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Allen-Cahn equation

eAu. = - (U2 — u.) (AC)
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One dimensional solution
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Part 1. Finite Morse index solutions
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Uniform C%“ regularity

Question: Let u. be a sequence of solutions to (AC). Assume the
level sets {u. = 0} are uniformly C1 for some o € (0,1). Can we
get a uniform C>% regularity?
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Uniform C%“ regularity

Question: Let u. be a sequence of solutions to (AC). Assume the
level sets {u. = 0} are uniformly C1 for some o € (0,1). Can we
get a uniform C>% regularity?

This was used in our study on the structure of finite Morse index
solutions.

Theorem (W.-Wei '17)

A finite Morse index solution of the Allen-Cahn equation

“Au=u—1?

in R? has finitely many ends.
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Solutions with finite ends

u looks like the 1d solution along each end. <= Refined
asymptotics, exponential convergence (Gui '08, Del
Pino-Kowalczyk-Pacard '13).

\ i
/

u>0
l
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A finiteness result for nodal domains

Let ue be the directional derivative in e-direction, which satisfies
the linearized equation

Aue = W (u)ue.

Lemma

If the Morse index is N, the number of connected components of
{ue # 0} is at most 2N.
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A finiteness result for nodal domains

Let ue be the directional derivative in e-direction, which satisfies
the linearized equation

Aue = W (u)ue.

Lemma

If the Morse index is N, the number of connected components of
{ue # 0} is at most 2N.

@ Liouville theorem for the degenerate equation

div (wzv”e> —o.
P

@ Similar to Courant’s nodal domain theorem: entire space?
n = 2 = log cut-off functions, Ambrosio-Cabré '03...
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Transferring finiteness information

If each end of {u = 0} has an asymptotic direction at infinity,
finiteness of nodal domains of u. can be transformed into
finiteness of ends.




Curvature decay

Let u be a finite Morse index solution of the Allen-Cahn equation
in R2. For all x large,

_ VAP = VIVuI]? _ €

Vu(x)P? = e

AP T
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Curvature decay

Let u be a finite Morse index solution of the Allen-Cahn equation
in R2. For all x large,

2 _ V2uG)P = [VIVu(I? _ €

[Vu(x)[? ~ X

Theorem (Schoen '83)

Given a three dimensional manifold M (with some curvature
bounds). Let ¥ be a stable immersed minimal surface in a ball
Br(p) C M with OX C 0Bgr(p). Then

A

C
sup |AZ|2 < R2
Br/2(p)NXE
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Sternberg-Zumbrun inequality

Stability@/|Vg@|2|Vu|2 > /@2 [[V2ul?> — |V|Vu|P].

Kelei Wang Allen-Cahn equation



Sternberg-Zumbrun inequality

Stability@/|Vg@|2|Vu|2 > /@2 [[V2ul?> — |V|Vu|P].

o |Vu|2dx corresponds to the area measure of minimal surfaces.
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Sternberg-Zumbrun inequality

Stability@/|Vg@|2|Vu|2 > /@2 [[V2ul?> — |V|Vu|P].

o |Vu|2dx corresponds to the area measure of minimal surfaces.
o If |Vu| £0,

[V2ul2 — [V[Vul]?

— A2 I 2
TR a7+ 7 tg VP

where A is the second fundamental form of level sets
{u = const.} and V1 is the tangential derivatives along these
level sets.
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Sternberg-Zumbrun inequality

Stability@/|V<p|2|Vu|2 > /@2 [[V2ul?> — |V|Vu|P].
o |Vu|2dx corresponds to the area measure of minimal surfaces.
o If [Vu| #0,

[V2ul2 — [V[Vul]?
[Vul?

= |A]> + |V log [Vul%,

where A is the second fundamental form of level sets
{u = const.} and V1 is the tangential derivatives along these
level sets.

@ Simons inequality for this curvature term? Not found yet.
Seems to be a common difficulty in semilinear problems.
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A blow up proof

e Stability outside Bg(0) <= Finite Morse index.
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A blow up proof

e Stability outside Bg(0) <= Finite Morse index.
@ Assume 3x, € Bg(0)€ such that |A(xk)||xk| > k.
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A blow up proof

e Stability outside Bg(0) <= Finite Morse index.
@ Assume 3x, € Bg(0)€ such that |A(xk)||xk| > k.
e Find y, satisfying

Al = 1AL Akl = &,

[A(X)| < 2[A(yk)ls VX € Bjagy) -1 (vk)-
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A blow up proof

e Stability outside Bg(0) <= Finite Morse index.
@ Assume 3x, € Bg(0)€ such that |A(xk)||xk| > k.
e Find y, satisfying

Al = 1AL Akl = &,

[A(X)| < 2[A(yk)ls VX € Bjagy) -1 (vk)-

o Let e := |A(yk)| and define ux(x) := u(yx + 5;1x)_
lyk| = +00 and e — 0 <= Locally close to 1D solution, by
stable De Giorgi for n = 2.
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A blow up proof

e Stability outside Bg(0) <= Finite Morse index.
@ Assume 3x, € Bg(0)€ such that |A(xk)||xk| > k.
e Find y, satisfying

Ayl = 1AL Ayl = k&,
[A(X)| < 2[A(yk)ls VX € Bjagy) -1 (vk)-
o Let e := |A(yk)| and define ux(x) := u(yx + 5;1x).

lyk| = 400 and g — 0 <= Locally close to 1D solution, by
stable De Giorgi for n = 2.

@ In By(0), ug is a stable solution of (AC) with parameter &.
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A blow up proof

e Stability outside Bg(0) <= Finite Morse index.
@ Assume 3x, € Bg(0)€ such that |A(xk)||xk| > k.
e Find y, satisfying

Al = 1AL Akl = &,

[A(X)| < 2[A(yk)ls VX € Bjagy) -1 (vk)-

o Let e := |A(yk)| and define ux(x) := u(yx + 5;1x)_
lyk| = +00 and e — 0 <= Locally close to 1D solution, by
stable De Giorgi for n = 2.

@ In By(0), ug is a stable solution of (AC) with parameter &.

@ The curvature of {u., = 0} is uniformly bounded, and it
equals 1 at the origin.
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Second order regularity

Theorem (W.-Wei '18)

Let u. be a sequence of stable solutions to (AC) such that

{u. = 0} are uniformly C# for some 3 € (0,1). If n < 10, then
{u. = 0} are uniformly bounded in C>® for any o € (0,1).
Moreover, the mean curvature is of the order O ().
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Second order regularity

Theorem (W.-Wei '18)

Let u. be a sequence of stable solutions to (AC) such that

{u. = 0} are uniformly C# for some 3 € (0,1). If n < 10, then
{u. = 0} are uniformly bounded in C>® for any o € (0,1).
Moreover, the mean curvature is of the order O ().

Chodosh-Mantoulidis '18 has obtained the same result in dimension
3, which was used in their study of min-max minimal surfaces in
three manifolds (Multiplicity one conjecture of Marques-Neves,
existence of infinitely many minimal surfaces in generic case).
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Multiplicity one case

In general the stability condition is necessary<— Clustering
interfaces, Toda system.
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Multiplicity one case

In general the stability condition is necessary<— Clustering
interfaces, Toda system.

Multiplicity one = No interactions.

Theorem

Let u. be a sequence of the Allen-Cahn equation in B1(0), with
{u. = 0} given by the graph of a uniformly C1# functions f. for
some 3 € (0,1). Then f. are uniformly bounded in C2:%(BI~*) for
any o € (0,1).
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Multiplicity one case

In general the stability condition is necessary<— Clustering
interfaces, Toda system.

Multiplicity one = No interactions.

Theorem

Let u. be a sequence of the Allen-Cahn equation in B1(0), with
{u. = 0} given by the graph of a uniformly C1# functions f. for
some 3 € (0,1). Then f. are uniformly bounded in C2:%(BI~*) for
any o € (0,1).

Caffarelli and Cérdoba '06 and Savin '09: Lipschitz or flat =
uniform CL:e.
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Part Il. Proof of C%“ estimates
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Clustering interfaces

There could be more and more connected components of
{us = 0}, which can collapse to the same limit as ¢ — 0.
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Curvature bound on {u. = 0}= {u. = 0} locally represented by
graphs Uyl ., where

Mhe =1{xo=fie(x1)}, - <feo1e<fre<fiyre<---.

The cardinality of index set could go to infinity.
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Curvature bound on {u. = 0}= {u. = 0} locally represented by
graphs Uyl ., where

Mhe =1{xo=fie(x1)}, - <feo1e<fre<fiyre<---.

The cardinality of index set could go to infinity.

Interaction between different interfaces has the form

vfk7€ ) == é [e_g(fk,s_fk—l,g) — e_§(fk+1,s_fk,£) +h0t

v —
(\/1+|ka75’2 e

Infinite dimensional Lyapunov-Schmidt reduction of Del
Pino, Kowalczyk and Wei.
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Obstruction to C%“ estimates of f; .

Aka — ?efg(fk,effkfl,a) _ ?ef§(fk+l,sfﬁ<,a)'

V2(1+a)

5 elloge| — Ce = fi . € C*°.

fusie — fue =
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Obstruction to C%“ estimates of f; .

Afk,g — ?efg(fk,effkfl,s) _ ?ei§(fk+l,sfﬁ<,a)'
V2(1+a)

frir1e — fie > elloge| — Ce = fi . € C*°.

2

On the other hand, if

2
fev1e — fre < \gsl loge| + Ce,

define the blow up sequence

~ 1 1 V2a
fre(x) = gfhg (52X) -

They converge to an entire solution of the Toda system

| log g].

Af, = o~ V2(fi—fio1) _ e—\/i(karl—fk)’ in R"—1.



Example |: Two end solutions of Agudelo-del Pino-Wei

e For n > 10, the Liouville equation (= Two component Toda
system)
Af = e V2f

has a radially symmetric, stable solution.
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Example |: Two end solutions of Agudelo-del Pino-Wei

e For n > 10, the Liouville equation (= Two component Toda
system)
Af = e V2f

has a radially symmetric, stable solution.
o Graphs of the natural scaling f(x) = f(\x) — v/2log A form
a foliation of R™1,
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Example |: Two end solutions of Agudelo-del Pino-Wei

e For n > 10, the Liouville equation (= Two component Toda
system)
Af = e V2f

has a radially symmetric, stable solution.

o Graphs of the natural scaling f(x) = f(\x) — v/2log A form
a foliation of R™+1,

e For A small ( <= £,(0) > 1), there exists a monotone (in \)
family of solutions u* to the unscaled (AC). = stable.
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Example |: Two end solutions of Agudelo-del Pino-Wei

e For n > 10, the Liouville equation (= Two component Toda
system)
Af = e V2f

has a radially symmetric, stable solution.

o Graphs of the natural scaling f(x) = f(\x) — v/2log A form
a foliation of R™+1,

e For A small ( <= £,(0) > 1), there exists a monotone (in \)
family of solutions u* to the unscaled (AC). = stable.

o Let u(x):= ue? (e71x). Its nodal set {u. = 0} is given by
the graph of

V2a

fo(x) ~ ef (e_%x) + ?d logel,

which satisfies
IV2£(0)] = [V2F(0)|, |V?E(x)| =0, Vx#0.



Example |I: Multiple end solutions in R?

Del Pino-Kowalczyk-Pacard-Wei '10 : Unstable solutions with
{u = 0} close to the graph of Toda solutions:

f,:’(x) = e_ﬁ(fk(x)_fk—l(x))ie_ﬁ(fkwtl(x)_fk(x)), xeR, 1<k<Q.

r

=
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Reduction of the stability condition

o If u. is stable, (f ) satisfies a stability condition:

2A
2 / Viil? > {2 2 / (& — k—1)’ e (hefire) _pot.
P P
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Reduction of the stability condition

o If u. is stable, (f ) satisfies a stability condition:
V2A (g
S [z A [ mete Eid o,
k k

@ Uniform C%“ estimates of clustering interfaces does not hold
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Reduction of the stability condition

o If u. is stable, (f ) satisfies a stability condition:
V2A (g
S [z A [ mete Eid o,
k k

@ Uniform C%“ estimates of clustering interfaces does not hold
— Existence of entire stable solutions of Toda system
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Reduction of the stability condition

o If u. is stable, (f ) satisfies a stability condition:
V2A (g
S [z A [ mete Eid o,
k k

@ Uniform C%“ estimates of clustering interfaces does not hold
— Existence of entire stable solutions of Toda system
Liouville theorem: No stable solution of Toda in R” for n < 9.
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An e-regularity theorem

Theorem
For any n, there exists a universal constant ) such that, if (f¢) is a
stable solution to the Toda lattice

Af = e V2hi~fir) _ o=V2fa—f) i B R",

then

e_ﬁ(fk_fk—l) S 77(”) _— sup e—\/i(fk_fk—l) S l
B: 31/2 2
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An e-regularity theorem

For any n, there exists a universal constant ) such that, if (f¢) is a
stable solution to the Toda lattice

Af, — e~ V2fi~fic1) _ o=V2Afii—f) B: C R",
then

e_ﬁ(fk_fk—l) S 7’](”) _— sup e—\/i(fk_fk—l) S l
B: 31/2 2

Applying this e-regularity to suitable rescalings of Toda system
. . V2
constructed from (AC), gives a decay estimate on e % (fie—fioe)

in shrinking balls, leading finally to

e*?(fk,s*fkfl,s) < glta

~ ?

Kelei Wang Allen-Cahn equation
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Proof of e-regularity theorem

Without the stability condition, for the Liouville equation
Af =e T,

this e-regularity has been proved by Brezis-Merle '91 in 2
dimension and F. Da Lio '08 in 3 dimension. Higher dimensions are
not known.
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Proof of e-regularity theorem

Without the stability condition, for the Liouville equation

Af =ef

)

this e-regularity has been proved by Brezis-Merle '91 in 2
dimension and F. Da Lio '08 in 3 dimension. Higher dimensions are
not known.

Our proof relies essentially on the stability condition, which gives
us an integral estimate (as in Farina '07)

/ e*2\/§(fk*fk71) < Cr2 e*\/i(fk*fkfl).
r B2r
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Part lll. Derivation of the Toda system
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Lyapunov-Schmidt reduction

Given two Banach spaces X and )/, consider a nonlinear map

G e Cl(x,)).

Let E := kerDF(0) and F := cokerDF(0). Assume X = E@ E+
and Y = F@ F* (e.g. when E and F are finite dimensional).
Then

_ [[FoG(x1,x2) =0,
G(X1,X2)—0(:’{ [Ir:oG(x1,x) =0.

Kelei Wang Allen-Cahn equation



Lyapunov-Schmidt reduction

Given two Banach spaces X and )/, consider a nonlinear map

G e Cl(x,)).

Let E := kerDF(0) and F := cokerDF(0). Assume X = E@ E+
and Y = F@ F* (e.g. when E and F are finite dimensional).
Then

_ [[FoG(x1,x2) =0,
G(X1,X2)—0(:’{ [Ir:oG(x1,x) =0.

@ Solve the second equation by Implicit Function Theorem.
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Lyapunov-Schmidt reduction

Given two Banach spaces X and )/, consider a nonlinear map

G e Cl(x,)).

Let E := kerDF(0) and F := cokerDF(0). Assume X = E@ E+
and Y = F@ F* (e.g. when E and F are finite dimensional).
Then

_ [[FoG(x1,x2) =0,
G(X1,X2)—0(:’{ [Ir:oG(x1,x) =0.

@ Solve the second equation by Implicit Function Theorem.

@ Substituting the second equation into the first one = an
equation defined on E.
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Lyapunov-Schmidt reduction

Given two Banach spaces X and )/, consider a nonlinear map

G e Cl(x,)).

Let E := kerDF(0) and F := cokerDF(0). Assume X = E@ E+
and Y = F@ F* (e.g. when E and F are finite dimensional).
Then

_ [[FoG(x1,x2) =0,
G(X1,X2)—0(:’{ [Ir:oG(x1,x) =0.

@ Solve the second equation by Implicit Function Theorem.

@ Substituting the second equation into the first one = an
equation defined on E.

o If E is finite dimensional: finite dimensional reduction.
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Lyapunov-Schmidt reduction

Given two Banach spaces X and )/, consider a nonlinear map

G e Cl(x,)).

Let E := kerDF(0) and F := cokerDF(0). Assume X = E@ E+
and Y = F@ F* (e.g. when E and F are finite dimensional).

Then I ( )
G X1,X2) = 0
Gham) =0 | HroCLa) =0
(X1 X2) HFL OG(Xl,XQ) —0.
@ Solve the second equation by Implicit Function Theorem.

Substituting the second equation into the first one = an
equation defined on E.

If E is finite dimensional: finite dimensional reduction.

Even if E is infinite dimensional, sometimes the reduction
problem is still a good one.
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Infinite dimensional reduction method

@ Finite dimensional reduction method has been used by many
authors to construct solutions of nonlinear PDEs: gluing
method.

Kelei Wang Allen-Cahn equation



Infinite dimensional reduction method

@ Finite dimensional reduction method has been used by many
authors to construct solutions of nonlinear PDEs: gluing
method.

@ Construction of solutions with multiple ends or clustering
interfaces from Toda systems by (Del Pino, Kowalczyk, Wei
and their coauthors).
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Infinite dimensional reduction method

@ Finite dimensional reduction method has been used by many
authors to construct solutions of nonlinear PDEs: gluing
method.

@ Construction of solutions with multiple ends or clustering
interfaces from Toda systems by (Del Pino, Kowalczyk, Wei
and their coauthors).

We use this method in a reverse order.
@ We already have a solution u. of the Allen-Cahn equation.
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Infinite dimensional reduction method

@ Finite dimensional reduction method has been used by many
authors to construct solutions of nonlinear PDEs: gluing
method.

@ Construction of solutions with multiple ends or clustering
interfaces from Toda systems by (Del Pino, Kowalczyk, Wei
and their coauthors).

We use this method in a reverse order.
@ We already have a solution u. of the Allen-Cahn equation.

@ In order to get estimates on level sets, a good equation
satisfied by these level sets is needed.
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Infinite dimensional reduction method

@ Finite dimensional reduction method has been used by many
authors to construct solutions of nonlinear PDEs: gluing
method.

@ Construction of solutions with multiple ends or clustering
interfaces from Toda systems by (Del Pino, Kowalczyk, Wei
and their coauthors).

We use this method in a reverse order.
@ We already have a solution u. of the Allen-Cahn equation.

@ In order to get estimates on level sets, a good equation
satisfied by these level sets is needed.

@ Decouple the single equation (AC) into two: one is the
equation for level sets (on the kernel space E), the other one
is on E which enjoys good a priori estimates.
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The multiplicity one case: approximate solutions

Starting assumptions: close to a canonical configuration by
assuming CU! regularity.

Around I := {u. = 0}, u. looks like

z—m0»7

e

&WJ%=g<

where z = distr_ is the signed distance to [, and y denotes a point
on .. = Introduction of Fermi coordinates w.r.t. I..
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The multiplicity one case: approximate solutions

Starting assumptions: close to a canonical configuration by
assuming CU! regularity.

Around I := {u. = 0}, u. looks like
z— h(y
g*(ya Z) =8 <€()> )

e

where z = distr_ is the signed distance to [, and y denotes a point
on .. = Introduction of Fermi coordinates w.r.t. I..

A small perturbation in normal direction is also needed:
introduction of h..

Kelei Wang Allen-Cahn equation



Fermi coordinates

Fermi coordinates: x = y + zN(y), where y € ', is the nearest
point and N the unit normal vector, z = distr_.
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Fermi coordinates

Fermi coordinates: x = y + zN(y), where y € ', is the nearest
point and N the unit normal vector, z = distr_.
Well defined in an O(9) neighborhood of ', where 6 depends only

on sup |Ar_|.

A=A, —HO, + 0,

A, is the Beltrami-Laplace operator on {distr, = z}.
H is the mean curvature of {distr, = z}.
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Fermi coordinates

Fermi coordinates: x = y + zN(y), where y € ', is the nearest
point and N the unit normal vector, z = distr_.

Well defined in an O(9) neighborhood of ', where 6 depends only
on sup |Ar_|.

A=A, —HO, + 0,

A, is the Beltrami-Laplace operator on {distr, = z}.
H is the mean curvature of {distr, = z}.

ki
Ad=D 1= od = 1+ OUAP),

where k; are principal curvatures of I..
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Optimal approximation in Fermi coordinates

h. is a function defined on I, which must be introduced so that
the orthogonal condition holds:

+oo
/ (us(y, 2) — gy, 2)) gudz = 0.

—0o0
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Optimal approximation in Fermi coordinates

h. is a function defined on I, which must be introduced so that
the orthogonal condition holds:

+oo
/ (us(y, 2) — gy, 2)) gudz = 0.

—0o0

For each y € T,

+oo 7 —t 5
i — d
rtrglg/oo |ue(y, 2) g( . >| z

is attained at a unique point h.(y).
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Decoupling

The error between u. and gy, ¢ := u. — g, satisfies

9.
022

2 <A0</>s i ) = W(g)be + e [H(y) + Aha(y)] g + ho.t.
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Decoupling

The error between u. and gy, ¢ := u. — g, satisfies

9.
022

2 <A0</>s i ) = W(g)be + e [H(y) + Aha(y)] g + ho.t.

@ ¢. is controlled by h.o.t. which are quadratic in ¢. and
H. = decay estimate starting from a good position.
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Decoupling

The error between u. and gy, ¢ := u. — g, satisfies

9.
022

2 <A0</>s i ) = W(g)be + e [H(y) + Aha(y)] g + ho.t.

@ ¢. is controlled by h.o.t. which are quadratic in ¢. and
H. = decay estimate starting from a good position.
@ h. is controlled by ¢. because

ozua(y,0)=g<—

el )> +6:(1,0).
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Decoupling

The error between u. and gy, ¢ := u. — g, satisfies

9.
022

2 (Aof/)s i ) = W(g)be + e [H(y) + Aha(y)] g + ho.t.

@ ¢. is controlled by h.o.t. which are quadratic in ¢. and
H. = decay estimate starting from a good position.
@ h. is controlled by ¢. because

ozua(y,0)=g<—

he(y
Ei )> + ¢e(y,0).
@ The parallel part gives the equation satisfied by {u. = 0}:
H. = O (¢).

Then standard elliptic estimates on minimal surface equation
gives the C>® estimate.
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Decoupling: a model case

ARnflgb + 8zz¢) — W/,(g(Z))gb + a(y)g’(z) + E’
400
oy, 2)g'(y,z)dz =0, VyeR"L

—00

= both ¢ and a are controlled by E.
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Decoupling: a model case

ARnflgb + 822@5 — W/,(g(Z))gb + a(y)g’(z) + E’
400
oy, 2)g'(y,z)dz =0, VyeR"L

= both ¢ and a are controlled by E.

Main tool: Nondegeneracy of 1D solution, i.e. kernel of the
linearized operator is spanned by g’.
Spectral gap: the second eigenvalue is positive —>
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Decoupling: a model case

ARnflgb + 822@5 — W/,(g(Z))gb + a(y)g’(z) + E’
400
oy, 2)g'(y,z)dz =0, VyeR"L

—0o0
= both ¢ and a are controlled by E.
Main tool: Nondegeneracy of 1D solution, i.e. kernel of the

linearized operator is spanned by g’.
Spectral gap: the second eigenvalue is positive —>

+oo —+o00 +oo
Agis oy, z)°dz > p ¢(y,z)’dz+ o(y,2)E(y,z)dz.

—00 — —00
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Decoupling: a model case

ARnflgb + 822@5 — W/,(g(Z))gb + a(y)g’(z) + E’
400
oy, 2)g'(y,z)dz =0, VyeR"L

= both ¢ and a are controlled by E.

Main tool: Nondegeneracy of 1D solution, i.e. kernel of the
linearized operator is spanned by g’.
Spectral gap: the second eigenvalue is positive —>

+oo —+o00 +oo
Agis oy, z)°dz > p ¢(y,z)’dz+ o(y,2)E(y,z)dz.

—00 — —00

+o00 +o0
a(y) / ¢/(2)2dz = — / E(y2)g/(2)de.

—00 —00
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Clustering interfaces: approximate solutions

Starting assumptions: close to a canonical configuration.
Around Ty ., u. looks like

diStrkE — hk75
Bke ‘= 8 f >

where distr, _ is the signed distance to Iy ..
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Clustering interfaces: approximate solutions

Starting assumptions: close to a canonical configuration.
Around Ty ., u. looks like

C“S’CrkE — hk75
Bke ‘= 8 f >

where distr, _ is the signed distance to 'y .. —
As before, we need to

@ introduce Fermi coordinates w.r.t. 'y ;

@ introduce a small perturbation hy . to obtain the orthogonal
condition.
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Interaction between transition layers

Approximate solution: near [,

g =8ty [ge - (—1)‘7] +y [geJr (—Uq :

<k 0>k
'/
(l‘ |—|
M&“j(dn) ’r/
/ !
4 ! -Rd
| ' | ’ [OEERD
(/{ v j {0(0)——//1* I l/ ro { - d-i
I / ok
: guni-e

Kelei Wang Allen-Cahn equation



Decoupling in clustering interfaces

Near [k, the error between u. and gi, ¢ := u. — g, satisfies

9.
0z2

e <A0¢a + > = W//(gk,a)¢e+5 [Hk,e + Ahk,z—:] gllgs + Ik tho.t.

where 7 . describes the interaction between Iy . and other
components.
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Decoupling in clustering interfaces

Near [k, the error between u. and gi, ¢ := u. — g, satisfies

9.
0z2

e <A0¢a + > = W//(gk,a)¢e+5 [Hk,e + Ahk,e] gllgs + Ik tho.t.

where 7 . describes the interaction between Iy . and other
components.

@ The parallel part (w.r.t. g, ) gives the Toda system with
remainder terms of higher order (quadratic in ¢,
efg(fa“vffa’f) etc.)
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Decoupling in clustering interfaces

Near [k, the error between u. and gi, ¢ := u. — g, satisfies

9.
0z2

e <A0¢5 + > = W//(gk,a)¢e+5 [Hk,e + Ahk,e] gllgs + Ik tho.t.

where 7 . describes the interaction between Iy . and other
components.

@ The parallel part (w.r.t. g, ) gives the Toda system with
remainder terms of higher order (quadratic in ¢,
efg(fa“ve*fa’f) etc.)

@ ¢ is mainly controlled by the interaction term:

]_ fk 1, _fk, Fk, _fkfly
pellcza S+ Zsup e e
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Reduction of the stability condition again

@ In the stability condition for the Allen-Cahn equation,

1
[ewur= [wrue
choose (as in Agudelo-Del Pino-Wei '16 )
QJZ) = ang/lgg’
k

where 1, € C°(Tkc).

@ Good decomposition: u. = g + ¢, i.e. good estimates on ¢,
== main order terms are

S [1onk = AN [ meae Ehiond)
k k
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Concluding remarks

@ Reduction method is basically a (partial) linearization
procedure: when the solution u. is close to ). gj ., the ¢
equation is almost a linearized one;

Kelei Wang Allen-Cahn equation



Concluding remarks

@ Reduction method is basically a (partial) linearization
procedure: when the solution u. is close to ). gj ., the ¢
equation is almost a linearized one;

@ The reduced problem is still a nonlinear one in most cases, but
its complexity is decreased;
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Concluding remarks

@ Reduction method is basically a (partial) linearization
procedure: when the solution u. is close to ). gj ., the ¢
equation is almost a linearized one;

@ The reduced problem is still a nonlinear one in most cases, but
its complexity is decreased;
@ Long range interaction in these phase field models. This is

helpful for the construction of Jacobi fields
(Chodosh-Mantoulidis '18).
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Thanks for your attention!
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