Successive minimum spanning trees

Gregory Sorkin

LSE

In a complete graph K_{n} with edge weights drawn independently from a uniform distribution $U(0,1)$ (or alternatively an exponential distribution $\operatorname{Exp}(1)$), let T_{1} be the MST (the spanning tree of minimum weight) and let T_{k} be the MST after deletion of the edges of all previous trees $T_{i}, i<k$. We show that each tree's weight $w\left(T_{k}\right)$ converges in probability to a constant γ_{k} with $2 k-2 \sqrt{k}<\gamma_{k}<2 k+2 \sqrt{k}$, and we conjecture that $\gamma_{k}=2 k-1+o(1)$. The problem is distinct from one of Frieze and Johansson (2018), finding k MSTs of combined minimum weight, and the combined cost for two trees in their problem is strictly smaller than our $\gamma_{1}+\gamma_{2}$.

Our results also hold (and mostly are derived) in a multigraph model where edge weights for each vertex pair follow a Poisson process; here we additionally have $\mathbb{E}\left(w\left(T_{k}\right)\right) \rightarrow \gamma_{k}$. Thinking of an edge of weight w as arriving at time $t=n w$, Kruskal's algorithm defines forests $F_{k}(t)$, each initially empty and eventually equal to T_{k}, with each arriving edge added to the first $F_{k}(t)$ where it does not create a cycle. Using tools of inhomogeneous random graphs we obtain structural results including that $C_{1}\left(F_{k}(t)\right) / n$, the fraction of vertices in the largest component of $F_{k}(t)$, converges in probability to a function $\rho_{k}(t)$, uniformly for all t, and that a giant component appears in $F_{k}(t)$ at a time $t=\sigma_{k}$. We conjecture that the functions ρ_{k} tend to time translations of a single function, $\rho_{k}(2 k+x) \rightarrow \rho_{\infty}(x)$ as $k \rightarrow \infty$, uniformly in $x \in \mathbb{R}$.

Simulations and numerical computations give estimated values of γ_{k} for small k, and support the conjectures stated above.

This is joint work with Svante Janson.

