Second order regularity of transition layers in Allen-Cahn equation

Kelei Wang

(based on a joint work with Juncheng Wei)
Wuhan University, China
wangkelei@whu.edu.cn

"PDEs and Geometric Measure Theory", ETH Zurich

Allen-Cahn equation

$$
\begin{gathered}
\varepsilon \Delta u_{\varepsilon}=\frac{1}{\varepsilon}\left(u_{\varepsilon}^{3}-u_{\varepsilon}\right) \\
E_{\varepsilon}\left(u_{\varepsilon}\right)=\int \frac{\varepsilon}{2}\left|\nabla u_{\varepsilon}\right|^{2}+\frac{1}{4 \varepsilon}\left(1-u_{\varepsilon}^{2}\right)^{2}
\end{gathered}
$$

One dimensional solution

$$
\begin{aligned}
-g^{\prime \prime} & =g-g^{3} \\
g(x) & =\tanh \frac{x}{\sqrt{2}}
\end{aligned}
$$

Part I. Finite Morse index solutions

Uniform $C^{2, \alpha}$ regularity

Question: Let u_{ε} be a sequence of solutions to (AC). Assume the level sets $\left\{u_{\varepsilon}=0\right\}$ are uniformly $C^{1, \alpha}$ for some $\alpha \in(0,1)$. Can we get a uniform $C^{2, \alpha}$ regularity?

Uniform $C^{2, \alpha}$ regularity

Question: Let u_{ε} be a sequence of solutions to (AC). Assume the level sets $\left\{u_{\varepsilon}=0\right\}$ are uniformly $C^{1, \alpha}$ for some $\alpha \in(0,1)$. Can we get a uniform $C^{2, \alpha}$ regularity?

This was used in our study on the structure of finite Morse index solutions.

Theorem (W.-Wei '17)

A finite Morse index solution of the Allen-Cahn equation

$$
-\Delta u=u-u^{3}
$$

in \mathbb{R}^{2} has finitely many ends.

Solutions with finite ends

u looks like the 1d solution along each end. \Longleftarrow Refined asymptotics, exponential convergence (Gui '08, Del Pino-Kowalczyk-Pacard '13).

A finiteness result for nodal domains

Let u_{e} be the directional derivative in e-direction, which satisfies the linearized equation

$$
\Delta u_{e}=W^{\prime \prime}(u) u_{e}
$$

Lemma

If the Morse index is N, the number of connected components of $\left\{u_{e} \neq 0\right\}$ is at most $2 N$.

A finiteness result for nodal domains

Let u_{e} be the directional derivative in e-direction, which satisfies the linearized equation

$$
\Delta u_{e}=W^{\prime \prime}(u) u_{e}
$$

Lemma

If the Morse index is N, the number of connected components of $\left\{u_{e} \neq 0\right\}$ is at most $2 N$.

- Liouville theorem for the degenerate equation

$$
\operatorname{div}\left(\varphi^{2} \nabla \frac{u_{e}}{\varphi}\right)=0
$$

- Similar to Courant's nodal domain theorem: entire space? $n=2 \Longrightarrow \log$ cut-off functions, Ambrosio-Cabré '03...

Transferring finiteness information

If each end of $\{u=0\}$ has an asymptotic direction at infinity, finiteness of nodal domains of u_{e} can be transformed into finiteness of ends.

Curvature decay

Theorem

Let u be a finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^{2}. For all x large,

$$
|A(x)|^{2}:=\frac{\left|\nabla^{2} u(x)\right|^{2}-|\nabla| \nabla u(x)| |^{2}}{|\nabla u(x)|^{2}} \leq \frac{C}{|x|^{2}}
$$

Curvature decay

Theorem

Let u be a finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^{2}. For all x large,

$$
|A(x)|^{2}:=\frac{\left|\nabla^{2} u(x)\right|^{2}-\left.|\nabla| \nabla u(x)\right|^{2}}{|\nabla u(x)|^{2}} \leq \frac{C}{|x|^{2}}
$$

Theorem (Schoen '83)

Given a three dimensional manifold M (with some curvature bounds). Let Σ be a stable immersed minimal surface in a ball $B_{R}(p) \subset M$ with $\partial \Sigma \subset \partial B_{R}(p)$. Then

$$
\sup _{B_{R / 2}(p) \cap \Sigma}\left|A_{\Sigma}\right|^{2} \leq \frac{C}{R^{2}}
$$

Sternberg-Zumbrun inequality

$$
\text { Stability } \Leftrightarrow \int|\nabla \varphi|^{2}|\nabla u|^{2} \geq \int \varphi^{2}\left[\left|\nabla^{2} u\right|^{2}-\left.|\nabla| \nabla u\right|^{2}\right] \text {. }
$$

Sternberg-Zumbrun inequality

$$
\text { Stability } \Leftrightarrow \int|\nabla \varphi|^{2}|\nabla u|^{2} \geq \int \varphi^{2}\left[\left|\nabla^{2} u\right|^{2}-|\nabla| \nabla u| |^{2}\right] \text {. }
$$

- $|\nabla u|^{2} d x$ corresponds to the area measure of minimal surfaces.

Sternberg-Zumbrun inequality

Stability $\Leftrightarrow \int|\nabla \varphi|^{2}|\nabla u|^{2} \geq \int \varphi^{2}\left[\left|\nabla^{2} u\right|^{2}-|\nabla| \nabla u| |^{2}\right]$.

- $|\nabla u|^{2} d x$ corresponds to the area measure of minimal surfaces.
- If $|\nabla u| \neq 0$,

$$
\frac{\left|\nabla^{2} u\right|^{2}-|\nabla| \nabla u| |^{2}}{|\nabla u|^{2}}=|A|^{2}+\left|\nabla_{T} \log \right| \nabla u| |^{2}
$$

where A is the second fundamental form of level sets $\{u=$ const. $\}$ and ∇_{T} is the tangential derivatives along these level sets.

Sternberg-Zumbrun inequality

Stability $\Leftrightarrow \int|\nabla \varphi|^{2}|\nabla u|^{2} \geq \int \varphi^{2}\left[\left|\nabla^{2} u\right|^{2}-|\nabla| \nabla u| |^{2}\right]$.

- $|\nabla u|^{2} d x$ corresponds to the area measure of minimal surfaces.
- If $|\nabla u| \neq 0$,

$$
\frac{\left|\nabla^{2} u\right|^{2}-|\nabla| \nabla u| |^{2}}{|\nabla u|^{2}}=|A|^{2}+\left|\nabla_{T} \log \right| \nabla u| |^{2},
$$

where A is the second fundamental form of level sets $\{u=$ const. $\}$ and ∇_{T} is the tangential derivatives along these level sets.

- Simons inequality for this curvature term? Not found yet. Seems to be a common difficulty in semilinear problems.

A blow up proof

- Stability outside $B_{R}(0) \Longleftarrow$ Finite Morse index.

A blow up proof

- Stability outside $B_{R}(0) \Longleftarrow$ Finite Morse index.
- Assume $\exists x_{k} \in B_{R}(0)^{c}$ such that $\left|A\left(x_{k}\right)\right|\left|x_{k}\right| \geq k$.

A blow up proof

- Stability outside $B_{R}(0) \Longleftarrow$ Finite Morse index.
- Assume $\exists x_{k} \in B_{R}(0)^{c}$ such that $\left|A\left(x_{k}\right) \| x_{k}\right| \geq k$.
- Find y_{k} satisfying

$$
\begin{gathered}
\left|A\left(y_{k}\right)\right| \geq\left|A\left(x_{k}\right)\right|, \quad\left|A\left(y_{k}\right)\right|\left|y_{k}\right| \geq k \\
|A(x)| \leq 2\left|A\left(y_{k}\right)\right|, \quad \forall x \in B_{k\left|A\left(y_{k}\right)\right|^{-1}\left(y_{k}\right)}
\end{gathered}
$$

A blow up proof

- Stability outside $B_{R}(0) \Longleftarrow$ Finite Morse index.
- Assume $\exists x_{k} \in B_{R}(0)^{c}$ such that $\left|A\left(x_{k}\right)\right|\left|x_{k}\right| \geq k$.
- Find y_{k} satisfying

$$
\begin{gathered}
\left|A\left(y_{k}\right)\right| \geq\left|A\left(x_{k}\right)\right|, \quad\left|A\left(y_{k}\right)\right|\left|y_{k}\right| \geq k \\
|A(x)| \leq 2\left|A\left(y_{k}\right)\right|, \quad \forall x \in B_{k\left|A\left(y_{k}\right)\right|^{-1}\left(y_{k}\right)}
\end{gathered}
$$

- Let $\varepsilon_{k}:=\left|A\left(y_{k}\right)\right|$ and define $u_{k}(x):=u\left(y_{k}+\varepsilon_{k}^{-1} x\right)$. $\left|y_{k}\right| \rightarrow+\infty$ and $\varepsilon_{k} \rightarrow 0 \Longleftarrow$ Locally close to $1 D$ solution, by stable De Giorgi for $n=2$.

A blow up proof

- Stability outside $B_{R}(0) \Longleftarrow$ Finite Morse index.
- Assume $\exists x_{k} \in B_{R}(0)^{c}$ such that $\left|A\left(x_{k}\right)\right|\left|x_{k}\right| \geq k$.
- Find y_{k} satisfying

$$
\begin{gathered}
\left|A\left(y_{k}\right)\right| \geq\left|A\left(x_{k}\right)\right|, \quad\left|A\left(y_{k}\right)\right|\left|y_{k}\right| \geq k \\
|A(x)| \leq 2\left|A\left(y_{k}\right)\right|, \quad \forall x \in B_{k\left|A\left(y_{k}\right)\right|^{-1}}\left(y_{k}\right)
\end{gathered}
$$

- Let $\varepsilon_{k}:=\left|A\left(y_{k}\right)\right|$ and define $u_{k}(x):=u\left(y_{k}+\varepsilon_{k}^{-1} x\right)$.
$\left|y_{k}\right| \rightarrow+\infty$ and $\varepsilon_{k} \rightarrow 0 \Longleftarrow$ Locally close to $1 D$ solution, by stable De Giorgi for $n=2$.
- In $B_{k}(0), u_{k}$ is a stable solution of (AC) with parameter ε_{k}.

A blow up proof

- Stability outside $B_{R}(0) \Longleftarrow$ Finite Morse index.
- Assume $\exists x_{k} \in B_{R}(0)^{c}$ such that $\left|A\left(x_{k}\right)\right|\left|x_{k}\right| \geq k$.
- Find y_{k} satisfying

$$
\begin{gathered}
\left|A\left(y_{k}\right)\right| \geq\left|A\left(x_{k}\right)\right|, \quad\left|A\left(y_{k}\right)\right|\left|y_{k}\right| \geq k \\
|A(x)| \leq 2\left|A\left(y_{k}\right)\right|, \quad \forall x \in B_{k\left|A\left(y_{k}\right)\right|^{-1}}\left(y_{k}\right)
\end{gathered}
$$

- Let $\varepsilon_{k}:=\left|A\left(y_{k}\right)\right|$ and define $u_{k}(x):=u\left(y_{k}+\varepsilon_{k}^{-1} x\right)$.
$\left|y_{k}\right| \rightarrow+\infty$ and $\varepsilon_{k} \rightarrow 0 \Longleftarrow$ Locally close to $1 D$ solution, by stable De Giorgi for $n=2$.
- In $B_{k}(0), u_{k}$ is a stable solution of (AC) with parameter ε_{k}.
- The curvature of $\left\{u_{\varepsilon_{k}}=0\right\}$ is uniformly bounded, and it equals 1 at the origin.

Second order regularity

Theorem (W.-Wei '18)

Let u_{ε} be a sequence of stable solutions to (AC) such that $\left\{u_{\varepsilon}=0\right\}$ are uniformly $C^{1, \beta}$ for some $\beta \in(0,1)$. If $n \leq 10$, then $\left\{u_{\varepsilon}=0\right\}$ are uniformly bounded in $C^{2, \alpha}$ for any $\alpha \in(0,1)$. Moreover, the mean curvature is of the order $O\left(\varepsilon^{\alpha}\right)$.

Second order regularity

Theorem (W.-Wei '18)

Let u_{ε} be a sequence of stable solutions to (AC) such that $\left\{u_{\varepsilon}=0\right\}$ are uniformly $C^{1, \beta}$ for some $\beta \in(0,1)$. If $n \leq 10$, then $\left\{u_{\varepsilon}=0\right\}$ are uniformly bounded in $C^{2, \alpha}$ for any $\alpha \in(0,1)$. Moreover, the mean curvature is of the order $O\left(\varepsilon^{\alpha}\right)$.

Chodosh-Mantoulidis '18 has obtained the same result in dimension 3, which was used in their study of min-max minimal surfaces in three manifolds (Multiplicity one conjecture of Marques-Neves, existence of infinitely many minimal surfaces in generic case).

Multiplicity one case

In general the stability condition is necessary \Longleftarrow Clustering interfaces, Toda system.

Multiplicity one case

In general the stability condition is necessary \Longleftarrow Clustering interfaces, Toda system.

Multiplicity one \Longrightarrow No interactions.

Theorem

Let u_{ε} be a sequence of the Allen-Cahn equation in $B_{1}(0)$, with $\left\{u_{\varepsilon}=0\right\}$ given by the graph of a uniformly $C^{1, \beta}$ functions f_{ε} for some $\beta \in(0,1)$. Then f_{ε} are uniformly bounded in $C_{\text {loc }}^{2, \alpha}\left(B_{1}^{n-1}\right)$ for any $\alpha \in(0,1)$.

Multiplicity one case

In general the stability condition is necessary \Longleftarrow Clustering interfaces, Toda system.

Multiplicity one \Longrightarrow No interactions.

Theorem

Let u_{ε} be a sequence of the Allen-Cahn equation in $B_{1}(0)$, with $\left\{u_{\varepsilon}=0\right\}$ given by the graph of a uniformly $C^{1, \beta}$ functions f_{ε} for some $\beta \in(0,1)$. Then f_{ε} are uniformly bounded in $C_{\text {loc }}^{2, \alpha}\left(B_{1}^{n-1}\right)$ for any $\alpha \in(0,1)$.

Caffarelli and Córdoba '06 and Savin '09: Lipschitz or flat \Longrightarrow uniform $C^{1, \alpha}$.

Part II. Proof of $C^{2, \alpha}$ estimates

Clustering interfaces

There could be more and more connected components of $\left\{u_{\varepsilon}=0\right\}$, which can collapse to the same limit as $\varepsilon \rightarrow 0$.

Toda system

Curvature bound on $\left\{u_{\varepsilon}=0\right\} \Longrightarrow\left\{u_{\varepsilon}=0\right\}$ locally represented by graphs $\cup_{k} \Gamma_{k, \varepsilon}$, where

$$
\Gamma_{k, \varepsilon}=\left\{x_{2}=f_{k, \varepsilon}\left(x_{1}\right)\right\}, \quad \cdots<f_{k-1, \varepsilon}<f_{k, \varepsilon}<f_{k+1, \varepsilon}<\cdots .
$$

The cardinality of index set could go to infinity.

Toda system

Curvature bound on $\left\{u_{\varepsilon}=0\right\} \Longrightarrow\left\{u_{\varepsilon}=0\right\}$ locally represented by graphs $\cup_{k} \Gamma_{k, \varepsilon}$, where

$$
\Gamma_{k, \varepsilon}=\left\{x_{2}=f_{k, \varepsilon}\left(x_{1}\right)\right\}, \quad \cdots<f_{k-1, \varepsilon}<f_{k, \varepsilon}<f_{k+1, \varepsilon}<\cdots .
$$

The cardinality of index set could go to infinity. Interaction between different interfaces has the form
$\operatorname{div}\left(\frac{\nabla f_{k, \varepsilon}}{\sqrt{1+\left|\nabla f_{k, \varepsilon}\right|^{2}}}\right)=\frac{A}{\varepsilon}\left[e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k+1, \varepsilon}-f_{k, \varepsilon}\right)}\right]+$ h.o.t.
Infinite dimensional Lyapunov-Schmidt reduction of Del Pino, Kowalczyk and Wei.

Obstruction to $C^{2, \alpha}$ estimates of $f_{k, \varepsilon}$

$$
\begin{gathered}
\Delta f_{k, \varepsilon}=\frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-\frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k+1, \varepsilon}-f_{k, \varepsilon}\right)} . \\
f_{k+1, \varepsilon}-f_{k, \varepsilon} \geq \frac{\sqrt{2}(1+\alpha)}{2} \varepsilon|\log \varepsilon|-C \varepsilon \Longrightarrow f_{k, \varepsilon} \in C^{2, \alpha} .
\end{gathered}
$$

Obstruction to $C^{2, \alpha}$ estimates of $f_{k, \varepsilon}$

$$
\begin{gathered}
\Delta f_{k, \varepsilon}=\frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-\frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k+1, \varepsilon}-f_{k, \varepsilon}\right)} . \\
f_{k+1, \varepsilon}-f_{k, \varepsilon} \geq \frac{\sqrt{2}(1+\alpha)}{2} \varepsilon|\log \varepsilon|-C \varepsilon \Longrightarrow f_{k, \varepsilon} \in C^{2, \alpha} .
\end{gathered}
$$

On the other hand, if

$$
f_{k+1, \varepsilon}-f_{k, \varepsilon} \leq \frac{\sqrt{2}}{2} \varepsilon|\log \varepsilon|+C \varepsilon
$$

define the blow up sequence

$$
\widetilde{f}_{k, \varepsilon}(x):=\frac{1}{\varepsilon} f_{k, \varepsilon}\left(\varepsilon^{\frac{1}{2}} x\right)-\frac{\sqrt{2} \alpha}{2}|\log \varepsilon|
$$

They converge to an entire solution of the Toda system

$$
\Delta f_{k}=e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)}-e^{-\sqrt{2}\left(f_{k+1}-f_{k}\right)}, \quad \text { in } \mathbb{R}^{n-1}
$$

Example I: Two end solutions of Agudelo-del Pino-Wei

- For $n \geq 10$, the Liouville equation ($=$ Two component Toda system)

$$
\Delta f=e^{-\sqrt{2} f}
$$

has a radially symmetric, stable solution.

Example I: Two end solutions of Agudelo-del Pino-Wei

- For $n \geq 10$, the Liouville equation ($=$ Two component Toda system)

$$
\Delta f=e^{-\sqrt{2} f}
$$

has a radially symmetric, stable solution.

- Graphs of the natural scaling $f^{\lambda}(x)=f(\lambda x)-\sqrt{2} \log \lambda$ form a foliation of \mathbb{R}^{n+1}.

Example I: Two end solutions of Agudelo-del Pino-Wei

- For $n \geq 10$, the Liouville equation ($=$ Two component Toda system)

$$
\Delta f=e^{-\sqrt{2} f}
$$

has a radially symmetric, stable solution.

- Graphs of the natural scaling $f^{\lambda}(x)=f(\lambda x)-\sqrt{2} \log \lambda$ form a foliation of \mathbb{R}^{n+1}.
- For λ small $\left(\Longleftrightarrow f_{\lambda}(0) \gg 1\right)$, there exists a monotone (in λ) family of solutions u^{λ} to the unscaled (AC). \Longrightarrow stable.

Example I: Two end solutions of Agudelo-del Pino-Wei

- For $n \geq 10$, the Liouville equation ($=$ Two component Toda system)

$$
\Delta f=e^{-\sqrt{2} f}
$$

has a radially symmetric, stable solution.

- Graphs of the natural scaling $f^{\lambda}(x)=f(\lambda x)-\sqrt{2} \log \lambda$ form a foliation of \mathbb{R}^{n+1}.
- For λ small $\left(\Longleftrightarrow f_{\lambda}(0) \gg 1\right)$, there exists a monotone (in λ) family of solutions u^{λ} to the unscaled (AC). \Longrightarrow stable.
- Let $u_{\varepsilon}(x):=u^{\varepsilon^{1 / 2}}\left(\varepsilon^{-1} x\right)$. Its nodal set $\left\{u_{\varepsilon}=0\right\}$ is given by the graph of

$$
f_{\varepsilon}(x) \approx \varepsilon f\left(\varepsilon^{-\frac{1}{2}} x\right)+\frac{\sqrt{2} \alpha}{2} \varepsilon|\log \varepsilon|
$$

which satisfies

$$
\left|\nabla^{2} f_{\varepsilon}(0)\right|=\left|\nabla^{2} f(0)\right|, \quad\left|\nabla^{2} f_{\varepsilon}(x)\right| \rightarrow 0, \quad \forall x \neq 0
$$

Example II: Multiple end solutions in \mathbb{R}^{2}

Del Pino-Kowalczyk-Pacard-Wei '10: Unstable solutions with $\{u=0\}$ close to the graph of Toda solutions:
$f_{k}^{\prime \prime}(x)=e^{-\sqrt{2}\left(f_{k}(x)-f_{k-1}(x)\right)}-e^{-\sqrt{2}\left(f_{k+1}(x)-f_{k}(x)\right)}, \quad x \in \mathbb{R}, \quad 1 \leq k \leq Q$.

Reduction of the stability condition

- If u_{ε} is stable, $\left(f_{k, \varepsilon}\right)$ satisfies a stability condition:

$$
\sum_{k} \int\left|\nabla \eta_{k}\right|^{2} \geq \frac{\sqrt{2} A}{\varepsilon^{2}} \sum_{k} \int\left(\eta_{k}-\eta_{k-1}\right)^{2} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-\text { h.o.t.. }
$$

Reduction of the stability condition

- If u_{ε} is stable, $\left(f_{k, \varepsilon}\right)$ satisfies a stability condition:

$$
\sum_{k} \int\left|\nabla \eta_{k}\right|^{2} \geq \frac{\sqrt{2} A}{\varepsilon^{2}} \sum_{k} \int\left(\eta_{k}-\eta_{k-1}\right)^{2} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-\text { h.o.t.. }
$$

- Uniform $C^{2, \alpha}$ estimates of clustering interfaces does not hold

Reduction of the stability condition

- If u_{ε} is stable, $\left(f_{k, \varepsilon}\right)$ satisfies a stability condition:

$$
\sum_{k} \int\left|\nabla \eta_{k}\right|^{2} \geq \frac{\sqrt{2} A}{\varepsilon^{2}} \sum_{k} \int\left(\eta_{k}-\eta_{k-1}\right)^{2} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-\text { h.o.t.. }
$$

- Uniform $C^{2, \alpha}$ estimates of clustering interfaces does not hold \Longrightarrow Existence of entire stable solutions of Toda system

Reduction of the stability condition

- If u_{ε} is stable, $\left(f_{k, \varepsilon}\right)$ satisfies a stability condition:

$$
\sum_{k} \int\left|\nabla \eta_{k}\right|^{2} \geq \frac{\sqrt{2} A}{\varepsilon^{2}} \sum_{k} \int\left(\eta_{k}-\eta_{k-1}\right)^{2} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}-\text { h.o.t.. }
$$

- Uniform $C^{2, \alpha}$ estimates of clustering interfaces does not hold \Longrightarrow Existence of entire stable solutions of Toda system Liouville theorem: No stable solution of Toda in \mathbb{R}^{n} for $n \leq 9$.

An ε-regularity theorem

Theorem

For any n, there exists a universal constant η such that, if $\left(f_{k}\right)$ is a stable solution to the Toda lattice

$$
\Delta f_{k}=e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)}-e^{-\sqrt{2}\left(f_{k+1}-f_{k}\right)} \quad \text { in } B_{1} \subset \mathbb{R}^{n}
$$

then

$$
\int_{B_{1}} e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)} \leq \eta(n) \quad \Longrightarrow \quad \sup _{B_{1 / 2}} e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)} \leq \frac{1}{2}
$$

An ε-regularity theorem

Theorem

For any n, there exists a universal constant η such that, if $\left(f_{k}\right)$ is a stable solution to the Toda lattice

$$
\Delta f_{k}=e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)}-e^{-\sqrt{2}\left(f_{k+1}-f_{k}\right)} \quad \text { in } B_{1} \subset \mathbb{R}^{n}
$$

then

$$
\int_{B_{1}} e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)} \leq \eta(n) \quad \Longrightarrow \quad \sup _{B_{1 / 2}} e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)} \leq \frac{1}{2}
$$

Applying this ε-regularity to suitable rescalings of Toda system constructed from (AC), gives a decay estimate on $e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}$ in shrinking balls, leading finally to

$$
e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)} \lesssim \varepsilon^{1+\alpha}, \quad \text { in the interior. }
$$

Proof of ε-regularity theorem

Without the stability condition, for the Liouville equation

$$
\Delta f=e^{-f}
$$

this ε-regularity has been proved by Brezis-Merle '91 in 2 dimension and F. Da Lio '08 in 3 dimension. Higher dimensions are not known.

Proof of ε-regularity theorem

Without the stability condition, for the Liouville equation

$$
\Delta f=e^{-f}
$$

this ε-regularity has been proved by Brezis-Merle '91 in 2 dimension and F. Da Lio '08 in 3 dimension. Higher dimensions are not known.

Our proof relies essentially on the stability condition, which gives us an integral estimate (as in Farina '07)

$$
\int_{B_{r}} e^{-2 \sqrt{2}\left(f_{k}-f_{k-1}\right)} \leq C r^{-2} \int_{B_{2 r}} e^{-\sqrt{2}\left(f_{k}-f_{k-1}\right)}
$$

Part III. Derivation of the Toda system

Lyapunov-Schmidt reduction

Given two Banach spaces \mathcal{X} and \mathcal{Y}, consider a nonlinear map $G \in C^{1}(\mathcal{X}, \mathcal{Y})$.
Let $E:=\operatorname{ker} D F(0)$ and $F:=\operatorname{coker} D F(0)$. Assume $\mathcal{X}=E \bigoplus E^{\perp}$ and $\mathcal{Y}=F \bigoplus F^{\perp}$ (e.g. when E and F are finite dimensional). Then

$$
G\left(x_{1}, x_{2}\right)=0 \Longleftrightarrow\left\{\begin{array}{c}
\prod_{F} \circ G\left(x_{1}, x_{2}\right)=0 \\
\prod_{F^{\perp}} \circ G\left(x_{1}, x_{2}\right)=0 .
\end{array}\right.
$$

Lyapunov-Schmidt reduction

Given two Banach spaces \mathcal{X} and \mathcal{Y}, consider a nonlinear map $G \in C^{1}(\mathcal{X}, \mathcal{Y})$.
Let $E:=\operatorname{ker} D F(0)$ and $F:=\operatorname{coker} D F(0)$. Assume $\mathcal{X}=E \bigoplus E^{\perp}$ and $\mathcal{Y}=F \bigoplus F^{\perp}$ (e.g. when E and F are finite dimensional). Then

$$
G\left(x_{1}, x_{2}\right)=0 \Longleftrightarrow\left\{\begin{array}{c}
\prod_{F} \circ G\left(x_{1}, x_{2}\right)=0 \\
\prod_{F^{\perp}} \circ G\left(x_{1}, x_{2}\right)=0 .
\end{array}\right.
$$

- Solve the second equation by Implicit Function Theorem.

Lyapunov-Schmidt reduction

Given two Banach spaces \mathcal{X} and \mathcal{Y}, consider a nonlinear map $G \in C^{1}(\mathcal{X}, \mathcal{Y})$.
Let $E:=\operatorname{ker} D F(0)$ and $F:=\operatorname{coker} D F(0)$. Assume $\mathcal{X}=E \bigoplus E^{\perp}$ and $\mathcal{Y}=F \bigoplus F^{\perp}$ (e.g. when E and F are finite dimensional). Then

$$
G\left(x_{1}, x_{2}\right)=0 \Longleftrightarrow\left\{\begin{array}{c}
\prod_{F} \circ G\left(x_{1}, x_{2}\right)=0 \\
\prod_{F^{\perp}} \circ G\left(x_{1}, x_{2}\right)=0 .
\end{array}\right.
$$

- Solve the second equation by Implicit Function Theorem.
- Substituting the second equation into the first one \Longrightarrow an equation defined on E.

Lyapunov-Schmidt reduction

Given two Banach spaces \mathcal{X} and \mathcal{Y}, consider a nonlinear map $G \in C^{1}(\mathcal{X}, \mathcal{Y})$.
Let $E:=\operatorname{ker} D F(0)$ and $F:=\operatorname{coker} D F(0)$. Assume $\mathcal{X}=E \bigoplus E^{\perp}$ and $\mathcal{Y}=F \bigoplus F^{\perp}$ (e.g. when E and F are finite dimensional). Then

$$
G\left(x_{1}, x_{2}\right)=0 \Longleftrightarrow\left\{\begin{array}{c}
\prod_{F} \circ G\left(x_{1}, x_{2}\right)=0 \\
\prod_{F^{\perp}} \circ G\left(x_{1}, x_{2}\right)=0 .
\end{array}\right.
$$

- Solve the second equation by Implicit Function Theorem.
- Substituting the second equation into the first one \Longrightarrow an equation defined on E.
- If E is finite dimensional: finite dimensional reduction.

Lyapunov-Schmidt reduction

Given two Banach spaces \mathcal{X} and \mathcal{Y}, consider a nonlinear map $G \in C^{1}(\mathcal{X}, \mathcal{Y})$.
Let $E:=\operatorname{ker} D F(0)$ and $F:=\operatorname{coker} D F(0)$. Assume $\mathcal{X}=E \bigoplus E^{\perp}$ and $\mathcal{Y}=F \bigoplus F^{\perp}$ (e.g. when E and F are finite dimensional). Then

$$
G\left(x_{1}, x_{2}\right)=0 \Longleftrightarrow\left\{\begin{array}{c}
\prod_{F} \circ G\left(x_{1}, x_{2}\right)=0 \\
\prod_{F^{\perp}} \circ G\left(x_{1}, x_{2}\right)=0 .
\end{array}\right.
$$

- Solve the second equation by Implicit Function Theorem.
- Substituting the second equation into the first one \Longrightarrow an equation defined on E.
- If E is finite dimensional: finite dimensional reduction.
- Even if E is infinite dimensional, sometimes the reduction problem is still a good one.

Infinite dimensional reduction method

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.

Infinite dimensional reduction method

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

Infinite dimensional reduction method

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

We use this method in a reverse order.

- We already have a solution u_{ε} of the Allen-Cahn equation.

Infinite dimensional reduction method

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

We use this method in a reverse order.

- We already have a solution u_{ε} of the Allen-Cahn equation.
- In order to get estimates on level sets, a good equation satisfied by these level sets is needed.

Infinite dimensional reduction method

- Finite dimensional reduction method has been used by many authors to construct solutions of nonlinear PDEs: gluing method.
- Construction of solutions with multiple ends or clustering interfaces from Toda systems by (Del Pino, Kowalczyk, Wei and their coauthors).

We use this method in a reverse order.

- We already have a solution u_{ε} of the Allen-Cahn equation.
- In order to get estimates on level sets, a good equation satisfied by these level sets is needed.
- Decouple the single equation (AC) into two: one is the equation for level sets (on the kernel space E), the other one is on E^{\perp} which enjoys good a priori estimates.

The multiplicity one case: approximate solutions

Starting assumptions: close to a canonical configuration by assuming $C^{1,1}$ regularity.

Around $\Gamma_{\varepsilon}:=\left\{u_{\varepsilon}=0\right\}, u_{\varepsilon}$ looks like

$$
g_{*}(y, z):=g\left(\frac{z-h_{\varepsilon}(y)}{\varepsilon}\right),
$$

where $z=\operatorname{dist}_{\Gamma_{\varepsilon}}$ is the signed distance to Γ_{ε} and y denotes a point on Γ_{ε}. \Longrightarrow Introduction of Fermi coordinates w.r.t. Γ_{ε}.

The multiplicity one case: approximate solutions

Starting assumptions: close to a canonical configuration by assuming $C^{1,1}$ regularity.

Around $\Gamma_{\varepsilon}:=\left\{u_{\varepsilon}=0\right\}, u_{\varepsilon}$ looks like

$$
g_{*}(y, z):=g\left(\frac{z-h_{\varepsilon}(y)}{\varepsilon}\right),
$$

where $z=\operatorname{dist}_{\Gamma_{\varepsilon}}$ is the signed distance to Γ_{ε} and y denotes a point on $\Gamma_{\varepsilon} \Longrightarrow$ Introduction of Fermi coordinates w.r.t. Γ_{ε}.

A small perturbation in normal direction is also needed: introduction of h_{ε}.

Fermi coordinates

Fermi coordinates: $x=y+z N(y)$, where $y \in \Gamma_{\varepsilon}$ is the nearest point and N the unit normal vector, $z=\operatorname{dist}_{\Gamma_{\varepsilon}}$.

Fermi coordinates

Fermi coordinates: $x=y+z N(y)$, where $y \in \Gamma_{\varepsilon}$ is the nearest point and N the unit normal vector, $z=\operatorname{dist}_{\Gamma_{\varepsilon}}$. Well defined in an $O(\delta)$ neighborhood of Γ_{ε}, where δ depends only on $\sup \left|A_{\Gamma_{\varepsilon}}\right|$.

$$
\Delta=\Delta_{z}-H \partial_{z}+\partial_{z z}
$$

Δ_{z} is the Beltrami-Laplace operator on $\left\{\operatorname{dist}_{\Gamma_{\varepsilon}}=z\right\}$. H is the mean curvature of $\left\{\right.$ dist $\left._{\Gamma_{\varepsilon}}=z\right\}$.

Fermi coordinates

Fermi coordinates: $x=y+z N(y)$, where $y \in \Gamma_{\varepsilon}$ is the nearest point and N the unit normal vector, $z=\operatorname{dist}_{\Gamma_{\varepsilon}}$. Well defined in an $O(\delta)$ neighborhood of Γ_{ε}, where δ depends only on $\sup \left|A_{\Gamma_{\varepsilon}}\right|$.

$$
\Delta=\Delta_{z}-H \partial_{z}+\partial_{z z}
$$

Δ_{z} is the Beltrami-Laplace operator on $\left\{\operatorname{dist}_{\Gamma_{\varepsilon}}=z\right\}$. H is the mean curvature of $\left\{\operatorname{dist}_{\Gamma_{\varepsilon}}=z\right\}$.

$$
\Delta d=\sum_{i} \frac{k_{i}}{1-k_{i} d}=H+O\left(|A|^{2}\right)
$$

where k_{i} are principal curvatures of Γ_{ε}.

Optimal approximation in Fermi coordinates

h_{ε} is a function defined on Γ_{ε}, which must be introduced so that the orthogonal condition holds:

$$
\int_{-\infty}^{+\infty}\left(u_{\varepsilon}(y, z)-g_{*}(y, z)\right) g_{*}^{\prime} d z=0
$$

Optimal approximation in Fermi coordinates

h_{ε} is a function defined on Γ_{ε}, which must be introduced so that the orthogonal condition holds:

$$
\int_{-\infty}^{+\infty}\left(u_{\varepsilon}(y, z)-g_{*}(y, z)\right) g_{*}^{\prime} d z=0
$$

For each $y \in \Gamma_{\varepsilon}$,

$$
\min _{t \in \mathbb{R}} \int_{-\infty}^{+\infty}\left|u_{\varepsilon}(y, z)-g\left(\frac{z-t}{\varepsilon}\right)\right|^{2} d z
$$

is attained at a unique point $h_{\varepsilon}(y)$.

Decoupling

The error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies
$\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{*}\right) \phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right] g_{*}^{\prime}+$ h.o.t.

Decoupling

The error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies

$$
\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{*}\right) \phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right] g_{*}^{\prime}+\text { h.o.t. }
$$

- ϕ_{ε} is controlled by h.o.t. which are quadratic in ϕ_{ε} and $H_{\varepsilon} \Longrightarrow$ decay estimate starting from a good position.

Decoupling

The error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies

$$
\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{*}\right) \phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right] g_{*}^{\prime}+\text { h.o.t. }
$$

- ϕ_{ε} is controlled by h.o.t. which are quadratic in ϕ_{ε} and $H_{\varepsilon} \Longrightarrow$ decay estimate starting from a good position.
- h_{ε} is controlled by ϕ_{ε} because

$$
0=u_{\varepsilon}(y, 0)=g\left(-\frac{h_{\varepsilon}(y)}{\varepsilon}\right)+\phi_{\varepsilon}(y, 0)
$$

Decoupling

The error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies

$$
\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{*}\right) \phi_{\varepsilon}+\varepsilon\left[H_{\varepsilon}(y)+\Delta h_{\varepsilon}(y)\right] g_{*}^{\prime}+\text { h.o.t. }
$$

- ϕ_{ε} is controlled by h.o.t. which are quadratic in ϕ_{ε} and $H_{\varepsilon} \Longrightarrow$ decay estimate starting from a good position.
- h_{ε} is controlled by ϕ_{ε} because

$$
0=u_{\varepsilon}(y, 0)=g\left(-\frac{h_{\varepsilon}(y)}{\varepsilon}\right)+\phi_{\varepsilon}(y, 0)
$$

- The parallel part gives the equation satisfied by $\left\{u_{\varepsilon}=0\right\}$:

$$
H_{\varepsilon}=O(\varepsilon) .
$$

Then standard elliptic estimates on minimal surface equation gives the $C^{2, \alpha}$ estimate.

Decoupling: a model case

$$
\left\{\begin{array}{l}
\Delta_{\mathbb{R}^{n-1}} \phi+\partial_{z z} \phi=W^{\prime \prime}(g(z)) \phi+a(y) g^{\prime}(z)+E \\
\int_{-\infty}^{+\infty} \phi(y, z) g^{\prime}(y, z) d z=0, \quad \forall y \in \mathbb{R}^{n-1}
\end{array}\right.
$$

\Longrightarrow both ϕ and a are controlled by E.

Decoupling: a model case

$$
\left\{\begin{array}{l}
\Delta_{\mathbb{R}^{n-1}} \phi+\partial_{z z} \phi=W^{\prime \prime}(g(z)) \phi+a(y) g^{\prime}(z)+E \\
\int_{-\infty}^{+\infty} \phi(y, z) g^{\prime}(y, z) d z=0, \quad \forall y \in \mathbb{R}^{n-1}
\end{array}\right.
$$

\Longrightarrow both ϕ and a are controlled by E.
Main tool: Nondegeneracy of $1 D$ solution, i.e. kernel of the linearized operator is spanned by g^{\prime}.
Spectral gap: the second eigenvalue is positive \Longrightarrow

Decoupling: a model case

$$
\left\{\begin{array}{l}
\Delta_{\mathbb{R}^{n-1}} \phi+\partial_{z z} \phi=W^{\prime \prime}(g(z)) \phi+a(y) g^{\prime}(z)+E, \\
\int_{-\infty}^{+\infty} \phi(y, z) g^{\prime}(y, z) d z=0, \quad \forall y \in \mathbb{R}^{n-1}
\end{array}\right.
$$

\Longrightarrow both ϕ and a are controlled by E.
Main tool: Nondegeneracy of $1 D$ solution, i.e. kernel of the linearized operator is spanned by g^{\prime}.
Spectral gap: the second eigenvalue is positive \Longrightarrow

$$
\Delta_{\mathbb{R}^{n-1}} \int_{-\infty}^{+\infty} \phi(y, z)^{2} d z \geq \mu \int_{-\infty}^{+\infty} \phi(y, z)^{2} d z+\int_{-\infty}^{+\infty} \phi(y, z) E(y, z) d z
$$

Decoupling: a model case

$$
\left\{\begin{array}{l}
\Delta_{\mathbb{R}^{n-1}} \phi+\partial_{z z} \phi=W^{\prime \prime}(g(z)) \phi+a(y) g^{\prime}(z)+E \\
\int_{-\infty}^{+\infty} \phi(y, z) g^{\prime}(y, z) d z=0, \quad \forall y \in \mathbb{R}^{n-1}
\end{array}\right.
$$

\Longrightarrow both ϕ and a are controlled by E.
Main tool: Nondegeneracy of $1 D$ solution, i.e. kernel of the linearized operator is spanned by g^{\prime}.
Spectral gap: the second eigenvalue is positive \Longrightarrow

$$
\begin{gathered}
\Delta_{\mathbb{R}^{n-1}} \int_{-\infty}^{+\infty} \phi(y, z)^{2} d z \geq \mu \int_{-\infty}^{+\infty} \phi(y, z)^{2} d z+\int_{-\infty}^{+\infty} \phi(y, z) E(y, z) d z \\
a(y) \int_{-\infty}^{+\infty} g^{\prime}(z)^{2} d z=-\int_{-\infty}^{+\infty} E(y, z) g^{\prime}(z) d z
\end{gathered}
$$

Clustering interfaces: approximate solutions

Starting assumptions: close to a canonical configuration. Around $\Gamma_{k, \varepsilon}, u_{\varepsilon}$ looks like

$$
g_{k, \varepsilon}:=g\left(\frac{\operatorname{dist}_{\Gamma_{k, \varepsilon}}-h_{k, \varepsilon}}{\varepsilon}\right),
$$

where dist $_{\Gamma_{k, \varepsilon}}$ is the signed distance to $\Gamma_{k, \varepsilon}$.

Clustering interfaces: approximate solutions

Starting assumptions: close to a canonical configuration. Around $\Gamma_{k, \varepsilon}, u_{\varepsilon}$ looks like

$$
g_{k, \varepsilon}:=g\left(\frac{\operatorname{dist}_{\Gamma_{k, \varepsilon}}-h_{k, \varepsilon}}{\varepsilon}\right),
$$

where dist $_{\Gamma_{k, \varepsilon}}$ is the signed distance to $\Gamma_{k, \varepsilon} . \Longrightarrow$
As before, we need to

- introduce Fermi coordinates w.r.t. $\Gamma_{k, \varepsilon}$;
- introduce a small perturbation $h_{k, \varepsilon}$ to obtain the orthogonal condition.

Interaction between transition layers

Approximate solution: near Γ_{k},

$$
g_{*}:=g_{k}+\sum_{\ell<k}\left[g_{\ell}-(-1)^{\ell}\right]+\sum_{\ell>k}\left[g_{\ell}+(-1)^{\ell}\right] .
$$

Decoupling in clustering interfaces

Near Γ_{k}, the error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies

$$
\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{k, \varepsilon}\right) \phi_{\varepsilon}+\varepsilon\left[H_{k, \varepsilon}+\Delta h_{k, \varepsilon}\right] g_{k, \varepsilon}^{\prime}+\mathcal{I}_{k, \varepsilon}+\text { h.o.t. }
$$

where $\mathcal{I}_{k, \varepsilon}$ describes the interaction between $\Gamma_{k, \varepsilon}$ and other components.

Decoupling in clustering interfaces

Near Γ_{k}, the error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies

$$
\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{k, \varepsilon}\right) \phi_{\varepsilon}+\varepsilon\left[H_{k, \varepsilon}+\Delta h_{k, \varepsilon}\right] g_{k, \varepsilon}^{\prime}+\mathcal{I}_{k, \varepsilon}+\text { h.o.t. }
$$

where $\mathcal{I}_{k, \varepsilon}$ describes the interaction between $\Gamma_{k, \varepsilon}$ and other components.

- The parallel part (w.r.t. $g_{k, \varepsilon}^{\prime}$) gives the Toda system with remainder terms of higher order (quadratic in ϕ_{ε},

$$
e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{\alpha+1, \varepsilon}-f_{\alpha, \varepsilon}\right)} \text { etc.) }
$$

Decoupling in clustering interfaces

Near Γ_{k}, the error between u_{ε} and $g_{*}, \phi_{\varepsilon}:=u_{\varepsilon}-g_{*}$, satisfies

$$
\varepsilon^{2}\left(\Delta_{0} \phi_{\varepsilon}+\frac{\partial^{2} \phi_{\varepsilon}}{\partial z^{2}}\right)=W^{\prime \prime}\left(g_{k, \varepsilon}\right) \phi_{\varepsilon}+\varepsilon\left[H_{k, \varepsilon}+\Delta h_{k, \varepsilon}\right] g_{k, \varepsilon}^{\prime}+\mathcal{I}_{k, \varepsilon}+\text { h.o.t. }
$$

where $\mathcal{I}_{k, \varepsilon}$ describes the interaction between $\Gamma_{k, \varepsilon}$ and other components.

- The parallel part (w.r.t. $g_{k, \varepsilon}^{\prime}$) gives the Toda system with remainder terms of higher order (quadratic in ϕ_{ε},

$$
\left.e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{\alpha+1, \varepsilon}-f_{\alpha, \varepsilon}\right)} \text { etc. }\right)
$$

- ϕ is mainly controlled by the interaction term:

$$
\left\|\phi_{\varepsilon}\right\|_{C^{2, \alpha}} \lesssim \varepsilon^{1-\alpha}+\frac{1}{\varepsilon} \sup \left[e^{-\frac{f_{k+1, \varepsilon}-f_{k, \varepsilon}}{\varepsilon}}+e^{-\frac{f_{k, \varepsilon}-f_{k}-1, \varepsilon}{\varepsilon}}\right] .
$$

Reduction of the stability condition again

- In the stability condition for the Allen-Cahn equation,

$$
\int \varepsilon|\nabla \psi|^{2} \geq \int \frac{1}{\varepsilon} W^{\prime \prime}\left(u_{\varepsilon}\right) \psi^{2}
$$

choose (as in Agudelo-Del Pino-Wei '16)

$$
\psi:=\sum_{k} \eta_{k} g_{k, \varepsilon}^{\prime}
$$

where $\eta_{k} \in C_{0}^{\infty}\left(\Gamma_{k, \varepsilon}\right)$.

- Good decomposition: $u_{\varepsilon}=g_{*}+\phi_{\varepsilon}$, i.e. good estimates on ϕ_{ε} \Longrightarrow main order terms are

$$
\sum_{k} \int\left|\nabla \eta_{k}\right|^{2} \geq \frac{\sqrt{2} A}{\varepsilon^{2}} \sum_{k} \int\left(\eta_{k}-\eta_{k-1}\right)^{2} e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k, \varepsilon}-f_{k-1, \varepsilon}\right)}
$$

Concluding remarks

- Reduction method is basically a (partial) linearization procedure: when the solution u_{ε} is close to $\sum_{i} g_{i, \varepsilon}$, the ϕ_{ε} equation is almost a linearized one;

Concluding remarks

- Reduction method is basically a (partial) linearization procedure: when the solution u_{ε} is close to $\sum_{i} g_{i, \varepsilon}$, the ϕ_{ε} equation is almost a linearized one;
- The reduced problem is still a nonlinear one in most cases, but its complexity is decreased;

Concluding remarks

- Reduction method is basically a (partial) linearization procedure: when the solution u_{ε} is close to $\sum_{i} g_{i, \varepsilon}$, the ϕ_{ε} equation is almost a linearized one;
- The reduced problem is still a nonlinear one in most cases, but its complexity is decreased;
- Long range interaction in these phase field models. This is helpful for the construction of Jacobi fields (Chodosh-Mantoulidis '18).

Thanks for your attention!

