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Allen-Cahn equation

ε∆uε =
1

ε

(
u3
ε − uε

)
(AC )

Eε(uε) =

∫
ε

2
|∇uε|2 +

1

4ε

(
1− u2

ε

)2
.
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One dimensional solution

−g ′′ = g − g3.

g(x) = tanh
x√
2
.
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Part I. Finite Morse index solutions
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Uniform C 2,α regularity

Question: Let uε be a sequence of solutions to (AC). Assume the
level sets {uε = 0} are uniformly C 1,α for some α ∈ (0, 1). Can we
get a uniform C 2,α regularity?

This was used in our study on the structure of finite Morse index
solutions.

Theorem (W.-Wei ’17)

A finite Morse index solution of the Allen-Cahn equation

−∆u = u − u3

in R2 has finitely many ends.
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Solutions with finite ends

u looks like the 1d solution along each end. ⇐= Refined
asymptotics, exponential convergence (Gui ’08, Del
Pino-Kowalczyk-Pacard ’13).
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A finiteness result for nodal domains

Let ue be the directional derivative in e-direction, which satisfies
the linearized equation

∆ue = W ′′(u)ue .

Lemma

If the Morse index is N, the number of connected components of
{ue 6= 0} is at most 2N.

Liouville theorem for the degenerate equation

div

(
ϕ2∇ue

ϕ

)
= 0.

Similar to Courant’s nodal domain theorem: entire space?
n = 2 =⇒ log cut-off functions, Ambrosio-Cabré ’03...
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Transferring finiteness information

If each end of {u = 0} has an asymptotic direction at infinity,
finiteness of nodal domains of ue can be transformed into
finiteness of ends.
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Curvature decay

Theorem

Let u be a finite Morse index solution of the Allen-Cahn equation
in R2. For all x large,

|A(x)|2 :=
|∇2u(x)|2 − |∇|∇u(x)||2

|∇u(x)|2
≤ C

|x |2
.

Theorem (Schoen ’83)

Given a three dimensional manifold M (with some curvature
bounds). Let Σ be a stable immersed minimal surface in a ball
BR(p) ⊂ M with ∂Σ ⊂ ∂BR(p). Then

sup
BR/2(p)∩Σ

|AΣ|2 ≤
C

R2
.
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Sternberg-Zumbrun inequality

Stability⇔
∫
|∇ϕ|2|∇u|2 ≥

∫
ϕ2
[
|∇2u|2 − |∇|∇u||2

]
.

|∇u|2dx corresponds to the area measure of minimal surfaces.

If |∇u| 6= 0,

|∇2u|2 − |∇|∇u||2

|∇u|2
= |A|2 + |∇T log |∇u||2,

where A is the second fundamental form of level sets
{u = const.} and ∇T is the tangential derivatives along these
level sets.

Simons inequality for this curvature term? Not found yet.
Seems to be a common difficulty in semilinear problems.
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A blow up proof

Stability outside BR(0) ⇐= Finite Morse index.

Assume ∃xk ∈ BR(0)c such that |A(xk)||xk | ≥ k .

Find yk satisfying

|A(yk)| ≥ |A(xk)|, |A(yk)||yk | ≥ k,

|A(x)| ≤ 2|A(yk)|, ∀x ∈ Bk|A(yk )|−1(yk).

Let εk := |A(yk)| and define uk(x) := u(yk + ε−1
k x).

|yk | → +∞ and εk → 0 ⇐= Locally close to 1D solution, by
stable De Giorgi for n = 2.

In Bk(0), uk is a stable solution of (AC) with parameter εk .

The curvature of {uεk = 0} is uniformly bounded, and it
equals 1 at the origin.
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Second order regularity

Theorem (W.-Wei ’18)

Let uε be a sequence of stable solutions to (AC) such that
{uε = 0} are uniformly C 1,β for some β ∈ (0, 1). If n ≤ 10, then
{uε = 0} are uniformly bounded in C 2,α for any α ∈ (0, 1).
Moreover, the mean curvature is of the order O (εα).

Chodosh-Mantoulidis ’18 has obtained the same result in dimension
3, which was used in their study of min-max minimal surfaces in
three manifolds (Multiplicity one conjecture of Marques-Neves,
existence of infinitely many minimal surfaces in generic case).
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Multiplicity one case

In general the stability condition is necessary⇐= Clustering
interfaces, Toda system.

Multiplicity one =⇒ No interactions.

Theorem

Let uε be a sequence of the Allen-Cahn equation in B1(0), with
{uε = 0} given by the graph of a uniformly C 1,β functions fε for
some β ∈ (0, 1). Then fε are uniformly bounded in C 2,α

loc (Bn−1
1 ) for

any α ∈ (0, 1).

Caffarelli and Córdoba ’06 and Savin ’09: Lipschitz or flat =⇒
uniform C 1,α.
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Part II. Proof of C 2,α estimates
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Clustering interfaces

There could be more and more connected components of
{uε = 0}, which can collapse to the same limit as ε→ 0.
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Toda system

Curvature bound on {uε = 0}=⇒ {uε = 0} locally represented by
graphs ∪kΓk,ε, where

Γk,ε = {x2 = fk,ε(x1)}, · · · < fk−1,ε < fk,ε < fk+1,ε < · · · .

The cardinality of index set could go to infinity.

Interaction between different interfaces has the form

div

(
∇fk,ε√

1 + |∇fk,ε|2

)
=

A

ε

[
e−
√

2
ε (fk,ε−fk−1,ε) − e−

√
2
ε (fk+1,ε−fk,ε)

]
+h.o.t.

Infinite dimensional Lyapunov-Schmidt reduction of Del
Pino, Kowalczyk and Wei.
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Obstruction to C 2,α estimates of fk ,ε

∆fk,ε =
A

ε
e−
√

2
ε (fk,ε−fk−1,ε) − A

ε
e−
√

2
ε (fk+1,ε−fk,ε).

fk+1,ε − fk,ε ≥
√

2 (1 + α)

2
ε| log ε| − Cε =⇒ fk,ε ∈ C 2,α.

On the other hand, if

fk+1,ε − fk,ε ≤
√

2

2
ε| log ε|+ Cε,

define the blow up sequence

f̃k,ε(x) :=
1

ε
fk,ε

(
ε

1
2 x
)
−
√

2α

2
| log ε|.

They converge to an entire solution of the Toda system

∆fk = e−
√

2(fk−fk−1) − e−
√

2(fk+1−fk ), in Rn−1.
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Example I: Two end solutions of Agudelo-del Pino-Wei

For n ≥ 10, the Liouville equation (= Two component Toda
system)

∆f = e−
√

2f

has a radially symmetric, stable solution.

Graphs of the natural scaling f λ(x) = f (λx)−
√

2 log λ form
a foliation of Rn+1.

For λ small ( ⇐⇒ fλ(0)� 1), there exists a monotone (in λ)
family of solutions uλ to the unscaled (AC). =⇒ stable.

Let uε(x) := uε
1/2 (

ε−1x
)
. Its nodal set {uε = 0} is given by

the graph of

fε(x) ≈ εf
(
ε−

1
2 x
)

+

√
2α

2
ε| log ε|,

which satisfies

|∇2fε(0)| = |∇2f (0)|, |∇2fε(x)| → 0, ∀x 6= 0.
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Example II: Multiple end solutions in R2

Del Pino-Kowalczyk-Pacard-Wei ’10 : Unstable solutions with
{u = 0} close to the graph of Toda solutions:

f ′′k (x) = e−
√

2(fk (x)−fk−1(x))−e−
√

2(fk+1(x)−fk (x)), x ∈ R, 1 ≤ k ≤ Q.
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Reduction of the stability condition

If uε is stable, (fk,ε) satisfies a stability condition:

∑
k

∫
|∇ηk |2 ≥

√
2A

ε2

∑
k

∫
(ηk − ηk−1)2 e−

√
2
ε (fk,ε−fk−1,ε)−h.o.t..

Uniform C 2,α estimates of clustering interfaces does not hold
=⇒ Existence of entire stable solutions of Toda system
Liouville theorem: No stable solution of Toda in Rn for n ≤ 9.

Kelei Wang Allen-Cahn equation



Reduction of the stability condition

If uε is stable, (fk,ε) satisfies a stability condition:

∑
k

∫
|∇ηk |2 ≥

√
2A

ε2

∑
k

∫
(ηk − ηk−1)2 e−

√
2
ε (fk,ε−fk−1,ε)−h.o.t..

Uniform C 2,α estimates of clustering interfaces does not hold

=⇒ Existence of entire stable solutions of Toda system
Liouville theorem: No stable solution of Toda in Rn for n ≤ 9.

Kelei Wang Allen-Cahn equation



Reduction of the stability condition

If uε is stable, (fk,ε) satisfies a stability condition:

∑
k

∫
|∇ηk |2 ≥

√
2A

ε2

∑
k

∫
(ηk − ηk−1)2 e−

√
2
ε (fk,ε−fk−1,ε)−h.o.t..

Uniform C 2,α estimates of clustering interfaces does not hold
=⇒ Existence of entire stable solutions of Toda system

Liouville theorem: No stable solution of Toda in Rn for n ≤ 9.

Kelei Wang Allen-Cahn equation



Reduction of the stability condition

If uε is stable, (fk,ε) satisfies a stability condition:

∑
k

∫
|∇ηk |2 ≥

√
2A

ε2

∑
k

∫
(ηk − ηk−1)2 e−

√
2
ε (fk,ε−fk−1,ε)−h.o.t..

Uniform C 2,α estimates of clustering interfaces does not hold
=⇒ Existence of entire stable solutions of Toda system
Liouville theorem: No stable solution of Toda in Rn for n ≤ 9.

Kelei Wang Allen-Cahn equation



An ε-regularity theorem

Theorem

For any n, there exists a universal constant η such that, if (fk) is a
stable solution to the Toda lattice

∆fk = e−
√

2(fk−fk−1) − e−
√

2(fk+1−fk ) in B1 ⊂ Rn,

then ∫
B1

e−
√

2(fk−fk−1) ≤ η(n) =⇒ sup
B1/2

e−
√

2(fk−fk−1) ≤ 1

2
.

Applying this ε-regularity to suitable rescalings of Toda system

constructed from (AC), gives a decay estimate on e−
√

2
ε

(fk,ε−fk−1,ε)

in shrinking balls, leading finally to

e−
√

2
ε

(fk,ε−fk−1,ε) . ε1+α, in the interior.
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constructed from (AC), gives a decay estimate on e−
√

2
ε

(fk,ε−fk−1,ε)

in shrinking balls, leading finally to

e−
√

2
ε

(fk,ε−fk−1,ε) . ε1+α, in the interior.
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Proof of ε-regularity theorem

Without the stability condition, for the Liouville equation

∆f = e−f ,

this ε-regularity has been proved by Brezis-Merle ’91 in 2
dimension and F. Da Lio ’08 in 3 dimension. Higher dimensions are
not known.

Our proof relies essentially on the stability condition, which gives
us an integral estimate (as in Farina ’07)∫

Br

e−2
√

2(fk−fk−1) ≤ Cr−2

∫
B2r

e−
√

2(fk−fk−1).
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Part III. Derivation of the Toda system
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Lyapunov-Schmidt reduction

Given two Banach spaces X and Y, consider a nonlinear map
G ∈ C 1(X ,Y).
Let E := kerDF (0) and F := cokerDF (0). Assume X = E

⊕
E⊥

and Y = F
⊕

F⊥ (e.g. when E and F are finite dimensional).
Then

G (x1, x2) = 0⇐⇒
{ ∏

F ◦G (x1, x2) = 0,∏
F⊥ ◦G (x1, x2) = 0.

Solve the second equation by Implicit Function Theorem.

Substituting the second equation into the first one =⇒ an
equation defined on E .

If E is finite dimensional: finite dimensional reduction.

Even if E is infinite dimensional, sometimes the reduction
problem is still a good one.
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Infinite dimensional reduction method

Finite dimensional reduction method has been used by many
authors to construct solutions of nonlinear PDEs: gluing
method.

Construction of solutions with multiple ends or clustering
interfaces from Toda systems by (Del Pino, Kowalczyk, Wei
and their coauthors).

We use this method in a reverse order.

We already have a solution uε of the Allen-Cahn equation.

In order to get estimates on level sets, a good equation
satisfied by these level sets is needed.

Decouple the single equation (AC) into two: one is the
equation for level sets (on the kernel space E ), the other one
is on E⊥ which enjoys good a priori estimates.
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The multiplicity one case: approximate solutions

Starting assumptions: close to a canonical configuration by
assuming C 1,1 regularity.

Around Γε := {uε = 0}, uε looks like

g∗(y , z) := g

(
z − hε(y)

ε

)
,

where z = distΓε is the signed distance to Γε and y denotes a point
on Γε. =⇒ Introduction of Fermi coordinates w.r.t. Γε.

A small perturbation in normal direction is also needed:
introduction of hε.
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Fermi coordinates

Fermi coordinates: x = y + zN(y), where y ∈ Γε is the nearest
point and N the unit normal vector, z = distΓε .

Well defined in an O(δ) neighborhood of Γε, where δ depends only
on sup |AΓε |.

∆ = ∆z − H∂z + ∂zz ,

∆z is the Beltrami-Laplace operator on {distΓε = z}.
H is the mean curvature of {distΓε = z}.

∆d =
∑
i

ki
1− kid

= H + O(|A|2),

where ki are principal curvatures of Γε.
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Optimal approximation in Fermi coordinates

hε is a function defined on Γε, which must be introduced so that
the orthogonal condition holds:∫ +∞

−∞
(uε(y , z)− g∗(y , z)) g ′∗dz = 0.

For each y ∈ Γε,

min
t∈R

∫ +∞

−∞

∣∣uε(y , z)− g

(
z − t

ε

) ∣∣2dz
is attained at a unique point hε(y).
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Decoupling

The error between uε and g∗, φε := uε − g∗, satisfies

ε2

(
∆0φε +

∂2φε
∂z2

)
= W ′′(g∗)φε + ε [Hε(y) + ∆hε(y)] g ′∗ + h.o.t.

φε is controlled by h.o.t. which are quadratic in φε and
Hε =⇒ decay estimate starting from a good position.

hε is controlled by φε because

0 = uε(y , 0) = g

(
−hε(y)

ε

)
+ φε(y , 0).

The parallel part gives the equation satisfied by {uε = 0}:

Hε = O (ε) .

Then standard elliptic estimates on minimal surface equation
gives the C 2,α estimate.
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Decoupling: a model case


∆Rn−1φ+ ∂zzφ = W ′′(g(z))φ+ a(y)g ′(z) + E ,∫ +∞

−∞
φ(y , z)g ′(y , z)dz = 0, ∀y ∈ Rn−1.

=⇒ both φ and a are controlled by E .

Main tool: Nondegeneracy of 1D solution, i.e. kernel of the
linearized operator is spanned by g ′.
Spectral gap: the second eigenvalue is positive =⇒

∆Rn−1

∫ +∞

−∞
φ(y , z)2dz ≥ µ

∫ +∞

−∞
φ(y , z)2dz+

∫ +∞

−∞
φ(y , z)E (y , z)dz .

a(y)

∫ +∞

−∞
g ′(z)2dz = −

∫ +∞

−∞
E (y , z)g ′(z)dz .
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Clustering interfaces: approximate solutions

Starting assumptions: close to a canonical configuration.
Around Γk,ε, uε looks like

gk,ε := g

(
distΓk,ε

− hk,ε

ε

)
,

where distΓk,ε
is the signed distance to Γk,ε.

=⇒
As before, we need to

introduce Fermi coordinates w.r.t. Γk,ε;

introduce a small perturbation hk,ε to obtain the orthogonal
condition.
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Interaction between transition layers

Approximate solution: near Γk ,

g∗ := gk +
∑
`<k

[
g` − (−1)`

]
+
∑
`>k

[
g` + (−1)`

]
.
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Decoupling in clustering interfaces

Near Γk , the error between uε and g∗, φε := uε − g∗, satisfies

ε2

(
∆0φε +

∂2φε
∂z2

)
= W ′′(gk,ε)φε+ε [Hk,ε + ∆hk,ε] g

′
k,ε + Ik,ε+h.o.t.

where Ik,ε describes the interaction between Γk,ε and other
components.

The parallel part (w.r.t. g ′k,ε) gives the Toda system with
remainder terms of higher order (quadratic in φε,

e−
√

2
ε

(fα+1,ε−fα,ε) etc.)

φ is mainly controlled by the interaction term:

‖φε‖C2,α . ε1−α +
1

ε
sup

[
e−

fk+1,ε−fk,ε
ε + e−

fk,ε−fk−1,ε
ε

]
.
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Reduction of the stability condition again

In the stability condition for the Allen-Cahn equation,∫
ε|∇ψ|2 ≥

∫
1

ε
W ′′(uε)ψ

2,

choose (as in Agudelo-Del Pino-Wei ’16 )

ψ :=
∑
k

ηkg
′
k,ε,

where ηk ∈ C∞0 (Γk,ε).

Good decomposition: uε = g∗ + φε, i.e. good estimates on φε
=⇒ main order terms are∑

k

∫
|∇ηk |2 ≥

√
2A

ε2

∑
k

∫
(ηk − ηk−1)2 e−

√
2
ε (fk,ε−fk−1,ε).
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Concluding remarks

Reduction method is basically a (partial) linearization
procedure: when the solution uε is close to

∑
i gi ,ε, the φε

equation is almost a linearized one;

The reduced problem is still a nonlinear one in most cases, but
its complexity is decreased;

Long range interaction in these phase field models. This is
helpful for the construction of Jacobi fields
(Chodosh-Mantoulidis ’18).
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Thanks for your attention!
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