Ramsey goodness of trees in random graphs

Pedro Araújo, Luiz Moreira, Matías Pavez-Signé

June 15, 2019

For a graph G, we write $G \to (K_{r+1}, \mathcal{T}(n, D))$ if every coloring of the edges of G contain a blue K_{r+1} or red copies of every tree with n edges and maximum degree D. In 1977, Chvátal proved that the ramsey number $r(K_{r+1}, T) = rn+1$, i.e. the minimum N such that $K_N \to (K_{r+1}, T)$ is rn+1, for every tree T with n edges. Here we work on an analogue problem for the random graph G(N, p) and we proved the following theorem.

Theorem 1. For every positive integers $r, D \ge 2$ there exists a positive constant C such that if $p = p(N) \gg (\log N/N)^{2/(r+2)}$ and $N \ge rn + C/p$ then, with high probability,

$$G(N,p) \to (K_{r+1},\mathcal{T}(n,D))$$

We show that the C/p extra vertices are needed, i.e., for some $c \ge 0$, if $N \le rn + c/p$, then with high probability $G(N, p) \nrightarrow (K_{r+1}, \mathcal{T}(n, D))$. We also have some results concerning values of p not considered in Theorem 1, but we do not not have such sharp result for that.

Moreover, as a byproduct of our main theorem, we proved that the random graph is globaly resilient when it comes to containing linear sized trees. This may be of independent interest.

Theorem 2. For all $\delta \in (0,1)$ and $D, r \in \mathbb{N}$ with $r \geq 2$, there exists a positive constant C > 0 such that the following holds for G = G(N, p) with high probability, given that $pN \geq C$. If G' is a subgraph of G with $e(G') \geq (\frac{1}{r} + \delta) e(G)$, then G' is $\mathcal{T}(N/r, D)$ -universal.