Tiling edge-coloured graphs with few monochromatic bounded-degree graphs

Jan Corsten Walner Mendonça

23rd May 2019

Erdős, Gyárfás and Pyber proved that the vertices of every *r*-edgecoloured K_n can be partitioned into a collection of at most $O(r^2 \log r)$ monochromatic cycles. It is very interesting that this number is independent of the size of the graph. We prove a similar result for a wide range of families other than cycles.

More precisely, we prove that for all integers $\Delta, r \ge 2$, there is a constant $C = C(\Delta, r) > 0$ such that the following is true for every family $\mathcal{F} = \{F_1, F_2, ...\}$ of graphs with $v(F_n) = n$ and $\Delta(F_n) \le \Delta$ for every $n \in \mathbb{N}$. In every *r*-edge-coloured K_n , there is a collection of at most *C* monochromatic copies from \mathcal{F} whose vertex-sets partition $V(K_n)$. This makes progress on a conjecture of Grinshpun and Sárközy.