Non-concentration of the chromatic number of a random graph

Annika Heckel, University of Oxford

A classic result of Shamir and Spencer states that the chromatic number of $G_{n, p}$ is whp concentrated on about \sqrt{n} consecutive values for any function $p=p(n)$. For $p=\frac{1}{2}$, this can be improved slightly to about $\sqrt{n} / \log n$ values. For sparse random graphs, much sharper concentration results are known. In particular, Alon and Krivelevich showed in 1997 that for $p<n^{\frac{1}{2}-\varepsilon}, \chi\left(G_{n, p}\right)$ is whp concentrated on only two consecutive values.

However, until now there have been no results showing that we do not always have extremely narrow concentration, other than in the trivial case where $p \rightarrow 1$ quickly enough. In 2004, Bollobás asked for any non-trivial results asserting a lack of concentration, suggesting the dense random graph $G_{n, m}$ with $m=\left\lfloor n^{2} / 4\right\rfloor$ as a candidate.

We sketch an argument which shows that the chromatic number of $G_{n, \frac{1}{2}}$ is not whp concentrated on fewer than $n^{\frac{1}{4}-\varepsilon}$ consecutive values. As a corollary, this also holds for the chromatic number of $G_{n, m}$ with $m=\left\lfloor n^{2} / 4\right\rfloor$.

