ x0 ∈ B ′1, 2r < 1− |x0|.

Proof.
We follow the approach developed by Ural’tseva ’87:

1. the nonlinearity does not allowed to pass into the limit when testing the
equation satisfied by uε with η = ∂n+1[(−∂n+1u − k)+φ

2];

2. we use the one-sided continuity of ∂n+1u to suitably regularize the test.

De Giorgi’s method can be then employed to get

Corollary (Ural’tseva ’87)

Let u be the solution to the Signorini problem, then u ∈ C 1,α
loc (B+

1 ∪ B ′1) for
some α ∈ (0, 1).
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Regularity of u: (D1) optimal C 1,1/2

loc -regularity

I Minimal two-valued graphs: consider U = {u,−u} and

GU :=
{

(x ,±u(x)) : x ∈ B1

}
naturally inherits the structure of rectifiable varifold.

Proposition

Let u be a solution to the thin obstacle problem. Then, U = {u,−u} is a
minimal two-valued graph, i.e.∫

GU

divGUY dHn = 0 ∀ Y ∈ C∞c (B1 × R).

I A regularity result by Simon and Wickramasekera

Theorem (Simon – Wickramasekera ’16)

C 1,α minimal two-valued graphs are C 1, 1
2 -regular.
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Regularity of the free boundary Γ(u)



Monotonicity of the frequency

I Frequency function: for x0 ∈ B ′1 and r < 1− |x0|, set

Iu(x0, r) :=
r
∫
Br (x0)

ϑ(x)|∇u|2dx∫
∂Br (x0)

ϑ(x)u2(x) dHn−1

where

ϑ(x) :=
1√

1 + |∇u(x)|2
.

Remark: by Schauder estimates ϑ ∈ Liploc(B1), moreover,
1√

1+Lip(u)2
≤ ϑ ≤ 1 and ϑ(x) = 1 ∀x ∈ Γ(u).

I Monotonicity

Proposition

Let u be a solution to the thin obstacle problem in B1. Then,
∃C = C(n,Lip(u)) > 0 s.t. ∀x0 ∈ B ′1,

(0, 1− |x0|) 3 t 7→ eC t Iu(x0, t) is non-decreasing

and λ(x0) := limt↓0 Iu(x0, t) exists finite.
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Regular, singular & other points

I Def. of regular points: x0 ∈ Reg(u) if λ(x0) = 3/2

Signorini problem: u(x) = Re
[
(xn + i |xn+1|)

3
2

]
I Athanasopoulos, Caffarelli & Salsa ’08
I Garofalo, Petrosyan & Smit Vega Garcia ’16, Focardi & S. ’16

(epiperimetric inequality)

I Def. of singular points: x0 ∈ Sing(u) if λ(x0) = 2m with m ∈ N \ {0}

Signorini problem: u(x) = Re
[
(xn + i |xn+1|)2m

]
I Garofalo & Petrosyan ’09
I Colombo, Spolaor & Velichkov ’17 (logarithmic epiperimetric inequality)

I Def. of other points: x0 ∈ Other(u) if λ(x0) 6= 3
2
, 2m, with m ∈ N \ {0}.

Signorini problem: u(x) = Re
[
(xn + i |xn+1|)2m+ 1

2

]
I Focardi & S. ’18
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I Def. of other points: x0 ∈ Other(u) if λ(x0) 6= 3
2
, 2m, with m ∈ N \ {0}.

Signorini problem: u(x) = Re
[
(xn + i |xn+1|)2m+ 1

2

]
I Focardi & S. ’18



Rescalings & blowups

I Rescalings: ∀x0 ∈ Γ(u) and ∀r ∈ (0, 1− |x0|), consider the rescalings

ux0,r (y) :=
r
n/2u(x0 + ry)∫
∂Br (x0)

u2 dHn
.

By the monotonicity of the frequency, the functions ux0,r converge (up to
subsequences) in C 1,α

loc (B+
1 ∪ B ′1), α < 1/2, to some function

ux0 ∈ C
1,1/2

loc (B+
1 ∪ B ′1) as r ↓ 0.

I Blowups: the limiting functions ux0 are

1. solution to the Signorini problem;
2. λ(x0)-homogeneous, as Iux0

(0, ρ) = λ(x0) ∀ρ ∈ (0, 1).



Structure of the free boundary

Theorem (Focardi & S. ’18)

Let u be a solution to the thin obstacle problem for the nonparametric area
functional. Then,

(i) Γ(u) has locally finite Minkowski’s content of dimension (n − 1):

∀K ⊂⊂ B ′1, ∃ C(K) > 0 s.t.

Ln+1(Tr (Γ(u) ∩ K)
)
≤ C(K) r 2 ∀ r ∈ (0, 1),

where Tr (E) := {x ∈ Rn+1 : dist(x ,E) < r};
(ii) Γ(u) is countably Hn−1-rectifiable, i.e. (n − 1)-dimensional submanifolds

∃{Mi}i∈N of class C 1 s.t.

Hn−1
(

Γ(u) \
⋃
i∈N

Mi

)
= 0;

(iii) ∃Σ(u) ⊆ Other(u), with dimHΣ(u) ≤ n − 2, s.t. ∀ x0 ∈ Other(u) \ Σ(u)

λ(x0) ∈
{

2m − 1/2

}
m∈N\{0,1}

∪
{

2m + 1
}

m∈N\{0}



Comments

I The result is modelled on the serie of results by Naber and Valtorta (’17)
on the singular set of harmonic maps and minimal currents.

I It extends the analogous result for the Signorini problem proven in Focardi
& S. (’18), which is the first instance of a global structure result for the
free boundary for lower dimensional obstacle problems.

I Similar results are proven for multiple-valued Dirichlet minimizing
functions in De Lellis, Marchese, S. & Valtorta ’18 (see also Krummel &
Wickramasekera ’18 for related results).

I The computation performed in the proof of the theorem extends the
regularity result of Simon & Wickramasekera ’16 for two-valued minimal
graphs.

I Regarding point (iii): the classification of the frequency at free boundary
points is an open question; moreover, there are no examples of free
boundary points with frequency 2m + 1.
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Sketch of proof:
Mean flatness and rectifiability criterium

I Mean-flatness:
µ Radon measure with supp (µ) ⊂ Γ(u); x0 ∈ Γ(u), r > 0,

βµ(x0, r) := inf
L

(
r−n−1

∫
Br (x)

dist(y ,L)2 dµ(y)
) 1

2
,

where the infimum is taken among all affine (n − 1)-dimensional planes
L ⊂ Rn+1.

I Theorem (Azzam–Tolsa ’15, Naber–Valtorta ’17)

Let µ be a finite Borel measure with θn−1,?(x , µ) < +∞ for µ-a.e. x . Then, µ
is (n − 1)-rectifiable if

∞∑
k=0

β2
µ(x , 2−k) < +∞ for µ-a.e. x .



Sketch of proof:
(C) Control of the mean-flatness

Proposition (C)

Let u be a solution to the thin obstacle problem for nonparametric minimal
surfaces and let µ be a finite Borel measure with supp (µ) ⊆ Γ(u). Then

β2
µ(p, r) ≤ C

rn−1

(∫
Br (p)

(
Iu(x , 2 r)− Iu(x , r/2)

)
dµ(x) + r 2µ(Br (p))

)

∀ p ∈ Γ(u) ∩ B1 and ∀ r ∈ (0, 1).



Sketch of proof:
(C) =⇒ rectifiability

I Assume Hn−1(Γ(u) ∩ B1/2) < +∞. Then, w.l.o.g.

Hn−1(Γ(u) ∩ Br (x))

rn−1
≤ C (?)

for µ-a.e. x and every r ∈ (0, 1).

I Set µ := Hn−1 Γ(u);

+∞∑
k=0

∫
B1

β2
µ

(
y , 4−k) dµ(y)

≤
+∞∑
k=0

C

4−k(n−1)

∫
B1

∫
B

4−k (y)

(
Iu(x , 2−2k+1)− Iu(x , 2−2k−1)

)
dµ(x) dµ(y) + C

≤
+∞∑
k=0

C

4−k(n−1)

∫
B3/2

µ(B4−k (x))
(
Iu(x , 2−2k+1)− Iu(x , 2−2k−1)

)
dµ(x) + C

(?)

≤ C

∫
B3/2

+∞∑
k=0

(
Iu(x , 2−2k+1)− Iu(x , 2−2k−1)

)
dµ(x) + C

≤ C

∫
B3/2

Iu(x , 2)dµ(x) + C < +∞.



Sketch of proof:
Homogeneous solutions

u(x) = |x |λ u
(
x/|x|

)

I Spine of u: maximal space of translation invariance

S(u) :=
{
y ∈ Rn × {0} : u(x + y) = u(x) ∀ x ∈ Rn+1

}
.

I Lemma 1. Let u be a homogeneous solution. The following are equivalent:

(i) x0 ∈ S(u),
(ii) Iu(x0, r) = Iu(x0, 0+) for all r > 0.

I Lemma 2. dim(S(u)) ≤ n − 1.



Sketch of proof:
Estimate of the spatial derivative of the frequency

Proposition (C)

Let u be a solution to the thin obstacle problem for nonparametric minimal
surfaces and let µ be a finite Borel measure with supp (µ) ⊆ Γ(u). Then

β2
µ(p, r) ≤ C

rn−1

(∫
Br (p)

(
Iu(x , 2 r)− Iu(x , r/2)

)
dµ(x) + r 2µ(Br (p))

)

∀ p ∈ Γ(u) ∩ B1 and ∀ r ∈ (0, 1).

I Heuristics: if Iu(x , 2 r)− Iu(x , r/2) = 0 for all x ∈ Γ(u), then u is
homogeneous at every point of Γ(u) and by Lemma 1 and 2

Γ(u) ⊂ S(u), dim(Γ(u)) ≤ n − 1 =⇒ β2
µ(p, r) = 0.

I Proof: Quantitive version of Lemma 1 based on new variational identities
for the derivative of x 7→ Iu(x , r).



Thanks for your attention


