Nonconvergence in the first order logic of permutations

Tobias Müller Groningen University

Recently Albert, Bouvel and Féray introduced the *theory of two total orders* (TOTO) which allows one to express properties of permutations in first order logic. We are allowed to use the quantifiers \forall, \exists , variables x, y, z, \ldots , the logical connectives \land, \lor, \neg , etc., brackets and the relation symbols $=, <_1, <_2$. Thinking of a permutation π as a map from [n] two itself, if x, y represent two elements of [n] then $x <_1 y$ just means that x < y while $x <_2 y$ means that $\pi(x) < \pi(y)$. For instance, the occurrence of the pattern 231 can be expressed as

$$\exists x, y, z : (x <_1 y) \land (y <_1 z) \land (z <_2 x) \land (x <_2 y)$$

We consider the probability that a given property expressible in TOTO holds for a random permutation. That is, the permutation π_n chosen uniformly at random from all n! permutations of $[n] := \{1, \ldots, n\}$. Answering a question of Albert, Bouvel and Féray in the negative, we show that there exists a property φ expressible in TOTO, such that

 $\lim_{n\to\infty} \mathbb{P}(\pi_n \text{ satisfies } \varphi) \text{ does not exist.}$

That is, we construct a $\varphi \in \text{TOTO}$ such that probability that π_n satisfies it oscillates between zero and one. The construction builds on the seminal work of Shelah and Spencer on first order properties for the Erdős-Rényi random graph.

(Based on joint work with Fiona Skerman)