POWERS OF HAMILTONIAN CYCLES IN UNIFORMLY DENSE AND INSEPARABLE GRAPHS

OLIVER EBSEN, GIULIA SATIKO MAESAKA, CHRISTIAN REIHER, MATHIAS SCHACHT, AND BJARNE SCHÜLKE

ABSTRACT. We consider sufficient conditions for the existence of k-th powers of Hamiltonian cycles in *n*-vertex graphs G with minimum degree μn for arbitrarily small $\mu > 0$. About 20 years ago Komlós, Sárközy, and Szemerédi resolved the conjectures of Pósa and Seymour and obtained optimal minimum degree conditions for this problem by showing that $\mu = \frac{k}{k+1}$ suffices for large n. Consequently, for smaller values of μ the given graph G must satisfy additional assumptions. We show that inducing subgraphs of density d > 0 on linear subsets of vertices and being inseparable, in the sense that every cut has density at least $\mu > 0$, are sufficient assumptions for this problem. The generalises a recent result of Staden and Treglown.