Second order regularity of transition layers in Allen-Cahn equation

Kelei Wang

(based on a joint work with Juncheng Wei)

Wuhan University, China

wangkelei@whu.edu.cn

"PDEs and Geometric Measure Theory", ETH Zurich

Allen-Cahn equation

One dimensional solution

- ● ● ●

3) 3

Part I. Finite Morse index solutions

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Question: Let u_{ε} be a sequence of solutions to (AC). Assume the level sets $\{u_{\varepsilon} = 0\}$ are uniformly $C^{1,\alpha}$ for some $\alpha \in (0,1)$. Can we get a uniform $C^{2,\alpha}$ regularity?

Question: Let u_{ε} be a sequence of solutions to (AC). Assume the level sets $\{u_{\varepsilon} = 0\}$ are uniformly $C^{1,\alpha}$ for some $\alpha \in (0,1)$. Can we get a uniform $C^{2,\alpha}$ regularity?

This was used in our study on the structure of finite Morse index solutions.

Theorem (W.-Wei '17)

A finite Morse index solution of the Allen-Cahn equation

$$-\Delta u = u - u^3$$

in \mathbb{R}^2 has finitely many ends.

Solutions with finite ends

u looks like the 1d solution along each end. \Leftarrow Refined asymptotics, exponential convergence (Gui '08, Del Pino-Kowalczyk-Pacard '13).

A finiteness result for nodal domains

Let u_e be the directional derivative in *e*-direction, which satisfies the linearized equation

$$\Delta u_e = W''(u)u_e.$$

Lemma

If the Morse index is N, the number of connected components of $\{u_e \neq 0\}$ is at most 2N.

A finiteness result for nodal domains

Let u_e be the directional derivative in *e*-direction, which satisfies the linearized equation

$$\Delta u_e = W''(u)u_e.$$

Lemma

If the Morse index is N, the number of connected components of $\{u_e \neq 0\}$ is at most 2N.

• Liouville theorem for the degenerate equation

$$\operatorname{div}\left(\varphi^2 \nabla \frac{u_e}{\varphi}\right) = 0.$$

• Similar to Courant's nodal domain theorem: entire space? $n = 2 \implies \text{log cut-off functions, Ambrosio-Cabré '03...}$

Transferring finiteness information

If each end of $\{u = 0\}$ has an asymptotic direction at infinity, finiteness of nodal domains of u_e can be transformed into finiteness of ends.

Theorem

Let u be a finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^2 . For all x large,

$$|A(x)|^2 := rac{|
abla^2 u(x)|^2 - |
abla |
abla u(x)|^2}{|
abla u(x)|^2} \le rac{C}{|x|^2}.$$

Theorem

Let u be a finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^2 . For all x large,

$$|A(x)|^2 := rac{|
abla^2 u(x)|^2 - |
abla |
abla u(x)|^2}{|
abla u(x)|^2} \le rac{C}{|x|^2}.$$

Theorem (Schoen '83)

Given a three dimensional manifold M (with some curvature bounds). Let Σ be a stable immersed minimal surface in a ball $B_R(p) \subset M$ with $\partial \Sigma \subset \partial B_R(p)$. Then

$$\sup_{B_{R/2}(p)\cap\Sigma}|A_{\Sigma}|^2\leq \frac{C}{R^2}.$$

Sternberg-Zumbrun inequality

Stability
$$\Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \ge \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

æ

___ ▶ <

Sternberg-Zumbrun inequality

Stability
$$\Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \ge \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

• $|\nabla u|^2 dx$ corresponds to the area measure of minimal surfaces.

Sternberg-Zumbrun inequality

Stability
$$\Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \ge \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

|∇u|²dx corresponds to the area measure of minimal surfaces.
If |∇u| ≠ 0,

$$\frac{|\nabla^2 u|^2 - |\nabla|\nabla u||^2}{|\nabla u|^2} = |\mathcal{A}|^2 + |\nabla_T \log |\nabla u||^2,$$

where A is the second fundamental form of level sets $\{u = const.\}$ and ∇_T is the tangential derivatives along these level sets.

Stability
$$\Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \ge \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

|∇u|²dx corresponds to the area measure of minimal surfaces.
If |∇u| ≠ 0,

$$\frac{|\nabla^2 u|^2 - |\nabla|\nabla u||^2}{|\nabla u|^2} = |\mathcal{A}|^2 + |\nabla_T \log |\nabla u||^2,$$

where A is the second fundamental form of level sets $\{u = const.\}$ and ∇_T is the tangential derivatives along these level sets.

• Simons inequality for this curvature term? Not found yet. Seems to be a common difficulty in semilinear problems.

• Stability outside $B_R(0) \iff$ Finite Morse index.

⊡ ► < ≣ ►

æ

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find y_k satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

$$|A(x)| \leq 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$$

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find y_k satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

• Let $\varepsilon_k := |A(y_k)|$ and define $u_k(x) := u(y_k + \varepsilon_k^{-1}x)$. $|y_k| \to +\infty$ and $\varepsilon_k \to 0 \iff$ Locally close to 1D solution, by stable De Giorgi for n = 2.

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find y_k satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

- Let $\varepsilon_k := |A(y_k)|$ and define $u_k(x) := u(y_k + \varepsilon_k^{-1}x)$. $|y_k| \to +\infty$ and $\varepsilon_k \to 0 \iff$ Locally close to 1D solution, by stable De Giorgi for n = 2.
- In $B_k(0)$, u_k is a stable solution of (AC) with parameter ε_k .

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find y_k satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

- Let $\varepsilon_k := |A(y_k)|$ and define $u_k(x) := u(y_k + \varepsilon_k^{-1}x)$. $|y_k| \to +\infty$ and $\varepsilon_k \to 0 \iff$ Locally close to 1D solution, by stable De Giorgi for n = 2.
- In $B_k(0)$, u_k is a stable solution of (AC) with parameter ε_k .
- The curvature of $\{u_{\varepsilon_k} = 0\}$ is uniformly bounded, and it equals 1 at the origin.

Theorem (W.-Wei '18)

Let u_{ε} be a sequence of stable solutions to (AC) such that $\{u_{\varepsilon} = 0\}$ are uniformly $C^{1,\beta}$ for some $\beta \in (0,1)$. If $n \leq 10$, then $\{u_{\varepsilon} = 0\}$ are uniformly bounded in $C^{2,\alpha}$ for any $\alpha \in (0,1)$. Moreover, the mean curvature is of the order $O(\varepsilon^{\alpha})$.

Theorem (W.-Wei '18)

Let u_{ε} be a sequence of stable solutions to (AC) such that $\{u_{\varepsilon} = 0\}$ are uniformly $C^{1,\beta}$ for some $\beta \in (0,1)$. If $n \leq 10$, then $\{u_{\varepsilon} = 0\}$ are uniformly bounded in $C^{2,\alpha}$ for any $\alpha \in (0,1)$. Moreover, the mean curvature is of the order $O(\varepsilon^{\alpha})$.

Chodosh-Mantoulidis '18 has obtained the same result in dimension 3, which was used in their study of min-max minimal surfaces in three manifolds (Multiplicity one conjecture of Marques-Neves, existence of infinitely many minimal surfaces in generic case). In general the stability condition is necessary \Longleftarrow Clustering interfaces, Toda system.

In general the stability condition is necessary \Longleftarrow Clustering interfaces, Toda system.

Multiplicity one \implies No interactions.

Theorem

Let u_{ε} be a sequence of the Allen-Cahn equation in $B_1(0)$, with $\{u_{\varepsilon} = 0\}$ given by the graph of a uniformly $C^{1,\beta}$ functions f_{ε} for some $\beta \in (0,1)$. Then f_{ε} are uniformly bounded in $C^{2,\alpha}_{loc}(B_1^{n-1})$ for any $\alpha \in (0,1)$.

In general the stability condition is necessary \Longleftarrow Clustering interfaces, Toda system.

Multiplicity one \implies No interactions.

Theorem

Let u_{ε} be a sequence of the Allen-Cahn equation in $B_1(0)$, with $\{u_{\varepsilon} = 0\}$ given by the graph of a uniformly $C^{1,\beta}$ functions f_{ε} for some $\beta \in (0,1)$. Then f_{ε} are uniformly bounded in $C^{2,\alpha}_{loc}(B_1^{n-1})$ for any $\alpha \in (0,1)$.

Caffarelli and Córdoba '06 and Savin '09: Lipschitz or flat \implies uniform $C^{1,\alpha}$.

Part II. Proof of $C^{2,\alpha}$ estimates

▲御 ▶ ▲ 臣 ▶

문 🛌 문

Clustering interfaces

There could be more and more connected components of $\{u_{\varepsilon} = 0\}$, which can collapse to the same limit as $\varepsilon \to 0$.

Curvature bound on $\{u_{\varepsilon} = 0\} \Longrightarrow \{u_{\varepsilon} = 0\}$ locally represented by graphs $\cup_k \Gamma_{k,\varepsilon}$, where

$$\Gamma_{k,\varepsilon} = \{x_2 = f_{k,\varepsilon}(x_1)\}, \quad \cdots < f_{k-1,\varepsilon} < f_{k,\varepsilon} < f_{k+1,\varepsilon} < \cdots.$$

The cardinality of index set could go to infinity.

Curvature bound on $\{u_{\varepsilon} = 0\} \Longrightarrow \{u_{\varepsilon} = 0\}$ locally represented by graphs $\cup_k \Gamma_{k,\varepsilon}$, where

$$\Gamma_{k,\varepsilon} = \{x_2 = f_{k,\varepsilon}(x_1)\}, \quad \cdots < f_{k-1,\varepsilon} < f_{k,\varepsilon} < f_{k+1,\varepsilon} < \cdots.$$

The cardinality of index set could go to infinity.

Interaction between different interfaces has the form

$$\operatorname{div}\left(\frac{\nabla f_{k,\varepsilon}}{\sqrt{1+|\nabla f_{k,\varepsilon}|^2}}\right) = \frac{A}{\varepsilon} \left[e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k+1,\varepsilon} - f_{k,\varepsilon}\right)} \right] + h.o.t.$$

Infinite dimensional Lyapunov-Schmidt reduction of Del Pino, Kowalczyk and Wei.

Obstruction to $C^{2,\alpha}$ estimates of $f_{k,\varepsilon}$

$$\Delta f_{k,\varepsilon} = \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon} \right)} - \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k+1,\varepsilon} - f_{k,\varepsilon} \right)}.$$
$$f_{k+1,\varepsilon} - f_{k,\varepsilon} \ge \frac{\sqrt{2} \left(1 + \alpha \right)}{2} \varepsilon |\log \varepsilon| - C\varepsilon \Longrightarrow f_{k,\varepsilon} \in C^{2,\alpha}.$$

<ロ> <部> < 部> < き> < き> < き</p>

Obstruction to $C^{2,\alpha}$ estimates of $f_{k,\varepsilon}$

$$\Delta f_{k,\varepsilon} = \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k+1,\varepsilon} - f_{k,\varepsilon}\right)}.$$
$$f_{k+1,\varepsilon} - f_{k,\varepsilon} \ge \frac{\sqrt{2} \left(1 + \alpha\right)}{2} \varepsilon |\log \varepsilon| - C\varepsilon \Longrightarrow f_{k,\varepsilon} \in C^{2,\alpha}.$$

On the other hand, if

$$f_{k+1,\varepsilon} - f_{k,\varepsilon} \leq \frac{\sqrt{2}}{2} \varepsilon |\log \varepsilon| + C \varepsilon,$$

define the blow up sequence

$$\widetilde{f}_{k,arepsilon}(x):=rac{1}{arepsilon}f_{k,arepsilon}\left(arepsilon^{rac{1}{2}}x
ight)-rac{\sqrt{2}lpha}{2}|\logarepsilon|.$$

They converge to an entire solution of the Toda system

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}, \quad \text{in } \mathbb{R}^{n-1}.$$

Example I: Two end solutions of Agudelo-del Pino-Wei

For n ≥ 10, the Liouville equation (= Two component Toda system)

$$\Delta f = e^{-\sqrt{2}f}$$

has a radially symmetric, stable solution.

Example I: Two end solutions of Agudelo-del Pino-Wei

For n ≥ 10, the Liouville equation (= Two component Toda system)

$$\Delta f = e^{-\sqrt{2}f}$$

has a radially symmetric, stable solution.

• Graphs of the natural scaling $f^{\lambda}(x) = f(\lambda x) - \sqrt{2} \log \lambda$ form a foliation of \mathbb{R}^{n+1} .

Example I: Two end solutions of Agudelo-del Pino-Wei

For n ≥ 10, the Liouville equation (= Two component Toda system)

$$\Delta f = e^{-\sqrt{2}f}$$

has a radially symmetric, stable solution.

- Graphs of the natural scaling $f^{\lambda}(x) = f(\lambda x) \sqrt{2} \log \lambda$ form a foliation of \mathbb{R}^{n+1} .
- For λ small ($\iff f_{\lambda}(0) \gg 1$), there exists a monotone (in λ) family of solutions u^{λ} to the unscaled (AC). \implies stable.
Example I: Two end solutions of Agudelo-del Pino-Wei

For n ≥ 10, the Liouville equation (= Two component Toda system)

$$\Delta f = e^{-\sqrt{2}f}$$

has a radially symmetric, stable solution.

- Graphs of the natural scaling $f^{\lambda}(x) = f(\lambda x) \sqrt{2} \log \lambda$ form a foliation of \mathbb{R}^{n+1} .
- For λ small ($\iff f_{\lambda}(0) \gg 1$), there exists a monotone (in λ) family of solutions u^{λ} to the unscaled (AC). \implies stable.
- Let $u_{\varepsilon}(x) := u^{\varepsilon^{1/2}} (\varepsilon^{-1}x)$. Its nodal set $\{u_{\varepsilon} = 0\}$ is given by the graph of

$$f_{\varepsilon}(x) \approx \varepsilon f\left(\varepsilon^{-rac{1}{2}}x
ight) + rac{\sqrt{2}lpha}{2}\varepsilon|\log \varepsilon|,$$

which satisfies

$$|
abla^2 f_arepsilon(0)| = |
abla^2 f(0)|, \quad |
abla^2 f_arepsilon(x)| o 0, \quad orall x
eq 0.$$

Example II: Multiple end solutions in \mathbb{R}^2

Del Pino-Kowalczyk-Pacard-Wei '10 : Unstable solutions with $\{u = 0\}$ close to the graph of Toda solutions:

 $f_k''(x) = e^{-\sqrt{2}(f_k(x) - f_{k-1}(x))} - e^{-\sqrt{2}(f_{k+1}(x) - f_k(x))}, \quad x \in \mathbb{R}, \quad 1 \le k \le Q.$

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

• Uniform $C^{2,\alpha}$ estimates of clustering interfaces does not hold

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

Uniform C^{2,α} estimates of clustering interfaces does not hold
 ⇒ Existence of entire stable solutions of Toda system

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

Uniform C^{2,α} estimates of clustering interfaces does not hold
 ⇒ Existence of entire stable solutions of Toda system
 Liouville theorem: No stable solution of Toda in ℝⁿ for n ≤ 9.

Theorem

For any n, there exists a universal constant η such that, if (f_k) is a stable solution to the Toda lattice

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$
 in $B_1 \subset \mathbb{R}^n$,

then

$$\int_{B_1} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \eta(n) \implies \sup_{B_{1/2}} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \frac{1}{2}.$$

Theorem

For any n, there exists a universal constant η such that, if (f_k) is a stable solution to the Toda lattice

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$
 in $B_1 \subset \mathbb{R}^n$,

then

$$\int_{B_1} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \eta(n) \implies \sup_{B_{1/2}} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \frac{1}{2}.$$

Applying this ε -regularity to suitable rescalings of Toda system constructed from (AC), gives a decay estimate on $e^{-\frac{\sqrt{2}}{\varepsilon}(f_{k,\varepsilon}-f_{k-1,\varepsilon})}$ in shrinking balls, leading finally to

$$e^{-rac{\sqrt{2}}{arepsilon}(f_{k,arepsilon}-f_{k-1,arepsilon})}\lesssimarepsilon^{1+lpha}, \quad ext{ in the interior}.$$

Without the stability condition, for the Liouville equation

$$\Delta f = e^{-f},$$

this ε -regularity has been proved by Brezis-Merle '91 in 2 dimension and F. Da Lio '08 in 3 dimension. Higher dimensions are not known.

Without the stability condition, for the Liouville equation

$$\Delta f = e^{-f},$$

this ε -regularity has been proved by Brezis-Merle '91 in 2 dimension and F. Da Lio '08 in 3 dimension. Higher dimensions are not known.

Our proof relies essentially on the stability condition, which gives us an integral estimate (as in Farina '07)

$$\int_{B_r} e^{-2\sqrt{2}(f_k-f_{k-1})} \leq Cr^{-2} \int_{B_{2r}} e^{-\sqrt{2}(f_k-f_{k-1})}.$$

Part III. Derivation of the Toda system

æ

-

_ ₽ ▶

$$G(x_1, x_2) = 0 \iff \begin{cases} \prod_{F} \circ G(x_1, x_2) = 0, \\ \prod_{F^{\perp}} \circ G(x_1, x_2) = 0. \end{cases}$$

$$G(x_1, x_2) = 0 \iff \begin{cases} \prod_{F} \circ G(x_1, x_2) = 0, \\ \prod_{F^{\perp}} \circ G(x_1, x_2) = 0. \end{cases}$$

• Solve the second equation by Implicit Function Theorem.

$$G(x_1, x_2) = 0 \iff \begin{cases} \prod_{F} \circ G(x_1, x_2) = 0, \\ \prod_{F^{\perp}} \circ G(x_1, x_2) = 0. \end{cases}$$

- Solve the second equation by Implicit Function Theorem.
- Substituting the second equation into the first one \implies an equation defined on *E*.

$$G(x_1, x_2) = 0 \iff \begin{cases} \prod_{F} \circ G(x_1, x_2) = 0, \\ \prod_{F^{\perp}} \circ G(x_1, x_2) = 0. \end{cases}$$

- Solve the second equation by Implicit Function Theorem.
- Substituting the second equation into the first one \implies an equation defined on *E*.
- If *E* is finite dimensional: finite dimensional reduction.

$$G(x_1, x_2) = 0 \iff \begin{cases} \prod_{F} \circ G(x_1, x_2) = 0, \\ \prod_{F^{\perp}} \circ G(x_1, x_2) = 0. \end{cases}$$

- Solve the second equation by Implicit Function Theorem.
- Substituting the second equation into the first one \implies an equation defined on *E*.
- If *E* is finite dimensional: finite dimensional reduction.
- Even if *E* is infinite dimensional, sometimes the reduction problem is still a good one.

• Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

We use this method in a reverse order.

• We already have a solution u_{ε} of the Allen-Cahn equation.

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

We use this method in a reverse order.

- We already have a solution u_{ε} of the Allen-Cahn equation.
- In order to get estimates on level sets, a good equation satisfied by these level sets is needed.

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

We use this method in a reverse order.

- We already have a solution u_{ε} of the Allen-Cahn equation.
- In order to get estimates on level sets, a good equation satisfied by these level sets is needed.
- Decouple the single equation (AC) into two: one is the equation for level sets (on the kernel space E), the other one is on E[⊥] which enjoys good a priori estimates.

Starting assumptions: close to a canonical configuration by assuming $C^{1,1}$ regularity.

Around $\Gamma_{\varepsilon} := \{u_{\varepsilon} = 0\}$, u_{ε} looks like

$$g_*(y,z) := g\left(\frac{z-h_{\varepsilon}(y)}{\varepsilon}\right),$$

where $z = \text{dist}_{\Gamma_{\varepsilon}}$ is the signed distance to Γ_{ε} and y denotes a point on Γ_{ε} . \implies Introduction of Fermi coordinates w.r.t. Γ_{ε} .

Starting assumptions: close to a canonical configuration by assuming $C^{1,1}$ regularity.

Around $\Gamma_{\varepsilon} := \{u_{\varepsilon} = 0\}$, u_{ε} looks like

$$g_*(y,z) := g\left(\frac{z-h_{\varepsilon}(y)}{\varepsilon}\right),$$

where $z = \text{dist}_{\Gamma_{\varepsilon}}$ is the signed distance to Γ_{ε} and y denotes a point on Γ_{ε} . \implies Introduction of Fermi coordinates w.r.t. Γ_{ε} .

A small perturbation in normal direction is also needed: introduction of h_{ε} .

Fermi coordinates: x = y + zN(y), where $y \in \Gamma_{\varepsilon}$ is the nearest point and N the unit normal vector, $z = \text{dist}_{\Gamma_{\varepsilon}}$.

Fermi coordinates: x = y + zN(y), where $y \in \Gamma_{\varepsilon}$ is the nearest point and N the unit normal vector, $z = \text{dist}_{\Gamma_{\varepsilon}}$. Well defined in an $O(\delta)$ neighborhood of Γ_{ε} , where δ depends only on $\sup |A_{\Gamma_{\varepsilon}}|$.

$$\Delta = \Delta_z - H\partial_z + \partial_{zz},$$

 Δ_z is the Beltrami-Laplace operator on {dist_{$\Gamma_{\varepsilon}} = z$ }. *H* is the mean curvature of {dist_{$\Gamma_{\varepsilon}} = z$ }.</sub></sub> Fermi coordinates: x = y + zN(y), where $y \in \Gamma_{\varepsilon}$ is the nearest point and N the unit normal vector, $z = \text{dist}_{\Gamma_{\varepsilon}}$. Well defined in an $O(\delta)$ neighborhood of Γ_{ε} , where δ depends only on $\sup |A_{\Gamma_{\varepsilon}}|$.

$$\Delta = \Delta_z - H\partial_z + \partial_{zz},$$

 Δ_z is the Beltrami-Laplace operator on {dist_{Γ_{ε}} = z}. *H* is the mean curvature of {dist_{$\Gamma_{\varepsilon}} = z$ }.</sub>

$$\Delta d = \sum_{i} \frac{k_i}{1 - k_i d} = H + O(|A|^2),$$

where k_i are principal curvatures of Γ_{ε} .

 h_{ε} is a function defined on Γ_{ε} , which must be introduced so that the orthogonal condition holds:

$$\int_{-\infty}^{+\infty} \left(u_{\varepsilon}(y,z) - g_*(y,z)
ight) g'_* dz = 0.$$

 h_{ε} is a function defined on Γ_{ε} , which must be introduced so that the orthogonal condition holds:

$$\int_{-\infty}^{+\infty} \left(u_{\varepsilon}(y,z) - g_*(y,z) \right) g'_* dz = 0.$$

For each $y \in \Gamma_{\varepsilon}$,

$$\min_{t\in\mathbb{R}}\int_{-\infty}^{+\infty}\left|u_{\varepsilon}(y,z)-g\left(\frac{z-t}{\varepsilon}\right)\right|^{2}dz$$

is attained at a unique point $h_{\varepsilon}(y)$.

The error between $u_arepsilon$ and g_* , $\phi_arepsilon:=u_arepsilon-g_*$, satisfies

$$\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{*})\phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right]g'_{*}+h.o.t.$$

⊡ ► < ≣ ►

글▶ 글

The error between $u_{arepsilon}$ and g_* , $\phi_{arepsilon}:=u_{arepsilon}-g_*$, satisfies

$$\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{*})\phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right]g'_{*}+h.o.t.$$

• ϕ_{ε} is controlled by h.o.t. which are quadratic in ϕ_{ε} and $H_{\varepsilon} \Longrightarrow$ decay estimate starting from a good position.

The error between $u_{arepsilon}$ and g_* , $\phi_{arepsilon}:=u_{arepsilon}-g_*$, satisfies

$$\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{*})\phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right]g'_{*}+h.o.t.$$

- ϕ_{ε} is controlled by h.o.t. which are quadratic in ϕ_{ε} and $H_{\varepsilon} \Longrightarrow$ decay estimate starting from a good position.
- $h_{arepsilon}$ is controlled by $\phi_{arepsilon}$ because

$$0 = u_{\varepsilon}(y,0) = g\left(-\frac{h_{\varepsilon}(y)}{\varepsilon}\right) + \phi_{\varepsilon}(y,0).$$

The error between $u_{arepsilon}$ and g_{*} , $\phi_{arepsilon}:=u_{arepsilon}-g_{*}$, satisfies

 $\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{*})\phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right]g'_{*}+h.o.t.$

- ϕ_{ε} is controlled by h.o.t. which are quadratic in ϕ_{ε} and $H_{\varepsilon} \Longrightarrow$ decay estimate starting from a good position.
- $h_{arepsilon}$ is controlled by $\phi_{arepsilon}$ because

$$0 = u_{\varepsilon}(y,0) = g\left(-\frac{h_{\varepsilon}(y)}{\varepsilon}\right) + \phi_{\varepsilon}(y,0).$$

The parallel part gives the equation satisfied by {u_ε = 0}:

$$H_{\varepsilon}=O\left(\varepsilon
ight) .$$

Then standard elliptic estimates on minimal surface equation gives the $C^{2,\alpha}$ estimate.

$$\begin{cases} \Delta_{\mathbb{R}^{n-1}\phi} + \partial_{zz}\phi = W''(g(z))\phi + a(y)g'(z) + E, \\ \int_{-\infty}^{+\infty} \phi(y,z)g'(y,z)dz = 0, \quad \forall y \in \mathbb{R}^{n-1}. \end{cases}$$

 \implies both ϕ and *a* are controlled by *E*.

æ

$$\begin{cases} \Delta_{\mathbb{R}^{n-1}}\phi + \partial_{zz}\phi = W''(g(z))\phi + a(y)g'(z) + E, \\ \int_{-\infty}^{+\infty}\phi(y,z)g'(y,z)dz = 0, \quad \forall y \in \mathbb{R}^{n-1}. \end{cases}$$

 \implies both ϕ and a are controlled by E.

Main tool: Nondegeneracy of 1D solution, i.e. kernel of the linearized operator is spanned by g'.

Spectral gap: the second eigenvalue is positive \Longrightarrow

$$\begin{cases} \Delta_{\mathbb{R}^{n-1}}\phi + \partial_{zz}\phi = W''(g(z))\phi + a(y)g'(z) + E, \\ \int_{-\infty}^{+\infty}\phi(y,z)g'(y,z)dz = 0, \quad \forall y \in \mathbb{R}^{n-1}. \end{cases}$$

 \implies both ϕ and a are controlled by E.

Main tool: Nondegeneracy of 1D solution, i.e. kernel of the linearized operator is spanned by g'.

Spectral gap: the second eigenvalue is positive \Longrightarrow

$$\Delta_{\mathbb{R}^{n-1}}\int_{-\infty}^{+\infty}\phi(y,z)^2dz\geq \mu\int_{-\infty}^{+\infty}\phi(y,z)^2dz+\int_{-\infty}^{+\infty}\phi(y,z)E(y,z)dz.$$

$$\begin{cases} \Delta_{\mathbb{R}^{n-1}}\phi + \partial_{zz}\phi = W''(g(z))\phi + a(y)g'(z) + E, \\ \int_{-\infty}^{+\infty}\phi(y,z)g'(y,z)dz = 0, \quad \forall y \in \mathbb{R}^{n-1}. \end{cases}$$

 \implies both ϕ and a are controlled by E.

Main tool: Nondegeneracy of 1D solution, i.e. kernel of the linearized operator is spanned by g'.

Spectral gap: the second eigenvalue is positive \Longrightarrow

$$\Delta_{\mathbb{R}^{n-1}}\int_{-\infty}^{+\infty}\phi(y,z)^2dz\geq \mu\int_{-\infty}^{+\infty}\phi(y,z)^2dz+\int_{-\infty}^{+\infty}\phi(y,z)E(y,z)dz.$$

$$a(y)\int_{-\infty}^{+\infty}g'(z)^2dz=-\int_{-\infty}^{+\infty}E(y,z)g'(z)dz.$$
Starting assumptions: close to a canonical configuration. Around $\Gamma_{k,\varepsilon}$, u_{ε} looks like

$$g_{k,arepsilon} := g\left(rac{{\mathsf{dist}}_{{\mathsf{\Gamma}}_{k,arepsilon}}-h_{k,arepsilon}}{arepsilon}
ight),$$

where dist_{$\Gamma_{k,\varepsilon}$} is the signed distance to $\Gamma_{k,\varepsilon}$.

伺 ト く ヨ ト く ヨ ト

Starting assumptions: close to a canonical configuration. Around $\Gamma_{k,\varepsilon}$, u_{ε} looks like

$$g_{k,arepsilon} := g\left(rac{{\operatorname{\mathsf{dist}}}_{{\operatorname{\mathsf{\Gamma}}}_{k,arepsilon}}-h_{k,arepsilon}}{arepsilon}
ight),$$

where dist_{\Gamma_{k,\varepsilon}} is the signed distance to $\Gamma_{k,\varepsilon}$. \Longrightarrow As before, we need to

- introduce Fermi coordinates w.r.t. $\Gamma_{k,\varepsilon}$;
- introduce a small perturbation h_{k,ε} to obtain the orthogonal condition.

Interaction between transition layers

Approximate solution: near Γ_k ,

Decoupling in clustering interfaces

Near Γ_k , the error between u_{ε} and g_* , $\phi_{\varepsilon} := u_{\varepsilon} - g_*$, satisfies

$$\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{k,\varepsilon})\phi_{\varepsilon}+\varepsilon\left[H_{k,\varepsilon}+\Delta h_{k,\varepsilon}\right]g'_{k,\varepsilon}+\mathcal{I}_{k,\varepsilon}+h.o.t.$$

where $\mathcal{I}_{k,\varepsilon}$ describes the interaction between $\Gamma_{k,\varepsilon}$ and other components.

Decoupling in clustering interfaces

Near Γ_k , the error between $u_{arepsilon}$ and g_* , $\phi_{arepsilon}:=u_{arepsilon}-g_*$, satisfies

$$\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{k,\varepsilon})\phi_{\varepsilon}+\varepsilon\left[H_{k,\varepsilon}+\Delta h_{k,\varepsilon}\right]g_{k,\varepsilon}'+\mathcal{I}_{k,\varepsilon}+h.o.t.$$

where $\mathcal{I}_{k,\varepsilon}$ describes the interaction between $\Gamma_{k,\varepsilon}$ and other components.

 The parallel part (w.r.t. g'_{k,ε}) gives the Toda system with remainder terms of higher order (quadratic in φ_ε, e^{-√2/ε}(f_{α+1,ε}-f_{α,ε}) etc.)

Decoupling in clustering interfaces

Near Γ_k , the error between $u_{arepsilon}$ and g_* , $\phi_{arepsilon}:=u_{arepsilon}-g_*$, satisfies

$$\varepsilon^{2}\left(\Delta_{0}\phi_{\varepsilon}+\frac{\partial^{2}\phi_{\varepsilon}}{\partial z^{2}}\right)=W''(g_{k,\varepsilon})\phi_{\varepsilon}+\varepsilon\left[H_{k,\varepsilon}+\Delta h_{k,\varepsilon}\right]g_{k,\varepsilon}'+\mathcal{I}_{k,\varepsilon}+h.o.t.$$

where $\mathcal{I}_{k,\varepsilon}$ describes the interaction between $\Gamma_{k,\varepsilon}$ and other components.

- The parallel part (w.r.t. $g'_{k,\varepsilon}$) gives the Toda system with remainder terms of higher order (quadratic in ϕ_{ε} , $e^{-\frac{\sqrt{2}}{\varepsilon}(f_{\alpha+1,\varepsilon}-f_{\alpha,\varepsilon})}$ etc.)
- ϕ is mainly controlled by the interaction term:

$$\|\phi_{\varepsilon}\|_{\mathcal{C}^{2,\alpha}} \lesssim \varepsilon^{1-\alpha} + \frac{1}{\varepsilon} \sup\left[\mathrm{e}^{-\frac{f_{k+1,\varepsilon} - f_{k,\varepsilon}}{\varepsilon}} + \mathrm{e}^{-\frac{f_{k,\varepsilon} - f_{k-1,\varepsilon}}{\varepsilon}} \right].$$

Reduction of the stability condition again

• In the stability condition for the Allen-Cahn equation,

$$\int \varepsilon |\nabla \psi|^2 \geq \int \frac{1}{\varepsilon} W''(u_{\varepsilon}) \psi^2,$$

choose (as in Agudelo-Del Pino-Wei '16)

$$\psi := \sum_{k} \eta_{k} g'_{k,\varepsilon},$$

where $\eta_k \in C_0^{\infty}(\Gamma_{k,\varepsilon})$.

• Good decomposition: $u_{\varepsilon} = g_* + \phi_{\varepsilon}$, i.e. good estimates on ϕ_{ε} \implies main order terms are

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)}.$$

• Reduction method is basically a (partial) linearization procedure: when the solution u_{ε} is close to $\sum_{i} g_{i,\varepsilon}$, the ϕ_{ε} equation is almost a linearized one;

- Reduction method is basically a (partial) linearization procedure: when the solution u_{ε} is close to $\sum_{i} g_{i,\varepsilon}$, the ϕ_{ε} equation is almost a linearized one;
- The reduced problem is still a nonlinear one in most cases, but its complexity is decreased;

- Reduction method is basically a (partial) linearization procedure: when the solution u_{ε} is close to $\sum_{i} g_{i,\varepsilon}$, the ϕ_{ε} equation is almost a linearized one;
- The reduced problem is still a nonlinear one in most cases, but its complexity is decreased;
- Long range interaction in these phase field models. This is helpful for the construction of Jacobi fields (Chodosh-Mantoulidis '18).

Thanks for your attention!