RAMSEY PROPERTIES OF RANDOMLY PERTURBED DENSE SETS OF INTEGERS AND THE ASYMMETRIC RANDOM RADO THEOREM

Elad Aigner-Horev Yury Person

For n sufficiently large, given an n-vertex graph G with positive edge-density, the distribution $G \cup \mathbb{G}(n, p)$ is viewed as a random perturbation of G. The limiting behaviour of symmetric and asymmetric Ramsey properties of $G \cup \mathbb{G}(n, p)$ have been studied by Krivelevich, Sudakov, and Tetali (2006), and more recently by Das and Treglown (2018) as well as Powierski (2018). The Kohayakawa-Kreuter conjecture (1997) regarding asymmetric Ramsey properties of $\mathbb{G}(n, p)$, whose 1 -statement has recently been established by Mousset, Nenadov, and Samotij (2018), arises quite naturally in the study of the threshold for the symmetric Ramsey property $G \cup \mathbb{G}(n, p) \rightarrow(H)_{2}$ for a prescribed graph H.

Much less is known regarding the Ramsey properties of randomly perturbed dense sets of integers captured by the distribution $A \cup[n]_{p}$ where here $A \subseteq[n]$ has positive density. We prove that $p=n^{-2 / 3}$ is the threshold for the Schur property in this model. Nothing (as far as we know) is known regarding the more general Rado property $A \cup[n]_{p} \rightarrow(M)_{2}$ where here M is a fixed Rado matrix (i.e., irredundant and partition-regular) that does not correspond to the Schur equation. If the graph case is of any consequence, a counterpart to the Kohayakawa-Kreuter conjecture fitting the integers is missing.

Let A and B be two Rado matrices, where A is an $\ell_{A} \times k_{A}$-matrix and B is an $\ell_{B} \times k_{B}$-matrix. Set

$$
m(A):=\max _{\substack{W \dot{\bar{W}}=\left[k_{A}\right] \\|W| \geq 2}} \frac{|W|-1}{|W|-1+\boldsymbol{r k}\left(A_{\bar{W}}\right)-\boldsymbol{r} \boldsymbol{k} A} .
$$

We put forth the parameter

$$
m(A, B):=\max _{\substack{W \subseteq\left[k_{A}\right] \\|W| \geq 2}} \frac{|W|}{|W|-\boldsymbol{r k} A+\boldsymbol{r k}\left(A_{\bar{W}}\right)-1+1 / m(B)}
$$

and prove that whenever A_{1}, \ldots, A_{r} are r Rado matrices satisfying $m\left(A_{1}\right) \geq m\left(A_{2}\right) \geq \cdots \geq m\left(A_{r}\right)$, then there exists a constant $C>0$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[[n]_{p} \rightarrow\left(A_{1}, \ldots, A_{r}\right)\right]=1
$$

whenever $p \geq C n^{-1 / m\left(A_{1}, A_{2}\right)}$; we conjecture that $n^{-1 / m\left(A_{1}, A_{2}\right)}$ is in fact the threshold. In the special case of arithmetic progressions Zohar (2019) verified this conjecture.

For symmetric random Ramsey-type results, Friedgut, Rödl, and Schacht (2010) have established a meta theorem through which 1-statements for various symmetric random Ramsey properties in (hyper)graphs and the integers can be attained at the correct threshold. Building upon the arguments of Mousset, Nenadov and Samotij (2018) we establish a corresponding meta-theorem for the asymmetric setting and through which are able for instance to recover the 1 -statement of, say, the Kohayakawa-Kreuter conjecture and in particular the aforementioned 1-statement for the asymmetric random Rado property.

