UNIVERSALITY IN RANDOMLY PERTURBED GRAPHS

OLAF PARCZYK

olaf.parczyk@tu-ilmenau.de

Institute for Mathematics, TU Ilmenau, Ilmenau, Germany

ABSTRACT. We denote by $\mathcal{F}(n, \Delta)$ the family of all graphs on n vertices with maximum degree Δ and call a graph $\mathcal{F}(n, \Delta)$ -universal if it contains all graphs from the family simultaneously. It is belived, that the threshold for $\mathcal{F}(n, \Delta)$ -universality in the binomial random graph G(n, p) is determined by the $K_{\Delta+1}$ -factor, which gives $(n^{-1}\log^{1/\Delta} n)^{2/(\Delta+1)}$. This was confirmed by Ferber, Kronenberg, and Luh for $\Delta = 2$, while for larger Δ already the single containment problem is open.

We study the model of randomly perturbed dense graphs, that is, for any constant $\alpha > 0$, the union of some *n*-vertex graph G_{α} with minimum degree at least αn and G(n, p). Together with Böttcher, Montgomery, and Person we resolved the single containment problem for $\mathcal{F}(n, \Delta)$ in $G_{\alpha} \cup G(n, p)$, showing that $n^{-2/(\Delta+1)}$ is sufficient. This log-term difference in comparison to the threshold in G(n, p) is optimal and typical for this model. We believe that $n^{-2/(\Delta+1)}$ also gives the threshold for $\mathcal{F}(n, \Delta)$ -universality in $G_{\alpha} \cup G(n, p)$. We can prove it for $\Delta = 2$ and for larger Δ we get $n^{-1/(\Delta-1)}$, which is optimal for $\Delta = 3$.