Improved bounds on the multicolor Ramsey numbers of paths and even cycles

March 1, 2019

We study the multicolor Ramsey numbers for paths and even cycles, $R_{k}\left(P_{n}\right)$ and $R_{k}\left(C_{n}\right)$, which are the smallest integers N such that every coloring of the complete graph K_{N} has a monochromatic copy of P_{n} or C_{n} respectively. For a long time, $R_{k}\left(P_{n}\right)$ has only been known to lie between $(k-1+o(1)) n$ and $(k+o(1)) n$. A recent breakthrough by Sárközy and later improvement by Davies, Jenssen and Roberts give an upper bound of $\left(k-\frac{1}{4}+o(1)\right) n$. In this talk I show how to improve the upper bound to $\left(k-\frac{1}{2}+o(1)\right) n$. Our approach uses structural insights in connected graphs without a large matching.

