Successive shortest paths

Balázs Mezei
Royal Holloway, University of London

Consider a complete graph K_{n} with edge weights drawn independently from a uniform distribution $U(0,1)$. Let P_{1} be the shortest (minimum-weight) path between two given vertices, P_{2} the shortest such path edge-disjoint from P_{1}, and generally P_{k} to be the shortest such path edge-disjoint from all earlier paths. It is known that the weight of P_{1} is asymptotically $\ln n / n$. We show that the weight X_{k} of P_{k} is asymptotically $(2 k+\ln n) / n$. Specifically, $X_{k} /(2 k / n+\ln n / n) \xrightarrow{\mathrm{p}} 1$ uniformly for all $k \leq n-1$.

This is joint work with Stefanie Gerke and Gregory Sorkin.

