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For a graph G, we write G →
(
Kr+1, T (n,D)

)
if every coloring of the edges of G contain a blue Kr+1

or red copies of every tree with n edges and maximum degree D. In 1977, Chvátal proved that the ramsey
number r(Kr+1, T ) = rn+1, i.e. the minimum N such that KN → (Kr+1, T ) is rn+1, for every tree T with
n edges. Here we work on an analogue problem for the random graph G(N, p) and we proved the following
theorem.

Theorem 1. For every positive integers r,D ≥ 2 there exists a positive constant C such that if p = p(N)�
(logN/N)

2/(r+2) and N ≥ rn+ C/p then, with high probability,

G (N, p)→
(
Kr+1, T (n,D)

)
.

We show that the C/p extra vertices are needed, i.e., for some c ≥ 0, if N ≤ rn + c/p, then with high
probability G(N, p) 9

(
Kr+1, T (n,D)

)
. We also have some results concerning values of p not considered in

Theorem 1, but we do not not have such sharp result for that.
Moreover, as a byproduct of our main theorem, we proved that the random graph is globaly resilient

when it comes to containing linear sized trees. This may be of independent interest.

Theorem 2. For all δ ∈ (0, 1) and D, r ∈ N with r ≥ 2, there exists a positive constant C > 0 such that
the following holds for G = G(N, p) with high probability, given that pN ≥ C. If G′ is a subgraph of G with
e(G′) ≥

(
1
r + δ

)
e(G), then G′ is T (N/r,D)-universal.
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