On the upper tail of subgraph counts in sparse $G(n, p)$

Matas Šileikis
Institute of Computer Science of the Czech Academy of Sciences
Prague, Czech Republic

Abstract

Given a fixed graph H , what is the (exponentially small) probability that the number X_{H} of copies of H in the binomial random graph $G(n, p)$ is at least twice its mean? In 2011 DeMarco and Kahn determined the order of $-\log \mathbb{P}\left(X_{H}>2 \mathbb{E} X_{H}\right)$ for general $p=p(n)$ when H is a clique and conjectured what it should be for general H. In this note we show that (close to the threshold of existence) their conjecture is false for an infinite family of graphs H. This is joint work with Lutz Warnke.

