Monochromatic connected matchings, paths and cycles in 2-edge-colored multipartite graphs

Jozsef Balogh
University of Illinois at Urbana-Champaign

We solve four similar problems: For every fixed s and large n, we describe all values of n_{1}, \ldots, n_{s} such that for every 2 -edge-coloring of the complete s-partite graph with parts of sizes n_{1}, \ldots, n_{s}, there exists a monochromatic
(i) cycle with $2 n$ vertices,
(ii) cycle with at least $2 n$ vertices,
(iii) path with $2 n$ vertices, and
(iv) path with $2 n+1$ vertices.

This implies a generalization of the conjecture by Gyárfás, Ruszinkó, Sárközy and Szemerédi that for every 2-edge-coloring of the complete 3-partite graph $K_{n, n, n}$ there is a monochromatic path $P_{2 n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings (A matching M in G is connected if all the edges of M are in the same component of G). We will also talk about exact Ramsey-type bounds on the sizes of monochromatic connected matchings in 2-colored multipartite graphs.

Joint work with Alexandr Kostochka, Mikhail Lavrov and Xujun Liu.

