PANCHROMATIC COLORINGS OF HYPERGRAPHS

MARGARITA AKHMEJANOVA, DMITRII SHABANOV

The paper deals with colorings of uniform hypergraphs. Recall that a vertex coloring of a hypergraph H is called panchromatic in r colors if every edge meets every color. In 2002 Kostochka posed the question of finding $p(n, r)$. Formally,

$$
\begin{aligned}
& p(n, r)=\min \{|E(H)|: H \text { is } n \text {-uniform hypergraph, } \\
& H \text { does not admit a panchromatic } r \text {-coloring }\} .
\end{aligned}
$$

Recent developments in the area was achieved by Cherkashin. His main results:

- a new lower bound on $p(n, r)$ when $r>c \sqrt{n}: p(n, r) \geqslant c \frac{r}{n} e^{\frac{n}{r}}$
- improvement upper bound on $p(n, r)$ for $n=o\left(r^{3 / 2}\right)$.
- construction of a hypergraph without panchromatic coloring and with $\left(\frac{r}{r-1}+\right.$ $o(1))^{n}$ edges for $r=o(\sqrt{n / \ln n})$.
The best known result for the case $r<\frac{n}{2 \ln n}$ due to Rozovskaya and Shabanov who showed that for any $r, n \geqslant 2$

$$
p(n, r) \geqslant c \frac{1}{r^{2}} \sqrt{\frac{n}{\ln n}}\left(\frac{r}{r-1}\right)^{n}
$$

The main result of our paper refines the previous estimate as follows.
Theorem 1. For arbitrary $r \geqslant 2$, there exists $n_{0}=n_{0}(r)$ such that if $n>n_{0}$ then any n-uniform hypergraph H with the number of edges

$$
|E(H)| \leqslant c(r)\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n-1}
$$

admits panchromatic coloring with r colors.

