The weak- A_{∞} condition for harmonic measure: geometric characterization of the L^{p} solvability of the Dirichlet problem

Xavier Tolsa
(joint work with J. Azzam and M. Mourgoglou)

*icrea UAB

October 30, 2018

Harmonic measure

$\Omega \subset \mathbb{R}^{n+1}$ open.
For $p \in \Omega, \omega^{p}$ is the harmonic measure in Ω with pole in p.

Harmonic measure

$\Omega \subset \mathbb{R}^{n+1}$ open.
For $p \in \Omega, \omega^{p}$ is the harmonic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega), \int f d \omega^{p}$ is the value at p of the harmonic extension of f to Ω.

Harmonic measure

$\Omega \subset \mathbb{R}^{n+1}$ open.
For $p \in \Omega, \omega^{p}$ is the harmonic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega), \int f d \omega^{p}$ is the value at p of the harmonic extension of f to Ω.

Probabilistic interpretation [Kakutani]:
When Ω is bounded, $\omega^{p}(E)$ is the probability that a particle with a Brownian movement leaving from $p \in \Omega$ escapes from Ω through E.

Rectifiability

We say that $E \subset \mathbb{R}^{d}$ is rectifiable if it is \mathcal{H}^{1}-a.e. contained in a countable union of curves of finite length.
E is n-rectifiable if it is \mathcal{H}^{n}-a.e. contained in a countable union of C^{1} (or Lipschitz) n-dimensional manifolds.

Rectifiability

We say that $E \subset \mathbb{R}^{d}$ is rectifiable if it is \mathcal{H}^{1}-a.e. contained in a countable union of curves of finite length.
E is n-rectifiable if it is \mathcal{H}^{n}-a.e. contained in a countable union of C^{1} (or Lipschitz) n-dimensional manifolds.
E is n-AD-regular if

$$
\mathcal{H}^{n}(B(x, r) \cap E) \approx r^{n} \quad \text { for all } x \in E, 0<r \leq \operatorname{diam}(E)
$$

Rectifiability

We say that $E \subset \mathbb{R}^{d}$ is rectifiable if it is \mathcal{H}^{1}-a.e. contained in a countable union of curves of finite length.
E is n-rectifiable if it is \mathcal{H}^{n}-a.e. contained in a countable union of C^{1} (or Lipschitz) n-dimensional manifolds.
E is n-AD-regular if

$$
\mathcal{H}^{n}(B(x, r) \cap E) \approx r^{n} \quad \text { for all } x \in E, 0<r \leq \operatorname{diam}(E)
$$

E is uniformly n-rectifiable if it is n-AD-regular and there are $M, \theta>0$ such that for all $x \in E, 0<r \leq \operatorname{diam}(E)$, there exists a Lipschitz map

$$
g: \mathbb{R}^{n} \supset B_{n}(0, r) \rightarrow \mathbb{R}^{d}, \quad\|\nabla g\|_{\infty} \leq M
$$

such that

$$
\mathcal{H}^{n}\left(E \cap B(x, r) \cap g\left(B_{n}(0, r)\right)\right) \geq \theta r^{n}
$$

Rectifiability

We say that $E \subset \mathbb{R}^{d}$ is rectifiable if it is \mathcal{H}^{1}-a.e. contained in a countable union of curves of finite length.
E is n-rectifiable if it is \mathcal{H}^{n}-a.e. contained in a countable union of C^{1} (or Lipschitz) n-dimensional manifolds.
E is n-AD-regular if

$$
\mathcal{H}^{n}(B(x, r) \cap E) \approx r^{n} \quad \text { for all } x \in E, 0<r \leq \operatorname{diam}(E)
$$

E is uniformly n-rectifiable if it is n-AD-regular and there are $M, \theta>0$ such that for all $x \in E, 0<r \leq \operatorname{diam}(E)$, there exists a Lipschitz map

$$
g: \mathbb{R}^{n} \supset B_{n}(0, r) \rightarrow \mathbb{R}^{d}, \quad\|\nabla g\|_{\infty} \leq M
$$

such that

$$
\mathcal{H}^{n}\left(E \cap B(x, r) \cap g\left(B_{n}(0, r)\right)\right) \geq \theta r^{n}
$$

Uniform n-rectifiability is a quantitative version of n-rectifiability introduced by David and Semmes.

Metric properties of harmonic measure

- In the plane if Ω is simply connected and $\mathcal{H}^{1}(\partial \Omega)<\infty$, then $\mathcal{H}^{1} \approx \omega^{p}$. (F.\& M. Riesz)
- Many results in \mathbb{C} using complex analysis (Carleson, Makarov, Jones, Bishop, Wolff,...).
- The analogue of Riesz theorem fails in higher dimensions (counterexamples by Wu and Ziemer).
- In higher dimensions, need real analysis techniques.
- A basic result of Dahlberg: If Ω is a Lipschitz domain, then $\omega \in A_{\infty}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)$.

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and - $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega, y \in \partial \Omega$ are connected by a C-cigar curve with bounded turning.

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega, y \in \partial \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews,

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega, y \in \partial \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at $\partial \Omega$ there is another ball $B^{\prime} \subset B \backslash \bar{\Omega}$ with $r\left(B^{\prime}\right) \approx r(B)$.

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega, y \in \partial \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at $\partial \Omega$ there is another ball $B^{\prime} \subset B \backslash \bar{\Omega}$ with $r\left(B^{\prime}\right) \approx r(B)$.

$$
\text { NTA } \subsetneq \text { uniform } \subsetneq \text { semiuniform. }
$$

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega, y \in \partial \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at $\partial \Omega$ there is another ball $B^{\prime} \subset B \backslash \bar{\Omega}$ with $r\left(B^{\prime}\right) \approx r(B)$.

A non trivial NTA domain:

Uniform, semiuniform, and NTA domains

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \bar{\Omega}$, a curve $\gamma \subset \bar{\Omega}$ from x to y is a C-cigar curve with bounded turning if
- $\min \left(\mathcal{H}^{1}(\gamma(x, z)), \mathcal{H}^{1}(\gamma(y, z))\right) \leq C \operatorname{dist}\left(z, \Omega^{c}\right)$ for all $z \in \gamma$, and
- $\mathcal{H}^{1}(\gamma) \leq C|x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega, y \in \partial \Omega$ are connected by a C-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at $\partial \Omega$ there is another ball $B^{\prime} \subset B \backslash \bar{\Omega}$ with $r\left(B^{\prime}\right) \approx r(B)$.

Example: The complement of this Cantor set is uniform but not NTA:

$$
\begin{gathered}
\therefore \\
\therefore \% \\
\therefore \quad \therefore A
\end{gathered}
$$

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball B centered in $\partial \Omega$ and $p \in \Omega \backslash 2 B, \omega^{p} \in A_{\infty}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega \cap B}\right)$ uniformly.

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball B centered in $\partial \Omega$ and $p \in \Omega \backslash 2 B, \omega^{p} \in A_{\infty}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega \cap B}\right)$ uniformly.

Theorem (David, Jerison / Semmes)
If Ω is $N T A$ and $\partial \Omega$ is uniformly n-rectifiable, then $\omega \in A_{\infty}$.

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball B centered in $\partial \Omega$ and $p \in \Omega \backslash 2 B, \omega^{p} \in A_{\infty}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega \cap B}\right)$ uniformly.

Theorem (David, Jerison / Semmes)
If Ω is $N T A$ and $\partial \Omega$ is uniformly n-rectifiable, then $\omega \in A_{\infty}$.

Theorem (Azzam)
Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega n$-AD-regular. TFAE:
(a) $\omega \in A_{\infty}$.

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball B centered in $\partial \Omega$ and $p \in \Omega \backslash 2 B, \omega^{p} \in A_{\infty}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega \cap B}\right)$ uniformly.

Theorem (David, Jerison / Semmes)
If Ω is $N T A$ and $\partial \Omega$ is uniformly n-rectifiable, then $\omega \in A_{\infty}$.

Theorem (Azzam)
Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega n$-AD-regular. TFAE:
(a) $\omega \in A_{\infty}$.
(b) $\partial \Omega$ is uniformly n-rectifiable and Ω is semiuniform.

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball B centered in $\partial \Omega$ and $p \in \Omega \backslash 2 B, \omega^{p} \in A_{\infty}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega \cap B}\right)$ uniformly.

Theorem (David, Jerison / Semmes)
If Ω is $N T A$ and $\partial \Omega$ is uniformly n-rectifiable, then $\omega \in A_{\infty}$.

Theorem (Azzam)
Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega n$-AD-regular. TFAE:
(a) $\omega \in A_{\infty}$.
(b) $\partial \Omega$ is uniformly n-rectifiable and Ω is semiuniform.

- Proof building on a previous result on uniform domains by Hofmann, Martell and Uriarte-Tuero.
- A previous partial result by Aikawa and Hirata.

Connection with PDE's

Consider the PDE:

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega, \\
u=f \text { in } \partial \Omega .
\end{array}\right.
$$

Connection with PDE's

Consider the PDE:

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega, \\
u=f \text { in } \partial \Omega .
\end{array}\right.
$$

For $x \in \partial \Omega$, denote $\quad N u(x)=\sup _{y \in \Gamma(x)}|u(y)|$.

Connection with PDE's

Consider the PDE:

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega, \\
u=f \text { in } \partial \Omega .
\end{array}\right.
$$

For $x \in \partial \Omega$, denote $\quad N u(x)=\sup _{y \in \Gamma(x)}|u(y)|$.
Theorem (Hofmann, Le)
Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega$ n-AD-regular, satisfying the interior corkscrew condition. TFAE:
(a) For some $p>1$, the Dirichlet problem is L^{p}-solvable, i.e.

$$
\|N u\|_{L^{p}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)} \leq C\|f\|_{L^{p}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)} \quad \text { for all } f \in L^{p}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right) .
$$

Connection with PDE's

Consider the PDE:

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega, \\
u=f \text { in } \partial \Omega
\end{array}\right.
$$

For $x \in \partial \Omega$, denote $\quad N u(x)=\sup _{y \in \Gamma(x)}|u(y)|$.
Theorem (Hofmann, Le)
Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega$ n-AD-regular, satisfying the interior corkscrew condition. TFAE:
(a) For some $p>1$, the Dirichlet problem is L^{p}-solvable, i.e.

$$
\|N u\|_{L^{p}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)} \leq C\|f\|_{L^{p}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)} \quad \text { for all } f \in L^{p}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right) .
$$

(b) $\omega \in$ weak $-A_{\infty}$.

Remarks

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \operatorname{diam}(\Omega)$ there is another ball $B^{\prime} \subset B \cap \Omega$ with $r\left(B^{\prime}\right) \approx r(B)$.

Remarks

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \operatorname{diam}(\Omega)$ there is another ball $B^{\prime} \subset B \cap \Omega$ with $r\left(B^{\prime}\right) \approx r(B)$.
- We say that $\omega \in$ weak $-A_{\infty}$ if for every $\varepsilon \in(0,1)$ there exists $\delta \in(0,1)$ such that for every ball B centered at $\partial \Omega$, all $p \in \Omega \backslash 4 B$, and all $E \subset B \cap \partial \Omega$, the following holds:

$$
\text { if } \quad \mathcal{H}^{n}(E) \leq \delta \mathcal{H}^{n}(B \cap \partial \Omega), \quad \text { then } \quad \omega^{p}(E) \leq \varepsilon \omega^{p}(2 B)
$$

Remarks

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \operatorname{diam}(\Omega)$ there is another ball $B^{\prime} \subset B \cap \Omega$ with $r\left(B^{\prime}\right) \approx r(B)$.
- We say that $\omega \in$ weak $-A_{\infty}$ if for every $\varepsilon \in(0,1)$ there exists $\delta \in(0,1)$ such that for every ball B centered at $\partial \Omega$, all $p \in \Omega \backslash 4 B$, and all $E \subset B \cap \partial \Omega$, the following holds:

$$
\text { if } \quad \mathcal{H}^{n}(E) \leq \delta \mathcal{H}^{n}(B \cap \partial \Omega), \quad \text { then } \quad \omega^{p}(E) \leq \varepsilon \omega^{p}(2 B) .
$$

- The weak- A_{∞} condition implies $\left.\omega \ll \mathcal{H}^{n}\right|_{\partial \Omega}$. But, ω may be non-doubling, and we may have $\left.\mathcal{H}^{n}\right|_{\partial \Omega} \nless \omega$.

Remarks

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \operatorname{diam}(\Omega)$ there is another ball $B^{\prime} \subset B \cap \Omega$ with $r\left(B^{\prime}\right) \approx r(B)$.
- We say that $\omega \in$ weak $-A_{\infty}$ if for every $\varepsilon \in(0,1)$ there exists $\delta \in(0,1)$ such that for every ball B centered at $\partial \Omega$, all $p \in \Omega \backslash 4 B$, and all $E \subset B \cap \partial \Omega$, the following holds:

$$
\text { if } \quad \mathcal{H}^{n}(E) \leq \delta \mathcal{H}^{n}(B \cap \partial \Omega), \quad \text { then } \quad \omega^{p}(E) \leq \varepsilon \omega^{p}(2 B) .
$$

- The weak- A_{∞} condition implies $\left.\omega \ll \mathcal{H}^{n}\right|_{\partial \Omega}$. But, ω may be non-doubling, and we may have $\left.\mathcal{H}^{n}\right|_{\partial \Omega} \nless \omega$.
- Problem: Find a geometric characterization of the weak $-A_{\infty}$ condition.

Geometric characterization of the weak $-A_{\infty}$ condition I

- $\omega \in$ weak $-A_{\infty}+$ interior corkscrew condition $\Longrightarrow \partial \Omega$ is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].

Geometric characterization of the weak $-A_{\infty}$ condition I

- $\omega \in$ weak $-A_{\infty}+$ interior corkscrew condition $\Longrightarrow \partial \Omega$ is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.]. This can be proven by showing that weak $-A_{\infty}+$ interior corkscrew condition imply that the Riesz transform

$$
\mathcal{R} f(x)=\left.\int \frac{x-y}{|x-y|^{n+1}} f(y) d \mathcal{H}^{n}\right|_{\partial \Omega}(y)
$$

is bounded in $L^{2}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)$, and then using that this boundedness implies uniform n-rectifibility, by a result of Nazarov, T., Volberg.

Geometric characterization of the weak $-A_{\infty}$ condition I

- $\omega \in$ weak $-A_{\infty}+$ interior corkscrew condition $\Longrightarrow \partial \Omega$ is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].
This can be proven by showing that weak $-A_{\infty}+$ interior corkscrew condition imply that the Riesz transform

$$
\mathcal{R} f(x)=\left.\int \frac{x-y}{|x-y|^{n+1}} f(y) d \mathcal{H}^{n}\right|_{\partial \Omega}(y)
$$

is bounded in $L^{2}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)$, and then using that this boundedness implies uniform n-rectifibility, by a result of Nazarov, T., Volberg.

- But $\partial \Omega$ uniformly n-rectifiable $\nRightarrow \omega \in$ weak $-A_{\infty}$ (Bishop, Jones).

Geometric characterization of the weak $-A_{\infty}$ condition I

- $\omega \in$ weak $-A_{\infty}+$ interior corkscrew condition $\Longrightarrow \partial \Omega$ is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.]. This can be proven by showing that weak $-A_{\infty}+$ interior corkscrew condition imply that the Riesz transform

$$
\mathcal{R} f(x)=\left.\int \frac{x-y}{|x-y|^{n+1}} f(y) d \mathcal{H}^{n}\right|_{\partial \Omega}(y)
$$

is bounded in $L^{2}\left(\left.\mathcal{H}^{n}\right|_{\partial \Omega}\right)$, and then using that this boundedness implies uniform n-rectifibility, by a result of Nazarov, T., Volberg.

- But $\partial \Omega$ uniformly n-rectifiable $\nRightarrow \omega \in$ weak $-A_{\infty}$ (Bishop, Jones).
- The uniform n-rectifiability of $\partial \Omega$ can be characterized in terms of a corona type decomposition for harmonic measure (Garnett-Mourgoglou-T.).

Geometric characterization of the weak $-A_{\infty}$ condition II

- Given $x \in \Omega, y \in \partial \Omega$, a λ-carrot curve from x to y is a curve $\gamma \subset \Omega \cup\{y\}$ with end-points x and y such that $\operatorname{dist}(z, \partial \Omega) \geq \lambda \mathcal{H}^{1}(\gamma(y, z))$ for all $z \in \gamma$, where $\gamma(y, z)$ is the arc in γ between y and z.

Geometric characterization of the weak $-A_{\infty}$ condition II

- Given $x \in \Omega, y \in \partial \Omega$, a λ-carrot curve from x to y is a curve $\gamma \subset \Omega \cup\{y\}$ with end-points x and y such that $\operatorname{dist}(z, \partial \Omega) \geq \lambda \mathcal{H}^{1}(\gamma(y, z))$ for all $z \in \gamma$, where $\gamma(y, z)$ is the arc in γ between y and z.
- We denote $\delta_{\Omega}(x)=\operatorname{dist}(x, \partial \Omega)$.

Geometric characterization of the weak $-A_{\infty}$ condition II

- Given $x \in \Omega, y \in \partial \Omega$, a λ-carrot curve from x to y is a curve $\gamma \subset \Omega \cup\{y\}$ with end-points x and y such that $\operatorname{dist}(z, \partial \Omega) \geq \lambda \mathcal{H}^{1}(\gamma(y, z))$ for all $z \in \gamma$, where $\gamma(y, z)$ is the arc in γ between y and z.
- We denote $\delta_{\Omega}(x)=\operatorname{dist}(x, \partial \Omega)$.
- We say that Ω satisfies the weak local John condition if there are $\lambda, \theta \in(0,1)$ such that for every $x \in \Omega$ there is a Borel set $F \subset B\left(x, 2 \delta_{\Omega}(x)\right) \cap \partial \Omega$ with $\mathcal{H}^{n}(F) \geq \theta \mathcal{H}^{n}\left(B\left(x, 2 \delta_{\Omega}(x)\right) \cap \partial \Omega\right)$ such that every $y \in F$ can be joined to x by a λ-carrot curve.

The main result I

Theorem (Hofmann, Martell)
Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then $\omega \in$ weak $-A_{\infty}$.

The main result I

Theorem (Hofmann, Martell)
Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then $\omega \in$ weak $-A_{\infty}$.

Hofmann and Martell conjectured that the converse also holds.

The main result I

Theorem (Hofmann, Martell)
Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then $\omega \in$ weak $-A_{\infty}$.

Hofmann and Martell conjectured that the converse also holds.

Theorem (Azzam, Mourgoglou, T.)
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with $n-A D$-regular boundary. If $\omega \in$ weak $-A_{\infty}$, then Ω satisfies the weak local John condition.

The main result II

Putting all together:

Theorem
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

The main result II

Putting all together:

Theorem
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:
(a) $\omega \in$ weak $-A_{\infty}$.

The main result II

Putting all together:

Theorem
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:
(a) $\omega \in$ weak $-A_{\infty}$.
(b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.

The main result II

Putting all together:

Theorem
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:
(a) $\omega \in$ weak $-A_{\infty}$.
(b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.

Remark
Later Hofmann and Martell have shown that (b) $\Rightarrow \Omega$ has interior big pieces of chord-arc domains (IBPCAD).

The main result II

Putting all together:

Theorem
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with $n-A D$-regular boundary, satisfying the interior corkscrew condition. TFAE:
(a) $\omega \in$ weak $-A_{\infty}$.
(b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.

Remark
Later Hofmann and Martell have shown that (b) $\Rightarrow \Omega$ has interior big pieces of chord-arc domains (IBPCAD).
Since IBPCAD $\Rightarrow \omega \in$ weak $-A_{\infty}$ (Bennewitz, Lewis), we have
(a)
(b) \Longleftrightarrow IBPCAD.

The main result II

Putting all together:

Theorem
Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:
(a) $\omega \in$ weak $-A_{\infty}$.
(b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.
(c) Ω has IBPCAD.

Some ideas for the proof that (a) \Rightarrow weak local John

- For $p \in \Omega$, we have to build carrot curves that connect a big proportion of the points from $B\left(p, 2 \delta_{\Omega}(p)\right) \cap \partial \Omega$ to p.

Some ideas for the proof that (a) \Rightarrow weak local John

- For $p \in \Omega$, we have to build carrot curves that connect a big proportion of the points from $B\left(p, 2 \delta_{\Omega}(p)\right) \cap \partial \Omega$ to p.
- We use the Green function to construct the curves.

A fundamental property:
For all $\lambda>0,\{x \in \Omega: g(p, x)>\lambda\}$ is connected and contains p.

Some ideas for the proof that (a) \Rightarrow weak local John

- For $p \in \Omega$, we have to build carrot curves that connect a big proportion of the points from $B\left(p, 2 \delta_{\Omega}(p)\right) \cap \partial \Omega$ to p.
- We use the Green function to construct the curves.

A fundamental property:
For all $\lambda>0,\{x \in \Omega: g(p, x)>\lambda\}$ is connected and contains p.

- Important difficulties:
ω^{p} may be non doubling.
$\omega^{p_{1}}$ and $\omega^{p_{2}}$ may be mutually singular.
Otherwise we could argue with different poles p_{1}, p_{2}, \ldots

Some ideas for the proof that (a) \Rightarrow weak local John

- For $p \in \Omega$, we have to build carrot curves that connect a big proportion of the points from $B\left(p, 2 \delta_{\Omega}(p)\right) \cap \partial \Omega$ to p.
- We use the Green function to construct the curves.

A fundamental property:
For all $\lambda>0,\{x \in \Omega: g(p, x)>\lambda\}$ is connected and contains p.

- Important difficulties:
ω^{p} may be non doubling.
$\omega^{p_{1}}$ and $\omega^{p_{2}}$ may be mutually singular.
Otherwise we could argue with different poles p_{1}, p_{2}, \ldots
- Let $\mu=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$. We consider the good set G of points $x \in \partial \Omega \cap B\left(p, 2 \delta_{\Omega}(p)\right)$ such that

$$
\omega^{p}(B(x, r)) \approx \frac{1}{\delta_{\Omega}(p)^{n}} \mu(B(x, r)) \quad \forall r<\delta_{\Omega}(p)
$$

By the weak- A_{∞} property, $\mu(G) \approx \mu\left(B\left(p, 2 \delta_{\Omega}(p)\right) \approx \delta_{\Omega}(p)^{n}\right.$. We want to connect points in G to p.

The ACF formula

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point $x \in \Omega$ to another point $x^{\prime} \in \Omega$, with $\delta_{\Omega}\left(x^{\prime}\right) \approx 100 \delta_{\Omega}(x)$.

The ACF formula

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point $x \in \Omega$ to another point $x^{\prime} \in \Omega$, with $\delta_{\Omega}\left(x^{\prime}\right) \approx 100 \delta_{\Omega}(x)$.

Theorem (ACF)
Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_{1}, u_{2} \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that $u_{1}(x)=u_{2}(x)=0$ and $u_{1} \cdot u_{2} \equiv 0$. Set

$$
J(x, r)=\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{1}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) \cdot\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{2}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) .
$$

The ACF formula

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point $x \in \Omega$ to another point $x^{\prime} \in \Omega$, with $\delta_{\Omega}\left(x^{\prime}\right) \approx 100 \delta_{\Omega}(x)$.

Theorem (ACF)
Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_{1}, u_{2} \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that $u_{1}(x)=u_{2}(x)=0$ and $u_{1} \cdot u_{2} \equiv 0$. Set

$$
J(x, r)=\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{1}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) \cdot\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{2}(y)\right|^{2}}{|y-x|^{n-1}} d y\right)
$$

Then $J(x, \cdot)$ is non-decreasing in $r \in(0, R]$.

The ACF formula

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point $x \in \Omega$ to another point $x^{\prime} \in \Omega$, with $\delta_{\Omega}\left(x^{\prime}\right) \approx 100 \delta_{\Omega}(x)$.

Theorem (ACF)
Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_{1}, u_{2} \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that $u_{1}(x)=u_{2}(x)=0$ and $u_{1} \cdot u_{2} \equiv 0$. Set

$$
J(x, r)=\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{1}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) \cdot\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{2}(y)\right|^{2}}{|y-x|^{n-1}} d y\right)
$$

Then $J(x, \cdot)$ is non-decreasing in $r \in(0, R]$.

This formula is a basic tool in free boundary problems.

The ACF formula

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point $x \in \Omega$ to another point $x^{\prime} \in \Omega$, with $\delta_{\Omega}\left(x^{\prime}\right) \approx 100 \delta_{\Omega}(x)$.

Theorem (ACF)

Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_{1}, u_{2} \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that $u_{1}(x)=u_{2}(x)=0$ and $u_{1} \cdot u_{2} \equiv 0$. Set

$$
J(x, r)=\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{1}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) \cdot\left(\frac{1}{r^{2}} \int_{B(x, r)} \frac{\left|\nabla u_{2}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) .
$$

Then $J(x, \cdot)$ is non-decreasing in $r \in(0, R]$.

This formula is a basic tool in free boundary problems. It can be used to "prove connectivity".

How to use the ACF formula

Let $x, x_{2} \in \Omega$ with $\delta_{\Omega}\left(x_{2}\right) \approx 10 \delta_{\Omega}(x)$ such that

$$
g(p, x)>\lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}}, \quad g\left(p, x_{2}\right)>\lambda \approx \frac{\delta_{\Omega}\left(x_{2}\right)}{\delta_{\Omega}(p)^{n}} .
$$

We would like to connect $x, x_{2} \in \Omega$ by a non-tangential curve.

How to use the ACF formula

Let $x, x_{2} \in \Omega$ with $\delta_{\Omega}\left(x_{2}\right) \approx 10 \delta_{\Omega}(x)$ such that

$$
g(p, x)>\lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}}, \quad g\left(p, x_{2}\right)>\lambda \approx \frac{\delta_{\Omega}\left(x_{2}\right)}{\delta_{\Omega}(p)^{n}} .
$$

We would like to connect $x, x_{2} \in \Omega$ by a non-tangential curve. Denote

$$
u(y)=\left(g(p, y)-\frac{1}{2} \lambda\right)^{+} .
$$

For a big ball B centered at $\partial \Omega$ with

$$
\delta_{\Omega}(x) \approx \delta_{\Omega}\left(x_{2}\right) \approx r(B), \quad x, x^{\prime} \in \frac{1}{100} B,
$$

consider the open set $U=\{y \in B: u(y)>0\}$.

How to use the ACF formula

Let $x, x_{2} \in \Omega$ with $\delta_{\Omega}\left(x_{2}\right) \approx 10 \delta_{\Omega}(x)$ such that

$$
g(p, x)>\lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}}, \quad g\left(p, x_{2}\right)>\lambda \approx \frac{\delta_{\Omega}\left(x_{2}\right)}{\delta_{\Omega}(p)^{n}} .
$$

We would like to connect $x, x_{2} \in \Omega$ by a non-tangential curve. Denote

$$
u(y)=\left(g(p, y)-\frac{1}{2} \lambda\right)^{+} .
$$

For a big ball B centered at $\partial \Omega$ with

$$
\delta_{\Omega}(x) \approx \delta_{\Omega}\left(x_{2}\right) \approx r(B), \quad x, x^{\prime} \in \frac{1}{100} B,
$$

consider the open set $U=\{y \in B: u(y)>0\}$.
Let U_{1}, U_{2} be the connected components of U that contain x and x_{2}, respectively.

How to use the ACF formula

Let $x, x_{2} \in \Omega$ with $\delta_{\Omega}\left(x_{2}\right) \approx 10 \delta_{\Omega}(x)$ such that

$$
g(p, x)>\lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}}, \quad g\left(p, x_{2}\right)>\lambda \approx \frac{\delta_{\Omega}\left(x_{2}\right)}{\delta_{\Omega}(p)^{n}} .
$$

We would like to connect $x, x_{2} \in \Omega$ by a non-tangential curve. Denote

$$
u(y)=\left(g(p, y)-\frac{1}{2} \lambda\right)^{+} .
$$

For a big ball B centered at $\partial \Omega$ with

$$
\delta_{\Omega}(x) \approx \delta_{\Omega}\left(x_{2}\right) \approx r(B), \quad x, x^{\prime} \in \frac{1}{100} B,
$$

consider the open set $U=\{y \in B: u(y)>0\}$.
Let U_{1}, U_{2} be the connected components of U that contain x and x_{2}, respectively. If $U_{1} \cap U_{2} \neq \varnothing$ we choose $x^{\prime}=x_{2}$.

How to use the ACF formula

Let $x, x_{2} \in \Omega$ with $\delta_{\Omega}\left(x_{2}\right) \approx 10 \delta_{\Omega}(x)$ such that

$$
g(p, x)>\lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}}, \quad g\left(p, x_{2}\right)>\lambda \approx \frac{\delta_{\Omega}\left(x_{2}\right)}{\delta_{\Omega}(p)^{n}} .
$$

We would like to connect $x, x_{2} \in \Omega$ by a non-tangential curve. Denote

$$
u(y)=\left(g(p, y)-\frac{1}{2} \lambda\right)^{+} .
$$

For a big ball B centered at $\partial \Omega$ with

$$
\delta_{\Omega}(x) \approx \delta_{\Omega}\left(x_{2}\right) \approx r(B), \quad x, x^{\prime} \in \frac{1}{100} B
$$

consider the open set $U=\{y \in B: u(y)>0\}$.
Let U_{1}, U_{2} be the connected components of U that contain x and x_{2}, respectively. If $U_{1} \cap U_{2} \neq \varnothing$ we choose $x^{\prime}=x_{2}$.
Otherwise we apply the ACF formula to $u_{1}=u \chi_{U_{1}}$ and $u_{2}=u \chi U_{2}$. For $r(B)$ big enough, u_{1} behaves as an affine function and U_{1} is close to a half ball and thus one finds x^{\prime} easily in U_{1} that can be connected to x by a non-tangential curve.

How to use the ACF formula

Let $x, x_{2} \in \Omega$ with $\delta_{\Omega}\left(x_{2}\right) \approx 10 \delta_{\Omega}(x)$ such that

$$
g(p, x)>\lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}}, \quad g\left(p, x_{2}\right)>\lambda \approx \frac{\delta_{\Omega}\left(x_{2}\right)}{\delta_{\Omega}(p)^{n}} .
$$

We would like to connect $x, x_{2} \in \Omega$ by a non-tangential curve. Denote

$$
u(y)=\left(g(p, y)-\frac{1}{2} \lambda\right)^{+} .
$$

For a big ball B centered at $\partial \Omega$ with

$$
\delta_{\Omega}(x) \approx \delta_{\Omega}\left(x_{2}\right) \approx r(B), \quad x, x^{\prime} \in \frac{1}{100} B
$$

consider the open set $U=\{y \in B: u(y)>0\}$.
Let U_{1}, U_{2} be the connected components of U that contain x and x_{2}, respectively. If $U_{1} \cap U_{2} \neq \varnothing$ we choose $x^{\prime}=x_{2}$.
Otherwise we apply the ACF formula to $u_{1}=u \chi_{U_{1}}$ and $u_{2}=u \chi U_{2}$. For $r(B)$ big enough, u_{1} behaves as an affine function and U_{1} is close to a half ball and thus one finds x^{\prime} easily in U_{1} that can be connected to x by a non-tangential curve.

The corona decomposition

Problem: When we iterate many times the preceding argument, the constants worsen and this collapses.

The corona decomposition

Problem: When we iterate many times the preceding argument, the constants worsen and this collapses.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

The corona decomposition

Problem: When we iterate many times the preceding argument, the constants worsen and this collapses.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)
Let E be n-AD-regular and $\mu=\left.\mathcal{H}^{n}\right|_{E}$. Let \mathcal{D}_{μ} be a dyadic lattice of cubes associated to μ.

The corona decomposition

Problem: When we iterate many times the preceding argument, the constants worsen and this collapses.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)
Let E be n-AD-regular and $\mu=\left.\mathcal{H}^{n}\right|_{E}$. Let \mathcal{D}_{μ} be a dyadic lattice of cubes associated to μ. Then E is uniformly n-rectifiable if and only if there exists a partition of \mathcal{D}_{μ} into trees $\mathcal{T} \in I$ satisfying:

The corona decomposition

Problem: When we iterate many times the preceding argument, the constants worsen and this collapses.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)
Let E be n-AD-regular and $\mu=\left.\mathcal{H}^{n}\right|_{E}$. Let \mathcal{D}_{μ} be a dyadic lattice of cubes associated to μ. Then E is uniformly n-rectifiable if and only if there exists a partition of \mathcal{D}_{μ} into trees $\mathcal{T} \in I$ satisfying:
(a) The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$
\sum_{\mathcal{T} \in I: \operatorname{Root}(\mathcal{T}) \subset S} \mu(\operatorname{Root}(\mathcal{T})) \leq C \mu(S) \quad \text { for all } S \in \mathcal{D}_{\mu} \text {. }
$$

The corona decomposition

Problem: When we iterate many times the preceding argument, the constants worsen and this collapses.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)
Let E be n-AD-regular and $\mu=\left.\mathcal{H}^{n}\right|_{E}$. Let \mathcal{D}_{μ} be a dyadic lattice of cubes associated to μ. Then E is uniformly n-rectifiable if and only if there exists a partition of \mathcal{D}_{μ} into trees $\mathcal{T} \in I$ satisfying:
(a) The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$
\sum_{\mathcal{T} \in I: \operatorname{Root}(\mathcal{T}) \subset S} \mu(\operatorname{Root}(\mathcal{T})) \leq C \mu(S) \quad \text { for all } S \in \mathcal{D}_{\mu} .
$$

(b) In each $\mathcal{T} \in I, E$ is "very well approximated" by an n-dimensional Lipschitz graph $\Gamma_{\mathcal{T}}$. That is, for all $Q \in \mathcal{T}$, $\operatorname{dist}\left(Q, \Gamma_{\mathcal{T}}\right) \leq \ell(Q)$.

The very good set VG

Recall that G is the set of points $x \in \partial \Omega \cap B\left(p, 2 \delta_{\Omega}(p)\right)$ such that

$$
\omega^{p}(B(x, r)) \approx \frac{1}{\delta_{\Omega}(p)^{n}} \mu(B(x, r))
$$

For some $M \gg 1$, let

$$
V G=\left\{x \in G: \sum_{\mathcal{T} \in I} \chi_{\operatorname{Root}(\mathcal{T})}(x) \leq M\right\} .
$$

We build carrot curves that connect most points from VG to p. Difficulty: control the estimates when $M \rightarrow \infty$.

Thank you!

