Stochastic Evolution PDEs
 Lectures 3-4

Stig Larsson

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

SNF Prodoc Minicourses 'Numerik' ETH December 2012

Outline

- Quick review of strong convergence analysis.
- Weak convergence analysis.

Semigroup approach

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- \mathcal{H}, \mathcal{U} Hilbert spaces

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- \mathcal{H}, \mathcal{U} Hilbert spaces
- $\{W(t)\}_{t \geq 0}, Q$-Wiener process in \mathcal{U} with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- \mathcal{H}, \mathcal{U} Hilbert spaces
- $\{W(t)\}_{t \geq 0}, Q$-Wiener process in \mathcal{U} with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $\{X(t)\}_{t \geq 0}$, stochastic process in \mathcal{H}

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- \mathcal{H}, \mathcal{U} Hilbert spaces
- $\{W(t)\}_{t \geq 0}, Q$-Wiener process in \mathcal{U} with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $\{X(t)\}_{t \geq 0}$, stochastic process in \mathcal{H}
- $B: \mathcal{U} \rightarrow \mathcal{H}$, bounded linear operator

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- \mathcal{H}, \mathcal{U} Hilbert spaces
- $\{W(t)\}_{t \geq 0}, Q$-Wiener process in \mathcal{U} with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $\{X(t)\}_{t \geq 0}$, stochastic process in \mathcal{H}
- $B: \mathcal{U} \rightarrow \mathcal{H}$, bounded linear operator
- $E(t)=\mathrm{e}^{-t A}, t \geq 0, C_{0}$-semigroup of bounded linear operators on \mathcal{H}

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- \mathcal{H}, \mathcal{U} Hilbert spaces
- $\{W(t)\}_{t \geq 0}, Q$-Wiener process in \mathcal{U} with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $\{X(t)\}_{t \geq 0}$, stochastic process in \mathcal{H}
- $B: \mathcal{U} \rightarrow \mathcal{H}$, bounded linear operator
- $E(t)=\mathrm{e}^{-t A}, t \geq 0, C_{0}$-semigroup of bounded linear operators on \mathcal{H}
- X_{0} is an \mathcal{F}_{0}-measurable \mathcal{H}-valued random variable

Mild solution

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

The unique solution is given by (mild solution)

$$
X(t)=E(t) X_{0}+\int_{0}^{t} E(t-s) B d W(s)
$$

Stochastic heat equation

$$
\begin{cases}\frac{\partial u}{\partial t}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\ u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\ u(\xi, 0)=u_{0}, & \xi \in \mathcal{D}\end{cases}
$$

$\left\{\begin{array}{l}\mathrm{d} X+A X \mathrm{~d} t=\mathrm{d} W, \quad t>0 \\ X(0)=X_{0}\end{array}\right.$

- $\mathcal{H}=\mathcal{U}=L_{2}(\mathcal{D}),\|\cdot\|,(\cdot, \cdot), \mathcal{D} \subset \mathbf{R}^{d}$, bounded domain
- $A=\Lambda=-\Delta, D(\Lambda)=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}), B=I$
- probability space $(\Omega, \mathcal{F}, \mathbf{P})$
- $W(t), Q$-Wiener process on \mathcal{H}
- $X(t), \mathcal{H}$-valued stochastic process
- $E(t)=e^{-t A}$ analytic semigroup generated by $-A$

Mild solution (stochastic convolution):
$X(t)=E(t) X_{0}+\int_{0}^{t} E(t-s) \mathrm{d} W(s), \quad t \geq 0$

The finite element method

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}\right\}_{0<h<1}, \quad S_{h} \subset H_{0}^{1}(\mathcal{D})=\dot{H}^{1}$
- S_{h} continuous piecewise poly degree $\leq r-1, r \geq 2$
- $X_{h}(t) \in S_{h} ;\left(\mathrm{d} X_{h}, \chi\right)+\left(\nabla X_{h}, \nabla \chi\right) \mathrm{d} t=(\mathrm{d} W, \chi) \forall \chi \in S_{h}, t>0$
- $\Lambda_{h}: S_{h} \rightarrow S_{h}$, discrete Laplacian, $\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi) \forall \psi, \chi \in S_{h}$
- $A_{h}=\Lambda_{h}$
- $P_{h}: L_{2} \rightarrow S_{h}$, orthogonal projection, $\left(P_{h} f, \chi\right)=(f, \chi) \forall \chi \in S_{h}$
$\left\{\begin{array}{l}X_{h}(t) \in S_{h}, \quad X_{h}(0)=P_{h} X_{0} \\ \mathrm{~d} X_{h}+A_{h} X_{h} \mathrm{~d} t=P_{h} \mathrm{~d} W, \quad t>0\end{array}\right.$
$P_{h} W(t)$ is Q_{h}-Wiener process with $Q_{h}=P_{h} Q P_{h}$.
Mild solution, with $E_{h}(t)=e^{-t A_{h}}$,
$X_{h}(t)=E_{h}(t) P_{h} X_{0}+\int_{0}^{t} E_{h}(t-s) P_{h} \mathrm{~d} W(s)$

Regularity and strong convergence

$$
|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad \beta \in \mathbf{R}
$$

Theorem. If $\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}<\infty$ for some $\beta \in[0, r]$, then

$$
\begin{aligned}
\|X(t)\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)} & \leq C\left(\left\|X_{0}\right\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)}+\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}\right) \\
\left\|X_{h}(t)-X(t)\right\|_{L_{2}(\Omega, H)} & \leq C h^{\beta}\left(\left\|X_{0}\right\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)}+\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}\right)
\end{aligned}
$$

Regularity and strong convergence

$$
|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad \beta \in \mathbf{R}
$$

Theorem. If $\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}<\infty$ for some $\beta \in[0, r]$, then

$$
\begin{aligned}
\|X(t)\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)} & \leq C\left(\left\|X_{0}\right\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)}+\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}\right) \\
\left\|X_{h}(t)-X(t)\right\|_{L_{2}(\Omega, H)} & \leq C h^{\beta}\left(\left\|X_{0}\right\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)}+\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}\right)
\end{aligned}
$$

Two cases:

- If $\left\|Q^{1 / 2}\right\|_{\text {HS }}^{2}=\operatorname{Tr}(Q)<\infty$, then $\beta=1$.
- If $Q=I, d=1, \Lambda=-\frac{\partial^{2}}{\partial \xi^{2}}$, then $\left\|\Lambda^{(\beta-1) / 2}\right\|_{\text {HS }}<\infty$ for $\beta<1 / 2$.

Proofs

The proofs are based on

- Itô isometry

$$
\mathbf{E}\left\|\int_{0}^{t} F(s) \mathrm{d} W(s)\right\|^{2}=\mathbf{E} \int_{0}^{t}\left\|F(s) Q^{1 / 2}\right\|_{H S}^{2} \mathrm{~d} s
$$

- Smoothing property

$$
\int_{0}^{t}\left\|\Lambda^{1 / 2} E(s) v\right\|^{2} \mathrm{~d} s \leq C\|v\|^{2}
$$

- Error estimates for the approximation of the semigroup

Approximation of the semigroup

$$
\left.\begin{array}{ll}
\left\{\begin{array}{l}
u_{t}+\Lambda u=0, \quad t>0 \\
u(0)=v
\end{array}\right. & \left\{\begin{array}{l}
u_{h, t}+\Lambda_{h} u_{h}=0, \quad t>0 \\
u_{h}(0)=P_{h} v
\end{array}\right.
\end{array}\right\} \begin{aligned}
& u(t)=E(t) v
\end{aligned} u_{h}(t)=E_{h}(t) P_{h} v .
$$

Denote

$$
F_{h}(t) v=E_{h}(t) P_{h} v-E(t) v, \quad|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|
$$

We have, for $0 \leq \beta \leq r$,

$$
\begin{aligned}
& \qquad\left\|F_{h}(t) v\right\| \leq C h^{\beta}|v|_{\beta}, \quad t \geq 0 \\
& >\left(\int_{0}^{t}\left\|F_{h}(s) v\right\|^{2} \mathrm{~d} s\right)^{1 / 2} \leq C h^{\beta}|v|_{\beta-1}, \quad t \geq 0
\end{aligned}
$$

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems

The stochastic wave equation

$$
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\ u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\ u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases}
$$

The stochastic wave equation

$$
\begin{aligned}
& \begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\
u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\
u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases} \\
& \Lambda=-\Delta, \quad D(\Lambda)=\dot{H}^{2}=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D})
\end{aligned}
$$

The stochastic wave equation

$$
\begin{aligned}
& \begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\
u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\
u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases} \\
& \Lambda=-\Delta, \quad D(\Lambda)=\dot{H}^{2}=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}) \\
& \dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \beta \in \mathbf{R}
\end{aligned}
$$

The stochastic wave equation

$$
\begin{aligned}
& \begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\
u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\
u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases} \\
& \Lambda=-\Delta, \quad D(\Lambda)=\dot{H}^{2}=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}) \\
& \dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \beta \in \mathbf{R}
\end{aligned}
$$

The stochastic wave equation

$$
\begin{aligned}
& \begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\
u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\
u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases} \\
& \Lambda=-\Delta, \quad D(\Lambda)=\dot{H}^{2}=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}) \\
& \dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \beta \in \mathbf{R} \\
& {\left[\begin{array}{l}
\mathrm{d} u \\
\mathrm{~d} u_{t}
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
\Lambda & 0
\end{array}\right]\left[\begin{array}{l}
u \\
u_{t}
\end{array}\right] \mathrm{d} t=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{d} W,} \\
& X=\left[\begin{array}{l}
u \\
u_{t}
\end{array}\right], \quad A=\left[\begin{array}{cc}
0 & -I \\
\Lambda & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
I
\end{array}\right], \quad \mathcal{U}=\dot{H}^{0}=L_{2}(\mathcal{D})
\end{aligned}
$$

The stochastic wave equation

$$
\left.\left.\begin{array}{l}
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\
u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\
u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases} \\
\Lambda=-\Delta, \quad D(\Lambda)=\dot{H}^{2}=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D})
\end{array}\right\} \begin{array}{l}
\dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \beta \in \mathbf{R}
\end{array}\right\} \begin{aligned}
& {\left[\begin{array}{l}
\mathrm{d} u \\
\mathrm{~d} u_{t}
\end{array}\right]+\left[\begin{array}{cc}
0 & -I \\
\Lambda & 0
\end{array}\right]\left[\begin{array}{l}
u \\
u_{t}
\end{array}\right] \mathrm{d} t=\left[\begin{array}{l}
0 \\
I
\end{array}\right] \mathrm{d} W,} \\
& X=\left[\begin{array}{l}
u \\
u_{t}
\end{array}\right], A=\left[\begin{array}{cc}
0 & -I \\
\Lambda & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathcal{U}=\dot{H}^{0}=L_{2}(\mathcal{D}) \\
& \mathcal{H}^{\beta}=\dot{H}^{\beta} \times \dot{H}^{\beta-1}, \quad \mathcal{H}=\mathcal{H}^{0}=\dot{H}^{0} \times \dot{H}^{-1}, \quad D(A)=\mathcal{H}^{1}
\end{aligned}
$$

Abstract framework

Abstract framework

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

Abstract framework

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right. \\
& >\{X(t)\}_{t \geq 0}, \mathcal{H}=\dot{H}^{0} \times \dot{H}^{-1} \text {-valued stochastic process }
\end{aligned}
$$

Abstract framework

$\left\{\begin{array}{l}\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\ X(0)=X_{0}\end{array}\right.$

- $\{X(t)\}_{t \geq 0}, \mathcal{H}=\dot{H}^{0} \times \dot{H}^{-1}$-valued stochastic process
- $\{W(t)\}_{t \geq 0}, \mathcal{U}=\dot{H}^{0}$-valued Q-Wiener process w.r.t. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$

Abstract framework

$\left\{\begin{array}{l}\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\ X(0)=X_{0}\end{array}\right.$

- $\{X(t)\}_{t \geq 0}, \mathcal{H}=\dot{H}^{0} \times \dot{H}^{-1}$-valued stochastic process
- $\{W(t)\}_{t \geq 0}, \mathcal{U}=\dot{H}^{0}$-valued Q-Wiener process w.r.t. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $E(t)=e^{-t A}=\left[\begin{array}{cc}\cos \left(t \Lambda^{1 / 2}\right) & \Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) \\ -\Lambda^{1 / 2} \sin \left(t \Lambda^{1 / 2}\right) & \cos \left(t \Lambda^{1 / 2}\right)\end{array}\right]$,
C_{0}-semigroup on \mathcal{H}

Abstract framework

$\left\{\begin{array}{l}\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\ X(0)=X_{0}\end{array}\right.$

- $\{X(t)\}_{t \geq 0}, \mathcal{H}=\dot{H}^{0} \times \dot{H}^{-1}$-valued stochastic process
- $\{W(t)\}_{t \geq 0}, \mathcal{U}=\dot{H}^{0}$-valued Q-Wiener process w.r.t. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $E(t)=e^{-t A}=\left[\begin{array}{cc}\cos \left(t \Lambda^{1 / 2}\right) & \Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) \\ -\Lambda^{1 / 2} \sin \left(t \Lambda^{1 / 2}\right) & \cos \left(t \Lambda^{1 / 2}\right)\end{array}\right]$,
C_{0}-semigroup on \mathcal{H}

Abstract framework

$\left\{\begin{array}{l}\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\ X(0)=X_{0}\end{array}\right.$

- $\{X(t)\}_{t \geq 0}, \mathcal{H}=\dot{H}^{0} \times \dot{H}^{-1}$-valued stochastic process
- $\{W(t)\}_{t \geq 0}, \mathcal{U}=\dot{H}^{0}$-valued Q-Wiener process w.r.t. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $E(t)=e^{-t A}=\left[\begin{array}{cc}\cos \left(t \Lambda^{1 / 2}\right) & \Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) \\ -\Lambda^{1 / 2} \sin \left(t \Lambda^{1 / 2}\right) & \cos \left(t \Lambda^{1 / 2}\right)\end{array}\right]$,
C_{0}-semigroup on \mathcal{H}

Here
$\cos \left(t \Lambda^{1 / 2}\right) v=\sum_{j=1}^{\infty} \cos \left(t \sqrt{\lambda_{j}}\right)\left(v, \phi_{j}\right) \phi_{j}, \quad\left(\lambda_{j}, \phi_{j}\right)$ are eigenpairs of Λ

Regularity

Regularity

Theorem. (With $X(0)=0$ for simplicity.) If $\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}<\infty$ for some $\beta \geq 0$, then there exists a unique weak solution

$$
X(t)=\left[\begin{array}{l}
X_{1}(t) \\
X_{2}(t)
\end{array}\right]=\int_{0}^{t} E(t-s) B \mathrm{~d} W(s)=\left[\begin{array}{c}
\int_{0}^{t} \Lambda^{-1 / 2} \sin \left((t-s) \Lambda^{1 / 2}\right) \mathrm{d} W(s) \\
\int_{0}^{t} \cos \left((t-s) \Lambda^{1 / 2}\right) \mathrm{d} W(s)
\end{array}\right]
$$

and

$$
\|X(t)\|_{L_{2}\left(\Omega, \mathcal{H}^{\beta}\right)} \leq C(t)\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}, \quad \mathcal{H}^{\beta}=\dot{H}^{\beta} \times \dot{H}^{\beta-1}
$$

Spatial discretization

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$
- $S_{h}^{r} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise polynomials of degree $r-1$

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$
- $S_{h}^{r} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise polynomials of degree $r-1$
- $\Lambda_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$, discrete Laplacian, $\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi), \forall \chi \in S_{h}^{r}$

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$
- $S_{h}^{r} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise polynomials of degree $r-1$
- $\Lambda_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$, discrete Laplacian, $\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi), \forall \chi \in S_{h}^{r}$
- $P_{h}: \dot{H}^{0} \rightarrow S_{h}^{r}$, orthogonal projection, $\left(P_{h} f, \chi\right)=(f, \chi), \forall \chi \in S_{h}^{r}$

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$
- $S_{h}^{r} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise polynomials of degree $r-1$
- $\Lambda_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$, discrete Laplacian, $\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi), \forall \chi \in S_{h}^{r}$
- $P_{h}: \dot{H}^{0} \rightarrow S_{h}^{r}$, orthogonal projection, $\left(P_{h} f, \chi\right)=(f, \chi), \forall \chi \in S_{h}^{r}$
- $A_{h}=\left[\begin{array}{cc}0 & -I \\ \Lambda_{h} & 0\end{array}\right], \quad B_{h}=\left[\begin{array}{c}0 \\ P_{h}\end{array}\right]$

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$
- $S_{h}^{r} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise polynomials of degree $r-1$
- $\Lambda_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$, discrete Laplacian, $\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi), \forall \chi \in S_{h}^{r}$
- $P_{h}: \dot{H}^{0} \rightarrow S_{h}^{r}$, orthogonal projection, $\left(P_{h} f, \chi\right)=(f, \chi), \forall \chi \in S_{h}^{r}$
- $A_{h}=\left[\begin{array}{cc}0 & -l \\ \Lambda_{h} & 0\end{array}\right], \quad B_{h}=\left[\begin{array}{c}0 \\ P_{h}\end{array}\right]$
- $\left\{\begin{array}{l}\mathrm{d} X_{h}(t)+A_{h} X_{h}(t) \mathrm{d} t=B_{h} \mathrm{~d} W(t), \quad t>0 \\ X_{h}(0)=X_{0, h}\end{array}\right.$

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}^{r}\right\}_{0<h<1}$
- $S_{h}^{r} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise polynomials of degree $r-1$
- $\Lambda_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$, discrete Laplacian, $\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi), \forall \chi \in S_{h}^{r}$
- $P_{h}: \dot{H}^{0} \rightarrow S_{h}^{r}$, orthogonal projection, $\left(P_{h} f, \chi\right)=(f, \chi), \forall \chi \in S_{h}^{r}$
- $A_{h}=\left[\begin{array}{cc}0 & -l \\ \Lambda_{h} & 0\end{array}\right], \quad B_{h}=\left[\begin{array}{c}0 \\ P_{h}\end{array}\right]$
- $\left\{\begin{array}{l}\mathrm{d} X_{h}(t)+A_{h} X_{h}(t) \mathrm{d} t=B_{h} \mathrm{~d} W(t), \quad t>0 \\ X_{h}(0)=X_{0, h}\end{array}\right.$
- $E_{h}(t)=e^{-t A_{h}}=\left[\begin{array}{cc}\cos \left(t \Lambda_{h}^{1 / 2}\right) & \Lambda_{h}^{-1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) \\ -\Lambda_{h}^{1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) & \cos \left(t \Lambda_{h}^{1 / 2}\right)\end{array}\right]$

Spatial discretization

Spatial discretization

The mild solution is:

$$
\begin{aligned}
X_{h}(t) & =\left[\begin{array}{l}
X_{h, 1}(t) \\
X_{h, 2}(t)
\end{array}\right] \\
& =\int_{0}^{t} E_{h}(t-s) B_{h} \mathrm{~d} W(s)=\left[\begin{array}{c}
\int_{0}^{t} \Lambda_{h}^{-1 / 2} \sin \left((t-s) \Lambda_{h}^{1 / 2}\right) P_{h} \mathrm{~d} W(s) \\
\int_{0}^{t} \cos \left((t-s) \Lambda_{h}^{1 / 2}\right) P_{h} \mathrm{~d} W(s)
\end{array}\right]
\end{aligned}
$$

where, for example,
$\cos \left(t \Lambda_{h}^{1 / 2}\right) v=\sum_{j=1}^{N_{h}} \cos \left(t \sqrt{\lambda_{h, j}}\right)\left(v, \phi_{h, j}\right) \phi_{h, j}$,
and $\left(\lambda_{h, j}, \phi_{h, j}\right)$ are eigenpairs of Λ_{h}.

Spatially semidiscrete: approximation of the semigroup

$$
\begin{aligned}
& \begin{cases}v_{t t}(t)+\Lambda v(t)=0, t>0 \\
v(0)=0, v_{t}(0)=f\end{cases}
\end{aligned} \Rightarrow v(t)=\Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) f,
$$

We have, for $K_{h}(t)=\Lambda_{h}^{-1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) P_{h}-\Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right)$ and $r=2$, $\left\|K_{h}(t) f\right\| \leq C(t) h^{2}\|f\|_{\dot{H}^{2}} \quad$ "initial regularity of order 3 " $\left\|K_{h}(t) f\right\| \leq 2\|f\|_{\dot{H}^{-1}} \quad$ "initial regularity of order $0^{\prime \prime}$ (stability)

$$
\left\|K_{h}(t) f\right\| \leq C(t) h^{\frac{2}{3} \beta}\|f\|_{\dot{H}^{\beta-1}}, \quad 0 \leq \beta \leq 3
$$

Note: $\|v(t)\|_{\dot{H}^{2}} \leq\|f\|_{\dot{H}^{1}} \quad$ "initial regularity of order 2"

Spatially semidiscrete: Strong convergence

Theorem. Let $X_{0}=0$ and $r=2$. If $\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}<\infty$ for some $\beta \in[0,3]$, then

$$
\left\|X_{h, 1}(t)-X_{1}(t)\right\|_{L_{2}\left(\Omega, \dot{H}^{0}\right)} \leq C(t) h^{\frac{2}{3} \beta}\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}
$$

Higher order FEM: $\quad O\left(h^{\frac{r}{r+1} \beta}\right), \quad \beta \in[0, r+1]$.

Weak convergence

The law of $X_{h}(T)$:

$$
\mu_{X_{h}(T)}=\mathbf{P} \circ X_{h}(T)^{-1}
$$

converges weakly to the law of $X(T)$, if

$$
\left\langle\mu_{X_{h}(T)}, \varphi\right\rangle \rightarrow\left\langle\mu_{X(T)}, \varphi\right\rangle \quad \text { as } h \rightarrow 0 \quad \forall \varphi \in \mathcal{C}_{\mathrm{b}}(H, \mathbf{R})
$$

Weak convergence

The law of $X_{h}(T)$:

$$
\mu_{X_{h}(T)}=\mathbf{P} \circ X_{h}(T)^{-1}
$$

converges weakly to the law of $X(T)$, if

$$
\left\langle\mu_{X_{h}(T)}, \varphi\right\rangle \rightarrow\left\langle\mu_{X(T)}, \varphi\right\rangle \quad \text { as } h \rightarrow 0 \quad \forall \varphi \in \mathcal{C}_{\mathrm{b}}(H, \mathbf{R})
$$

Since

$$
\left\langle\mu_{X_{h}(T)}, \varphi\right\rangle=\int_{H} \varphi(x) \mathrm{d} \mu_{X_{h}(T)}(x)=\int_{\Omega} \varphi\left(X_{h}(T, \omega)\right) \mathrm{d} \mathbf{P}(\omega)=\mathbf{E}\left[\varphi\left(X_{h}(T)\right)\right]
$$

this means

$$
\mathbf{E}\left[\varphi\left(X_{h}(T)\right)\right] \rightarrow \mathbf{E}[\varphi(X(T))] \quad \text { as } h \rightarrow 0 \quad \forall \varphi \in \mathcal{C}_{\mathrm{b}}(H, \mathbf{R})
$$

Weak convergence

Test functions:

$$
\varphi \in \mathcal{C}_{\mathrm{b}}(H, \mathbf{R})=\text { continuous and bounded functions }
$$

But we will use
$\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})=$ not necessarily bounded but with
continuous and bounded derivatives $D \varphi$ and $D^{2} \varphi$

Weak convergence

Test functions:

$$
\varphi \in \mathcal{C}_{\mathrm{b}}(H, \mathbf{R})=\text { continuous and bounded functions }
$$

But we will use
$\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})=$ not necessarily bounded but with continuous and bounded derivatives $D \varphi$ and $D^{2} \varphi$

It can be shown that $\mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ is dense in $\mathcal{C}_{\mathrm{b}}(H, \mathbf{R})$ for $H=L_{2}(\mathcal{D})$ [Grorud and Pardoux(1992)].

By a modification of the Portmanteau theorem, it follows that it is sufficient to use test functions in $\mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$.

Weak convergence

Test functions:

$$
\varphi \in \mathcal{C}_{\mathrm{b}}(H, \mathbf{R})=\text { continuous and bounded functions }
$$

But we will use
$\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})=$ not necessarily bounded but with continuous and bounded derivatives $D \varphi$ and $D^{2} \varphi$

It can be shown that $\mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ is dense in $\mathcal{C}_{\mathrm{b}}(H, \mathbf{R})$ for $H=L_{2}(\mathcal{D})$ [Grorud and Pardoux(1992)].
By a modification of the Portmanteau theorem, it follows that it is sufficient to use test functions in $\mathcal{C}_{b}^{2}(H, \mathbf{R})$.
Our goal is now to show

$$
\mathbf{E}\left[G\left(X_{h}(T)\right)\right]-\mathbf{E}[G(X(T))]=O\left(h^{2 \beta}\right) \quad \text { as } h \rightarrow 0 \quad \forall G \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R}) .
$$

The weak rate is twice the strong rate of convergence.

Weak convergence

We will prove this for linear problems (heat and wave equations).
But first we will perform formal calculations for the nonlinear problem
$\mathrm{d} X(t)+[A X(t)-f(X(t))] \mathrm{d} t=g(X(t)) \mathrm{d} W(t), t \in(0, T] ; \quad X(0)=X_{0}$, or in mild form

$$
\begin{aligned}
X(t)= & E(t) X_{0}+\int_{0}^{t} E(t-s) f(X(s)) \mathrm{d} s \\
& +\int_{0}^{t} E(t-s) g(X(s)) \mathrm{d} W(s), \quad t \in[0, T]
\end{aligned}
$$

The semidiscrete approximation is

$$
\begin{aligned}
X_{h}(t)= & E_{h}(t) P_{h} X_{0}+\int_{0}^{t} E_{h}(t-s) P_{h} f\left(X_{h}(s)\right) \mathrm{d} s \\
& +\int_{0}^{t} E_{h}(t-s) P_{h} g\left(X_{h}(s)\right) \mathrm{d} W(s), \quad t \in[0, T] .
\end{aligned}
$$

Weak error representation: preliminaries

$$
\mathrm{d} X(t)+[A X(t)-f(X(t))] \mathrm{d} t=g(X(t)) \mathrm{d} W(t), t \in(0, T] ; \quad X(0)=X_{0}
$$

Auxiliary process $Z(s)=Z(s ; t, \xi)$: if ξ is \mathcal{F}_{t}-measurable and $0 \leq t \leq s \leq T$

$$
Z(s)=E(s-t) \xi+\int_{t}^{s} E(s-r) f(Z(r)) \mathrm{d} r+\int_{t}^{s} E(s-r) g(Z(r)) \mathrm{d} W(r)
$$

Define $u: H \times[0, T] \rightarrow \mathbf{R}$ by

$$
u(x, t)=\mathbf{E}[G(Z(T ; t, x))] .
$$

If $G \in C_{\mathrm{b}}^{2}(H, \mathbf{R})$, then u is a solution to Kolmogorov's equation

$$
\left\{\begin{array}{l}
u_{t}(x, t)-\left\langle u_{x}(x, t), A x-f(x)\right\rangle+\frac{1}{2} \operatorname{Tr}\left(u_{x x}(x, t) g(x) Q g(x)^{*}\right)=0, \\
u(x, T)=G(x)
\end{array} \quad t \in[0, T), x \in D(A),\right.
$$

Weak convergence

If ξ is \mathcal{F}_{t}-measurable and $0 \leq t \leq s \leq T$:
$Z(s ; t, \xi)=E(s-\tau) \xi+\int_{t}^{s} E(s-r) f(X(r)) \mathrm{d} r+\int_{t}^{s} E(t-r) g(X(r)) \mathrm{d} W(r)$
Define $u: H \times[0, T] \rightarrow \mathbb{R}$ by

$$
u(x, t)=\mathbf{E}[G(Z(T ; t, x))] .
$$

With random \mathcal{F}_{t}-measurable input ξ :

$$
u(\xi, t)=\mathbf{E}\left[G(Z(T ; t, \xi)) \mid \mathcal{F}_{t}\right]
$$

Hence

$$
\mathbf{E}[u(\xi, t)]=\mathbf{E}\left[\mathbf{E}\left[G(Z(T ; t, \xi)) \mid \mathcal{F}_{t}\right]\right]=\mathbf{E}[G(Z(T ; t, \xi))] .
$$

Weak convergence

So we have

$$
\mathbf{E}[u(\xi, t)]=\mathbf{E}[G(Z(T ; t, \xi))] .
$$

Note also

$$
Z(T ; t, \xi)=Z(T ; s, Z(s ; t, \xi))
$$

Then

$$
\begin{aligned}
\mathbf{E}[u(\xi, t)] & =\mathbf{E}[G(Z(T ; t, \xi))] \\
& =\mathbf{E}[G(Z(T ; s, Z(s ; t, \xi)))]=\mathbf{E}[u(s, Z(s ; t, \xi))],
\end{aligned}
$$

that is, the expected value of u is constant along trajectories

$$
y=Z(s ; t, \xi), \quad s \in[t, T] .
$$

Weak convergence

Assume $X_{h}(0)=X(0)$ for simplicity.

$$
\begin{aligned}
& \mathbf{E}\left(G\left(X_{h}(T)\right)-G(X(T))\right)=\mathbf{E}\left(u\left(X_{h}(T), T\right)-u(X(T), T)\right) \\
& \quad=\mathbf{E}\left(u\left(X_{h}(T), T\right)-u(X(0), 0)\right)=\mathbf{E}\left(u\left(X_{h}(T), T\right)-u\left(X_{h}(0), 0\right)\right) \\
& \text { Itô's formula: }=\mathbf{E} \int_{0}^{T}\left\langle u_{x}, \mathrm{~d} X_{h}\right\rangle+\frac{1}{2} u_{x x} \mathrm{~d}\left[X_{h}, X_{h}\right] \\
& =\mathbf{E} \int_{0}^{T}\left\{u_{t}\left(X_{h}(t), t\right)-\left\langle u_{x}\left(X_{h}(t), t\right), A_{h} X_{h}(t)-P_{h} f\left(X_{h}(t)\right)\right\rangle\right. \\
& \left.\quad+\frac{1}{2} \operatorname{Tr}\left[u_{x x}\left(X_{h}(t), t\right) P_{h} g\left(X_{h}(t)\right) Q g\left(X_{h}(t)\right)^{*} P_{h}\right]\right\} \mathrm{d} t
\end{aligned}
$$

Kolm. eq: $u_{t}\left(X_{h}(t), t\right)=\left\langle u_{x}\left(X_{h}(t), t\right), A X_{h}(t)-f\left(X_{h}(t)\right)\right\rangle$

$$
\begin{aligned}
& -\frac{1}{2} \operatorname{Tr}\left[u_{x x}\left(X_{h}(t), t\right) g\left(X_{h}(t)\right) Q g\left(X_{h}(t)\right)^{*}\right] \\
= & \mathbf{E} \int_{0}^{T}\left\{-\left\langle u_{x}(\cdot, t),\left(A_{h}-A\right) X_{h}(t)-\left(P_{h}-I\right) f\left(X_{h}(t)\right)\right\rangle\right. \\
& \left.+\frac{1}{2} \operatorname{Tr}\left[u_{x x}(\cdot, t)\left[P_{h} g(\cdot) Q g(\cdot)^{*} P_{h}-g(\cdot) Q g(\cdot)^{*}\right]\right]\right\} \mathrm{d} t
\end{aligned}
$$

where $\cdot=X_{h}(t)$.

Weak convergence

The first term:

$$
\mathbf{E} \int_{0}^{T}-\left\langle u_{x}\left(X_{h}(t), t\right),\left(A_{h}-A\right) X_{h}(t)-\left(P_{h}-l\right) f\left(X_{h}(t)\right)\right\rangle \mathrm{d} t,
$$

Here $\left(A_{h} X_{h}-P_{h} f\left(X_{h}\right)\right) \mathrm{d} t=-\mathrm{d} X_{h}+P_{h} g \mathrm{~d} W$, so we get

$$
\mathbf{E} \int_{0}^{T}\left\langle u_{x}\left(X_{h}(t), t\right), \mathrm{d} X_{h}(t)+\left(A X_{h}(t)-f\left(X_{h}(t)\right) \mathrm{d} t\right\rangle\right.
$$

We identify the residual of $X_{h}: \mathrm{d} X_{h}(t)+\left[A X_{h}(t)-f\left(X_{h}(t)\right] \mathrm{d} t\right.$.

Weak convergence

The first term:

$$
\mathbf{E} \int_{0}^{T}-\left\langle u_{x}\left(X_{h}(t), t\right),\left(A_{h}-A\right) X_{h}(t)-\left(P_{h}-l\right) f\left(X_{h}(t)\right)\right\rangle \mathrm{d} t
$$

Here $\left(A_{h} X_{h}-P_{h} f\left(X_{h}\right)\right) \mathrm{d} t=-\mathrm{d} X_{h}+P_{h} g \mathrm{~d} W$, so we get

$$
\mathbf{E} \int_{0}^{T}\left\langle u_{x}\left(X_{h}(t), t\right), \mathrm{d} X_{h}(t)+\left(A X_{h}(t)-f\left(X_{h}(t)\right) \mathrm{d} t\right\rangle .\right.
$$

We identify the residual of $X_{h}: \mathrm{d} X_{h}(t)+\left[A X_{h}(t)-f\left(X_{h}(t)\right] \mathrm{d} t\right.$. Related to a posteriori error analysis?

Weak convergence

$$
u(x, t)=\mathbf{E}[G(Z(T ; t, x))] .
$$

The derivative $u_{x}(x, t) \in H$ is given by

$$
\begin{aligned}
\left\langle u_{x}(x, t), \phi\right\rangle & =\mathbf{E}\left[\left\langle G^{\prime}(Z(T ; t, x)), Z_{x}^{\prime}(T ; t, x) \phi\right\rangle\right] \\
& =\mathbf{E}\left[\left\langle Z_{x}^{\prime}(T ; t, x)^{*} G^{\prime}(Z(T ; t, x)), \phi\right\rangle\right]
\end{aligned}
$$

So, in order to bound norms of $u_{x}(x, t)=\mathbf{E}\left[Z_{x}^{\prime}(T ; t, x)^{*} G^{\prime}(Z(T ; t, x))\right]$, we must study the linearized adjoint equation:

$$
\begin{aligned}
\eta(s)= & E(T-s) G^{\prime}(Z(T ; t, x))+\int_{s}^{T} E(T-r) f^{\prime}(Z(r ; t, x)) \eta(r) \mathrm{d} r \\
& +\int_{s}^{T} E(T-r)\left[g^{\prime}(Z(r ; t, x)) \eta(r)\right] \mathrm{d} W(r)
\end{aligned}
$$

The second derivative is related to the second adjoint variation.

Weak convergence

Let us compute $u_{x}(x, t)$ in the simplest case, the linear case:
$u(x, t)=\mathbf{E}[G(Z(T ; t, x))]=\mathbf{E}\left[G\left(E(T-t) x+\int_{t}^{T} E(T-s) B \mathrm{~d} W(s)\right)\right]$
Then

$$
\begin{aligned}
\left\langle u_{x}(x, t), \phi\right\rangle & =\mathbf{E}\left[\left\langle G^{\prime}\left(E(T-t) x+\int_{t}^{T} E(T-s) B \mathrm{~d} W(s)\right), E(T-t) \phi\right\rangle\right] \\
& =\mathbf{E}\left[\left\langle E(T-t)^{*} G^{\prime}(Z(T ; t, x)), \phi\right\rangle\right]
\end{aligned}
$$

so that $u_{x}(x, t)=\mathbf{E}\left[E(T-t)^{*} G^{\prime}(Z(T ; t, x))\right]$. This is $\eta(t)=\eta(t ; t, x)$, where $\eta(s)=\eta(s ; t, x)=\mathbf{E}\left[E(T-s)^{*} G^{\prime}(Z(T ; t, x))\right]$ is the solution of the adjoint equation, recall $E(T-s)^{*}=\mathrm{e}^{-(T-s) A^{*}}$,

$$
\dot{\eta}(s)-A^{*} \eta(s)=0, s \leq T ; \quad \eta(T)=G^{\prime}(Z(T ; t, x)) .
$$

Similarly, we have $u_{x x}(x, t)=\mathbf{E}\left[E(T-t)^{*} G^{\prime \prime}(Z(T ; t, x)) E(T-t)\right]$.

Weak convergence

Another difficulty: the Kolmogorov equation is proved only for $x \in D(A)$.

$$
\left\{\begin{array}{l}
u_{t}(x, t)-\left\langle u_{x}(x, t), A x-f(x)\right\rangle+\frac{1}{2} \operatorname{Tr}\left(u_{x x}(x, t) g(x) Q g(x)^{*}\right)=0, \\
u(x, T)=G(x) r
\end{array} \quad t \in[0, T), x \in D(A),\right.
$$

Project onto the eigenspaces of A. Auxiliary process $Z_{m}(s)=Z_{m}(s ; t, x)$:

$$
\begin{aligned}
Z_{m}(s)= & E_{m}(s-t) P_{m} \xi+\int_{t}^{s} E_{m}(s-r) P_{m} f\left(Z_{m}(r)\right) \mathrm{d} r \\
& +\int_{t}^{s} E_{m}(s-r) P_{m} g\left(Z_{m}(r)\right) \mathrm{d} W(r)
\end{aligned}
$$

Define $u_{m}: H \times[0, T] \rightarrow \mathbf{R}$ by

$$
u_{m}(x, t)=\mathbf{E}\left[G\left(Z_{m}(T ; t, x)\right)\right] .
$$

Then $u_{m}(x, t)=u_{m}\left(P_{m} x, t\right)$, to be used with $x=X_{h}(t)$.
The Kolmogorov equation is now well-defined.
Must verify that additional terms vanish as $m \rightarrow \infty$.

Weak convergence

The first term again:

$$
\mathbf{E} \int_{0}^{T}-\left\langle u_{x}\left(X_{h}(t), t\right),\left(A_{h}-A\right) X_{h}(t)-\left(P_{h}-l\right) f\left(X_{h}(t)\right)\right\rangle \mathrm{d} t,
$$

For the heat equation, we have here $A=\Lambda, A_{h}=\Lambda_{h}$, so that

$$
\begin{aligned}
\left\langle u_{x},\left(A_{h}-A\right) X_{h}\right\rangle & =\left\langle\left(A_{h} P_{h}-A\right) u_{x}, X_{h}\right\rangle \\
& =\left\langle A_{h} P_{h}\left(A^{-1}-A_{h}^{-1} P_{h}\right) A u_{x}, X_{h}\right\rangle \\
& =\left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) A u_{x}, A_{h} X_{h}\right\rangle
\end{aligned}
$$

Related to the "elliptic" error $\left(A^{-1}-A_{h}^{-1} P_{h}\right)$. But the norms are badly distributed between the factors. For the heat equation this can be handled (to some extent) by rewriting by means of Malliavin calculus.

Weak convergence

Here we try to explain why the norms on the previous slide are "badly distributed". We compute for the linear heat equation:

$$
\begin{aligned}
\left\langle u_{x},\left(A_{h}-A\right) X_{h}\right\rangle & =\left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) A u_{x}, A_{h} X_{h}\right\rangle, \\
u_{x}(x, t) & =\mathbf{E}\left[E(T-t) G^{\prime}(Z(T ; t, x))\right], \\
A u_{x}\left(X_{h}(t), t\right) & =\mathbf{E}\left[A E(T-t) G^{\prime}\left(Z\left(T ; t, X_{h}(t)\right)\right) \mid \mathcal{F}_{t}\right], \\
\left\|A^{-1}-A_{h}^{-1} P_{h}\right\|_{\mathcal{L}(H)} & \leq C h^{2}, \\
\|A E(T-t)\|_{\mathcal{L}(H)} & \leq C(T-t)^{-1} .
\end{aligned}
$$

Weak convergence

Hence, the bad term becomes

$$
\begin{aligned}
& \left|\mathbf{E} \int_{0}^{T}\left\langle u_{x}\left(X_{h}(t), t\right),\left(A_{h}-A\right) X_{h}(t)\right\rangle \mathrm{d} t\right| \\
& =\left|\mathbf{E} \int_{0}^{T}\left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) A u_{x}\left(X_{h}(t), t\right), A_{h} X_{h}(t)\right\rangle \mathrm{d} t\right| \\
& =\left|\mathbf{E} \int_{0}^{T}\left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) \mathbf{E}\left[A E(T-t) G^{\prime}\left(Z\left(T ; t, X_{h}(t)\right)\right) \mid \mathcal{F}_{t}\right], A_{h} X_{h}(t)\right\rangle \mathrm{d} t\right| \\
& \leq C \int_{0}^{T}\left\|A^{-1}-A_{h}^{-1} P_{h}\right\|_{\mathcal{L}(H)}\|A E(T-t)\|_{\mathcal{L}(H)} \sup _{x \in H}\left\|G^{\prime}(x)\right\|_{H} \\
& \quad \times\left\|A_{h} X_{h}(t)\right\|_{L_{2}(\Omega, H)} \mathrm{d} t \\
& \leq C h^{2} \int_{0}^{T}(T-t)^{-1} \mathrm{~d} t|G|_{\mathcal{C}_{\mathrm{b}}^{1}} \sup _{t \in[0, T]}\left\|A_{h} X_{h}(t)\right\|_{L_{2}(\Omega, H)} .
\end{aligned}
$$

Here: $\sup _{t \in[0, T]}\left\|A_{h} X_{h}(t)\right\|_{L_{2}(\Omega, H)}<\infty$ if $\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\text {HS }}$ with $\beta=2$
(regularity and strong convergence of order $\beta=2$). But the rate is only $h^{2}=h^{\beta}$, not $h^{2 \beta}$.

Weak convergence

Here we have not been able to exploit the possibility for the integral to absorb a singularity at $t=0$, i.e.,

$$
\int_{0}^{T}(T-t)^{-1} t^{-1} \mathrm{~d} t \quad \text { (almost convergent). }
$$

This can be achieved by an integration by parts from the Malliavin calculus.

Weak convergence: the linear case

This explains some difficulties encountered in connection with the nonlinear problem.

The story is more complete for the linear problem:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

I will present this now for the heat and wave equations. (We have also studied the linearized Cahn-Hilliard-Cook equation.)

Weak convergence: the linear case

This explains some difficulties encountered in connection with the nonlinear problem.

The story is more complete for the linear problem:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

I will present this now for the heat and wave equations. (We have also studied the linearized Cahn-Hilliard-Cook equation.)

We use a trick introduced by De Bouard and Debussche (nonlinear Schrödinger equation) [de Bouard and Debussche(2006)].
Debussche and Printems (linear heat equation) [Debussche and Printems(2009)].

Weak convergence: the linear case

This explains some difficulties encountered in connection with the nonlinear problem.

The story is more complete for the linear problem:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

I will present this now for the heat and wave equations. (We have also studied the linearized Cahn-Hilliard-Cook equation.)

We use a trick introduced by De Bouard and Debussche (nonlinear Schrödinger equation) [de Bouard and Debussche(2006)].
Debussche and Printems (linear heat equation) [Debussche and Printems(2009)].

The trick is: Remove the troublesome term $\left(A_{h}-A\right) X_{h}$ by means of an integrating factor.

Weak error representation: preliminaries

Apply the integrating factor $E(T-t)$ to get $Y(t)=E(T-t) X(t)$:

$$
\mathrm{d} Y(t)=E(T-t) B \mathrm{~d} W(t), t \in(0, T] ; Y(0)=E(T) X_{0}
$$

with mild solution

$$
Y(t)=E(T) X_{0}+\int_{0}^{t} E(T-s) B \mathrm{~d} W(s) .
$$

Similarly, consider

$$
\mathrm{d} Y_{h}(t)=E_{h}(T-t) B \mathrm{~d} W(t), t \in(0, T] ; Y_{h}(0)=E_{h}(T) P_{h} X_{0},
$$

with mild solution

$$
Y_{h}(t)=E_{h}(T) P_{h} X_{0}+\int_{0}^{t} E_{h}(T-s) B_{h} \mathrm{~d} W(s) .
$$

Note: $X(T)=Y(T), X_{h}(T)=Y_{h}(T)$.
No drift term in eq. for Y and Y_{h}.

Weak error representation: preliminaries

Auxiliary problem: $Z(s)=Z(s ; t, \xi), \xi$ is a \mathcal{F}_{t}-measurable,

$$
\mathrm{d} Z(s)=E(T-s) B \mathrm{~d} W(s), s \in(t, T] ; Z(t)=\xi
$$

Unique mild solution: $Z(s ; t, \xi)=\xi+\int_{t}^{s} E(T-r) B \mathrm{~d} W(r)$.
Define $u: H \times[0, T] \rightarrow \mathbf{R}$ by $u(x, t)=\mathbf{E}[G(Z(T ; t, x))]$.
The partial derivatives are:

$$
\begin{aligned}
u_{x}(x, t) & =\mathbf{E}\left[G^{\prime}(Z(T ; t, x))\right], \\
u_{x x}(x, t) & =\mathbf{E}\left[G^{\prime \prime}(Z(T ; t, x))\right] .
\end{aligned}
$$

If $G \in C_{b}^{2}(H, \mathbb{R})$, then u is a solution to Kolmogorov's equation

$$
\left\{\begin{array}{l}
u_{t}(x, t)+\frac{1}{2} \operatorname{Tr}\left(u_{x x}(x, t) E(T-t) B Q[E(T-t) B]^{*}\right)=0, t \in[0, T), x \in H \\
u(x, T)=G(x)
\end{array}\right.
$$

Weak error representation

THEOREM. If

$$
\operatorname{Tr}\left(\int_{0}^{T} E(t) B Q[E(t) B]^{*} \mathrm{~d} t\right)<\infty
$$

and $G \in C_{\mathrm{b}}^{2}(H, \mathbf{R})$, then the weak error

$$
e_{h}(T)=\mathbf{E}\left[G\left(X_{h}(T)\right)\right]-\mathbf{E}[G(X(T))]
$$

has the representation

$$
\begin{aligned}
e_{h}(T)= & \mathbf{E}\left[u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right] \\
+ & \frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
& \left.\times\left[E_{h}(T-t) B_{h}+E(T-t) B\right] Q\left[E_{h}(T-t) B_{h}-E(T-t) B\right]^{*}\right) \mathrm{d} t \\
= & \mathbf{E}\left[u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right] \\
+ & \frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
& \left.\times\left[E_{h}(T-t) B_{h}-E(T-t) B\right] Q\left[E_{h}(T-t) B_{h}+E(T-t) B\right]^{*}\right) \mathrm{d} t .
\end{aligned}
$$

Weak convergence: proof

Use Itô formula and Kolmogorov equation as before:

$$
\begin{aligned}
& \mathbf{E}\left[G\left(X_{h}(T)\right)\right]-\mathbf{E}[G(X(T))] \\
&= \mathbf{E}\left[G\left(Y_{h}(T)\right)\right]-\mathbf{E}[G(Y(T))] \\
&= \mathbf{E}\left[u\left(Y_{h}(T), T\right)-u(Y(T), T)\right] \\
&= \mathbf{E}\left[u\left(Y_{h}(T), T\right)-u\left(Y_{h}(0), 0\right)\right]+\mathbf{E}\left[u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right] \\
&= \mathbf{E}\left[u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right]+\mathbf{E} \int_{0}^{T}\left\{u_{t}\left(Y_{h}(t), t\right)\right. \\
&\left.+\frac{1}{2} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\left[E_{h}(T-t) B_{h}\right] Q\left[E_{h}(T-t) B_{h}\right]^{*}\right)\right\} \mathrm{d} t \\
&= \mathbf{E}\left[u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right]+\frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
&\left.\times\left\{\left[E_{h}(T-t) B_{h}\right] Q\left[E_{h}(T-t) B_{h}\right]^{*}-E(T-t) B Q B^{*} E(T-t)^{*}\right\}\right) \mathrm{d} t .
\end{aligned}
$$

Weak convergence: proof

Here the expression

$$
[S, T]=\operatorname{Tr}\left(u_{x x} S Q T^{*}\right)
$$

is symmetric:

$$
\begin{aligned}
{[S, T] } & =\operatorname{Tr}\left(u_{x x} S Q T^{*}\right)=\operatorname{Tr}\left(S Q T^{*} u_{x x}\right) \\
& =\operatorname{Tr}\left(\left[S Q T^{*} u_{x x}\right]^{*}\right)=\operatorname{Tr}\left(u_{x x} T Q S^{*}\right)=[T, S]
\end{aligned}
$$

because $Q, u_{x x}$ are selfadjoint and $\operatorname{Tr}\left(S^{*}\right)=\operatorname{Tr}(S), \operatorname{Tr}(S T)=\operatorname{Tr}(T S)$. Hence, we have a conjugate rule

$$
[S+T, S-T]=[S, S]-[T, T]
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Tr}\left(u_{x x}(\xi, r)\left\{\left[E_{h}(s) B_{h}\right] Q\left[E_{h}(s) B_{h}\right]^{*}-[E(s) B] Q[E(s) B]^{*}\right\}\right) \\
& \quad=\operatorname{Tr}\left(u_{x x}(\xi, r)\left[E_{h}(s) B_{h}+E(s) B\right] Q\left[E_{h}(s) B_{h}-E(s) B\right]^{*}\right) \\
& \quad=\operatorname{Tr}\left(u_{x x}(\xi, r)\left[E_{h}(s) B_{h}-E(s) B\right] Q\left[E_{h}(s) B_{h}+E(s) B\right]^{*}\right)
\end{aligned}
$$

Note, by the way, that $B_{h} \in \mathcal{L}(U, H)$ with $B_{h}: U \rightarrow S_{h}, E_{h}(s): S_{h} \rightarrow S_{h}$, and we consider $E_{h}(s) B_{h} \in \mathcal{L}(U, H)$. Hence, $\left[E_{h}(s) B_{h}\right]^{*} \neq B_{h}^{*} E_{h}(s)^{*}$.

Weak convergence: heat equation

Here $A=\Lambda, B=I, A_{h}=\Lambda_{h}, B_{h}=P_{h}$.

$$
\begin{array}{ll}
\mathrm{d} X+\Lambda X \mathrm{~d} t=\mathrm{d} W, t>0 ; & X(0)=X_{0} \\
\mathrm{~d} X_{h}+\Lambda_{h} X_{h} \mathrm{~d} t=P_{h} \mathrm{~d} W, t>0 ; & X_{h}(0)=P_{h} X_{0} \tag{2}
\end{array}
$$

Theorem

Let X and X_{h} be the solutions of (1) and (2), respectively. Let $G \in C_{\mathrm{b}}^{2}(H, \mathbf{R})$ and assume that $\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\text {HS }}=\left\|\Lambda^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\text {HS }}<\infty$ for some $\beta \in(0,1]$. Then there are $C>0, h_{0}>0$, depending on G, X_{0}, Q, β, and T but not on h, such that for $h \leq h_{0}$,

$$
\left|\mathbf{E}\left[G\left(X_{h}(T)\right)-G(X(T))\right]\right| \leq C h^{2 \beta}|\log (h)| .
$$

If, in addition $X_{0} \in L_{1}\left(\Omega, \dot{H}^{2 \beta}\right)$, then C is independent of T as well.

Proof

$$
\begin{aligned}
e_{h}(T)= & \mathbf{E}\left[u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right] \\
+ & \frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
& \left.\times\left[E_{h}(T-t) P_{h}+E(T-t)\right] Q\left[E_{h}(T-t) P_{h}-E(T-t)\right]^{*}\right) \mathrm{d} t
\end{aligned}
$$

Approximation of the semigroup:

$$
\left\|\left(E_{h}(t) P_{h}-E(t)\right) v\right\|=\left\|F_{h}(t) v\right\| \leq C h^{s} t^{-\frac{s-\gamma}{2}}|v|_{\gamma}, \quad 0 \leq \gamma \leq s \leq r .
$$

Proof

In the initial error we have

$$
Y_{h}(0)-Y(0)=E_{h}(T) P_{h} X_{0}-E(T) X_{0}=F_{h}(T) X_{0}
$$

so that

$$
\begin{aligned}
\mathbf{E} & \left(u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right) \\
& =\mathbf{E} \int_{0}^{1}\left\langle u_{x}\left(Y(0)+s\left(Y_{h}(0)-Y(0)\right), 0\right), Y_{h}(0)-Y(0)\right\rangle \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{1}\left\langle u_{x}\left(E(T) X_{0}+s F_{h}(T) X_{0}, 0\right), F_{h}(T) X_{0}\right\rangle \mathrm{d} s
\end{aligned}
$$

Thus, recalling $u_{x}(x, t)=\mathbf{E}\left[G^{\prime}(Z(T ; t, x))\right]$,

$$
\begin{aligned}
& \left|\mathbf{E}\left(u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right)\right| \leq \sup _{x \in H}\left\|u_{x}(x, 0)\right\| \mathbf{E}\left(\left\|F_{h}(T) X_{0}\right\|\right) \\
& \quad \leq C h^{2 \beta} T^{-\frac{2 \beta-\gamma}{2}} \mathbf{E}\left(\left|X_{0}\right|_{\gamma}\right) \sup _{x \in H}\left\|G^{\prime}(x)\right\|, \quad 0 \leq \gamma \leq 2 \beta .
\end{aligned}
$$

If $\gamma=2 \beta$ there is no dependence on T.

Proof

The main term: use $|\operatorname{Tr}(S T)| \leq\|S\|_{\text {HS }}\|T\|_{\text {HS }}$

$$
\begin{aligned}
& \mid \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
&\left.\times\left[E_{h}(T-t) P_{h}+E(T-t)\right] Q\left[E_{h}(T-t) P_{h}-E(T-t)\right]^{*}\right) \mathrm{d} t \mid \\
&= \mid \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\left[E_{h}(T-t) P_{h}+E(T-t)\right]^{*}\right. \\
&\left.\times A^{\frac{1-\beta}{2}} A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}} Q^{\frac{1}{2}} A^{\frac{\beta-1}{2}} A^{\frac{1-\beta}{2}} F_{h}(T-t)\right) \mathrm{d} t \mid \\
&= \left\lvert\, \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\left(A^{\frac{1-\beta}{2}}\left[E_{h}(T-t) P_{h}+E(T-t)\right]\right)^{*}\right.\right. \\
&\left.\times A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}} Q^{\frac{1}{2}} A^{\frac{\beta-1}{2}} A^{\frac{1-\beta}{2}} F_{h}(T-t)\right) \mathrm{d} t \mid \\
& \leq \mathbf{E} \int_{0}^{T}\left\|u_{x x}\left(Y_{h}(t), t\right)\left(A^{\frac{1-\beta}{2}}\left[E_{h}(T-t) P_{h}+E(T-t)\right]\right)^{*} A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}} \\
& \times\left\|Q^{\frac{1}{2}} A^{\frac{\beta-1}{2}} A^{\frac{1-\beta}{2}} F_{h}(T-t)\right\|_{\mathrm{HS}} \mathrm{~d} t
\end{aligned}
$$

Proof

Use $\|S T\|_{\text {HS }} \leq\|S\|_{\mathcal{L}}\|T\|_{\text {HS }}:$

$$
\begin{aligned}
\cdots \leq & \mathbf{E} \int_{0}^{T}\left\|u_{x x}\left(Y_{h}(t), t\right)\left(A^{\frac{1-\beta}{2}}\left[E_{h}(T-t) P_{h}+E(T-t)\right]\right)^{*} A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}} \\
& \times\left\|Q^{\frac{1}{2}} A^{\frac{\beta-1}{2}} A^{\frac{1-\beta}{2}} F_{h}(T-t)\right\|_{\mathrm{HS}} \mathrm{~d} t \\
\leq & \sup _{(x, t) \in H \times[0, T]}\left\|u_{x x}(x, t)\right\|_{\mathcal{L}(H)}\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}}^{2} \\
& \times \int_{0}^{T}\left\|A^{\frac{1-\beta}{2}}\left(E_{h}(t) P_{h}+E(t)\right)\right\|_{\mathcal{L}(H)}\left\|A^{\frac{1-\beta}{2}} F_{h}(t)\right\|_{\mathcal{L}(H)} \mathrm{d} t .
\end{aligned}
$$

Here

$$
\sup _{(x, t) \in H \times[0, T]}\left\|u_{x x}(x, t)\right\|_{\mathcal{L}(H)} \leq \sup _{x \in H}\left\|G^{\prime \prime}(x)\right\|_{\mathcal{L}(H)}
$$

Recall

$$
\begin{aligned}
& \left\|A^{\frac{1}{2}} v_{h}\right\|=\left\|\nabla v_{h}\right\|=\left\|A_{h}^{\frac{1}{2}} v_{h}\right\|, \quad v_{h} \in S_{h}, \\
& \left\|A^{\delta} v_{h}\right\| \leq\left\|A_{h}^{\delta} v_{h}\right\|, \quad v_{h} \in S_{h}, \delta \in\left[0, \frac{1}{2}\right], \\
& \left\|A^{\delta}\left(E_{h}(t) P_{h}+E(t)\right)\right\|_{\mathcal{L}(H)} \leq C e^{-\omega t} t^{-\delta}, \quad \delta=\frac{1-\beta}{2} \in\left[0, \frac{1}{2}\right] .
\end{aligned}
$$

Proof

Now consider $\left\|A^{\frac{1-\beta}{2}} F_{h}(t)\right\|_{\mathcal{L}(H)}$. Analyticity:

$$
\left\|A^{\delta} F_{h}(t)\right\|_{\mathcal{L}(H)} \leq C t^{-\delta}, \quad \delta \in\left[0, \frac{1}{2}\right]
$$

Approximation:

$$
\left\|F_{h}(t) v\right\| \leq C h^{s} t^{-\frac{s-\gamma}{2}}|v|_{\gamma}, \quad 0 \leq \gamma \leq s \leq r
$$

Hence

$$
\left\|A^{\frac{1-\beta}{2}} F_{h}(t)\right\|_{\mathcal{L}(H)} \leq\left\|F_{h}(t)\right\|_{\mathcal{L}(H)}^{\beta}\left\|A^{\frac{1}{2}} F_{h}(t)\right\|_{\mathcal{L}(H)}^{1-\beta} \leq C h^{2 \beta} t^{-\frac{1+\beta}{2}}, \quad \beta \in[0,1]
$$

Therefore, for $\beta \in(0,1]$ one may estimate the above integral:

$$
\begin{aligned}
& \int_{0}^{T}\left\|A^{\frac{1-\beta}{2}}\left(E_{h}(t) P_{h}+E(t)\right)\right\|_{\mathcal{L}(H)}\left\|A^{\frac{1-\beta}{2}} F_{h}(t)\right\|_{\mathcal{L}(H)} \mathrm{d} t \\
& =\left(\int_{0}^{h^{2}}+\int_{h^{2}}^{T}\right)\left\|A^{\frac{1-\beta}{2}}\left(E_{h}(t) P_{h}+E(t)\right)\right\|_{\mathcal{L}(H)}\left\|A^{\frac{1-\beta}{2}} F_{h}(t)\right\|_{\mathcal{L}(H)} \mathrm{d} t \\
& \leq C \int_{0}^{h^{2}} t^{-\frac{1-\beta}{2}} t^{-\frac{1-\beta}{2}} \mathrm{~d} t+C \int_{h^{2}}^{T} e^{-\omega t} t^{-\frac{1-\beta}{2}} h^{2 \beta} t^{-\frac{1+\beta}{2}} \mathrm{~d} t \leq C h^{2 \beta}|\log (h)|
\end{aligned}
$$

and the proof is complete.

Weak convergence: heat equation

By inspection of the above proof we see that the error estimate is

$$
\begin{aligned}
& \left|\mathbf{E}\left(G\left(X_{h}(T)\right)-G(X(T))\right)\right| \\
& \quad \leq C h^{2 \beta} T^{-\frac{2 \beta-\gamma}{2}} \mathbf{E}\left(\left|X_{0}\right|_{\gamma}\right) \sup _{x \in H}\left\|G^{\prime}(x)\right\|_{H} \\
& \quad+C h^{2 \beta}|\log (h)| \beta^{-1} \sup _{x \in H}\left\|G^{\prime \prime}(x)\right\|_{\mathcal{L}(H)}\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\text {HS }}^{2} .
\end{aligned}
$$

Weak convergence: heat equation

By inspection of the above proof we see that the error estimate is

$$
\begin{aligned}
& \left|\mathbf{E}\left(G\left(X_{h}(T)\right)-G(X(T))\right)\right| \\
& \quad \leq C h^{2 \beta} T^{-\frac{2 \beta-\gamma}{2}} \mathbf{E}\left(\left|X_{0}\right|_{\gamma}\right) \sup _{x \in H}\left\|G^{\prime}(x)\right\|_{H} \\
& \quad+C h^{2 \beta}|\log (h)| \beta^{-1} \sup _{x \in H}\left\|G^{\prime \prime}(x)\right\|_{\mathcal{L}(H)}\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

The previous theorem does not allow $\beta>1$.
This is satisfactory if the order of the FEM is $r=2$.
Under a slightly stronger condition on A and Q we now extend the result to the case $\beta>1$.

Weak convergence: heat equation

Theorem

Let X and X_{h} be the solutions of (1) and (2), respectively. Let $G \in C_{\mathrm{b}}^{2}(H, \mathbf{R})$ and assume that $\left\|A^{\beta-1} Q\right\|_{\mathrm{Tr}}=\left\|\Lambda^{\beta-1} Q\right\|_{\mathrm{Tr}}<\infty$ for some $\beta \in\left[1, \frac{r}{2}\right]$. Then there are $C>0, h_{0}>0$, depending on G, X_{0}, Q, β, and T but not on h, such that for $h \leq h_{0}$,

$$
\left|\mathbf{E}\left(G\left(X_{h}(T)\right)-G(X(T))\right)\right| \leq C h^{2 \beta}|\log (h)| .
$$

If, in addition $X_{0} \in L_{1}\left(\Omega, \dot{H}^{2 \beta}\right)$, then C is independent of T as well. This theorem differs in the assumption about Q. According to the theorem on "alternative conditions" in the first part of my lectures we have

$$
\left\|\Lambda^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}}^{2} \leq\left\|\Lambda^{\beta-1} Q\right\|_{\mathrm{Tr}_{\mathrm{r}}} .
$$

Thus, the new condition implies the previous one. If Λ and Q commute, then they coincide.

Proof

The initial error term is treated as before. For the main term we distribute factors differently:

$$
\begin{aligned}
& \mid \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
&\left.\times\left[E_{h}(T-t) P_{h}-E(T-t)\right] Q\left[E_{h}(T-t) B_{h}+E(T-t) B\right]^{*}\right) \mathrm{d} t \mid \\
&= \mid \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
&\left.\times F_{h}(t) A^{1-\beta} A^{\beta-1} Q\left[E_{h}(T-t) P_{h}+E(T-t)\right]^{*}\right) \mathrm{d} t \mid \\
& \leq C \sup _{(x, t) \in H \times[0, T]}\left\|u_{x x}(x, t)\right\|_{\mathcal{L}(H)}\left\|A^{\beta-1} Q\right\|_{\operatorname{Tr}} \int_{0}^{T}\left\|F_{h}(t) A^{\beta-1}\right\|_{\mathcal{L}(H)} e^{-\omega t} \mathrm{~d} t .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \int_{0}^{T}\left\|F_{h}(t) A^{1-\beta}\right\|_{\mathcal{L}(H)} e^{-\omega t} \mathrm{~d} t=\left(\int_{0}^{h^{2 \beta}}+\int_{h^{2 \beta}}^{T}\right)\left\|F_{h}(t) A^{1-\beta}\right\|_{\mathcal{L}(H)} e^{-\omega t} \mathrm{~d} t \\
& \quad \leq C \int_{0}^{h^{2 \beta}} \mathrm{~d} t+C h^{2 \beta} \int_{h^{2 \beta}}^{T} t^{-1} e^{-\omega t} \mathrm{~d} t \leq C h^{2 \beta}|\log (h)|
\end{aligned}
$$

Weak convergence: the wave equation

Recall the notation:

$$
\begin{gathered}
A:=\left[\begin{array}{cc}
0 & -I \\
\Lambda & 0
\end{array}\right], \quad B:=\left[\begin{array}{l}
0 \\
I
\end{array}\right], \quad X:=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right], \quad X_{0}:=\left[\begin{array}{l}
X_{0,1} \\
X_{0,2}
\end{array}\right], \\
E(t)=\mathrm{e}^{-t A}=\left[\begin{array}{cc}
C(t) & \Lambda^{-1 / 2} S(t) \\
-\Lambda^{1 / 2} S(t) & C(t)
\end{array}\right],
\end{gathered}
$$

where $C(t)=\cos \left(t \Lambda^{1 / 2}\right)$ and $S(t)=\sin \left(t \Lambda^{1 / 2}\right)$.
Spatially discrete:

$$
\begin{gathered}
A_{h}:=\left[\begin{array}{cc}
0 & -I \\
\Lambda_{h} & 0
\end{array}\right], \quad B_{h}:=\left[\begin{array}{c}
0 \\
P_{h}
\end{array}\right], \quad X_{h 0}=P_{h} X_{0} . \\
E_{h}(t)=\mathrm{e}^{-t A_{h}}=\left[\begin{array}{cc}
C_{h}(t) & \Lambda_{h}^{-1 / 2} S_{h}(t) \\
-\Lambda_{h}^{1 / 2} S_{h}(t) & C_{h}(t)
\end{array}\right]
\end{gathered}
$$

with $C_{h}(t)=\cos \left(t \Lambda_{h}^{1 / 2}\right), S_{h}(t)=\sin \left(t \Lambda_{h}^{1 / 2}\right)$.

Weak convergence: the wave equation

Theorem
Let $g \in C_{\mathrm{b}}^{2}\left(\dot{H}^{0}, \mathbf{R}\right)$ and assume that $\left\|\Lambda^{\beta-\frac{1}{2}} Q \Lambda^{-\frac{1}{2}}\right\|_{\mathrm{Tr}}<\infty$ and that $X_{0} \in L_{1}\left(\Omega, H^{2 \beta}\right)$ for some $\beta \in\left[0, \frac{r+1}{2}\right]$. Then, there are $C>0, h_{0}>0$, depending on g, X_{0}, Q, and T but not on h, such that for $h \leq h_{0}$,

$$
\left|\mathbf{E}\left(g\left(X_{h, 1}(T)\right)-g\left(X_{1}(T)\right)\right)\right| \leq C^{\frac{r}{r+1} 2 \beta} .
$$

Note: the test function g depends on the first component X_{1} only. Again the new condition on Q implies the previous one:

$$
\left\|\Lambda^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}}^{2} \leq\left\|\Lambda^{\beta-\frac{1}{2}} Q \Lambda^{-\frac{1}{2}}\right\|_{\mathrm{Tr}} .
$$

Therefore, the rate of weak convergence is twice the rate of strong convergence.

Proof

We only make a brief discussion of the main term.
The error operator for the first component is

$$
K_{h}(t):=\Lambda_{h}^{-\frac{1}{2}} S_{h}(t) P_{h}-\Lambda^{-\frac{1}{2}} S(t)
$$

We have

$$
\left\|K_{h}(t) w\right\| \leq C(T) h^{\frac{r}{r+1} s}|w|_{s-1}, \quad w \in \dot{H}^{s-1}, s \in[0, r+1]
$$

or

$$
\left\|K_{h}(t) \Lambda^{\frac{1-s}{2}} v\right\| \leq C(T) h^{\frac{r}{r+1} s}\|v\|, \quad v \in \dot{H}^{1-s}
$$

We use $s=2 \beta$:

$$
\left\|K_{h}(t) \Lambda^{\frac{1}{2}-\beta}\right\|_{\mathcal{L}\left(\dot{H}^{0}\right)} \leq C(T) h^{\frac{r}{r+1} 2 \beta}, \quad t \in[0, T], 2 \beta \in[0, r+1]
$$

We use a test function of the form

$$
G(x):=g\left(P_{1} x\right)=g\left(x_{1}\right), \quad \text { for } x=\left[x_{1}, x_{2}\right]^{\top} \in \mathcal{H}=\dot{H}^{0} \times \dot{H}^{-1}
$$

Proof

The main term is

$$
\begin{aligned}
& \mid \mathbf{E}\left(\int _ { 0 } ^ { T } \operatorname { T r } \left(u_{x x}\left(Y_{h}(t), t\right)\right.\right. \\
& \left.\left.\quad \times\left[E_{h}(T-t) B_{h}+E(T-t) B\right] Q\left[E_{h}(T-t) B_{h}-E(T-t) B\right]^{*}\right) \mathrm{~d} t\right) \mid
\end{aligned}
$$

The integrand simplifies to (with $s=T-t$)

$$
\begin{aligned}
& \mid \mathbf{E}(\left.\operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\left[E_{h}(s) B_{h}+E(s) B\right] Q\left[E_{h}(s) B_{h}-E(s) B\right]^{*}\right)\right) \mid \\
&=\left|\mathbf{E}\left(\operatorname{Tr}\left(\left[E_{h}(s) B_{h}-E(s) B\right] Q\left[E_{h}(s) B_{h}+E(s) B\right]^{*} u_{x x}\left(Y_{h}(t), t\right)^{*}\right)\right)\right| \\
&=\left|\mathbf{E}\left(\operatorname{Tr}\left(K_{h}(s) Q\left[\Lambda_{h}^{-\frac{1}{2}} S_{h}(s) P_{h}+\Lambda^{-\frac{1}{2}} S(s)\right] g^{\prime \prime}\left(P_{1} Z\left(T ; t, Y_{h}(t)\right)\right)\right)\right)\right| \\
& \leq\left\|K_{h}(s) \Lambda^{\frac{1}{2}-\beta}\right\|_{\mathcal{L}\left(\dot{H}^{0}\right)}\left\|\Lambda^{\beta-\frac{1}{2}} Q \Lambda^{-\frac{1}{2}}\right\|_{\operatorname{Tr}} \\
& \times\left\|\Lambda^{\frac{1}{2}}\left[\Lambda_{h}^{-\frac{1}{2}} S_{h}(s) P_{h}+\Lambda^{-\frac{1}{2}} S(s)\right]\right\|_{\mathcal{L}\left(\dot{H}^{0}\right)} \sup _{x \in \dot{H}^{0}}\left\|g^{\prime \prime}(x)\right\|_{\mathcal{L}\left(\dot{H}^{0}\right)} . \\
& \leq C(T) h^{\frac{r}{r+1}} 2 \beta
\end{aligned}\left\|\Lambda^{\beta-\frac{1}{2}} Q \Lambda^{-\frac{1}{2}}\right\|_{\operatorname{Tr}} \sup _{x \in \dot{H}^{0}}\left\|g^{\prime \prime}(x)\right\|_{\mathcal{L}\left(\dot{H}^{0}\right)} .
$$

Weak convergence: completely discrete

This weak error representation formula has been generalized so that it applies to completely discrete approximations. Recall

$$
\begin{aligned}
X(t) & =E(t) X_{0}+\int_{0}^{t} E(t-s) B \mathrm{~d} W(s) \\
Y(t) & =E(T-t) X(t)=E(T) X_{0}+\int_{0}^{t} E(T-s) B \mathrm{~d} W(s), \\
X(T) & =Y(T)
\end{aligned}
$$

Assume that $\tilde{X}(T)$ is the result of some temporal and spatial approximation. Construct a process $\{\tilde{Y}(t)\}_{t \in[0, T]}$ of the form

$$
\tilde{Y}(t)=\tilde{E}(T) \tilde{X}_{0}+\int_{0}^{t} \tilde{E}(T-s) \tilde{B} \mathrm{~d} W(s) \quad \text { with } \tilde{X}(T)=\tilde{Y}(T) .
$$

Here $\{\tilde{E}(t)\}_{t \in[0, T]} \subset \mathcal{B}(\mathcal{S}, \mathcal{S})$ and $\tilde{B} \in \mathcal{B}(\mathcal{U}, \mathcal{S})$, where \mathcal{S} is a Hilbert subspace of \mathcal{H} with the same norm (typically $\mathcal{S}=\mathcal{H}$ or \mathcal{S} is a finite-dimensional subspace of $\mathcal{H})$. $\tilde{E}(t)$ can be obtained by time interpolation of the time stepping operator.

Weak convergence

Theorem

If $G \in \mathcal{C}_{\mathrm{b}}^{2}(\mathcal{H}, \mathbf{R})$, then the weak error $e(T)$ has the representation

$$
\begin{aligned}
e(T)= & \mathbf{E}[u(\tilde{Y}(0), 0)-u(Y(0), 0)] \\
& +\frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}(\tilde{Y}(t), t) \mathcal{O}(t)\right) \mathrm{d} t
\end{aligned}
$$

where

$$
\mathcal{O}(t)=(\tilde{E}(T-t) \tilde{B}+E(T-t) B) Q(\tilde{E}(T-t) \tilde{B}-E(T-t) B)^{*}
$$

or

$$
\mathcal{O}(t)=(\tilde{E}(T-t) \tilde{B}-E(T-t) B) Q(\tilde{E}(T-t) \tilde{B}+E(T-t) B)^{*}
$$

This has been applied to fully discrete schemes for the linear heat, wave and Cahn-Hilliard-Cook equations, [Debussche and Printems(2009)], [Kovács et al.(2012a)], [Kovács et al.(2012b)], [Lindner and Schilling(2012)].

Weak convergence: Malliavin calculus

I will now explain how the integration by parts from the Malliavin calculus can be used. As we have seen this is not needed for linear problems, but the main difficulty occurs already there, so I will present the argument for the linear heat equation.

Assume for simplicity that $X_{0}=0$, so that

$$
\begin{aligned}
X(t) & =\int_{0}^{t} E(t-s) \mathrm{d} W(s) \\
X_{h}(t) & =\int_{0}^{t} E_{h}(t-s) P_{h} \mathrm{~d} W(s)
\end{aligned}
$$

and the weak error

$$
\begin{aligned}
\mathbf{E}[& {\left[\left(X_{h}(T)\right)-G(X(T))\right] } \\
& =\mathbf{E} \int_{0}^{T}\left\{-\left\langle u_{x}\left(X_{h}(t), t\right),\left(A_{h}-A\right) X_{h}(t)\right\rangle\right. \\
& \left.\quad+\frac{1}{2} \operatorname{Tr}\left[u_{x x}\left(X_{h}(t), t\right)\left[P_{h} Q P_{h}-Q\right]\right]\right\} d t
\end{aligned}
$$

Weak convergence: Malliavin

We assume as usual, for some $\beta \in[0, r / 2]$,

$$
\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}}=\left\|A^{\frac{\beta-1}{2}}\right\|_{\mathcal{L}_{2}^{0}}<\infty .
$$

To be specific, let $\beta=1$:

$$
\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\text {HS }}=\left\|Q^{\frac{1}{2}}\right\|_{\text {HS }}=\|I\|_{\mathcal{L}_{2}^{0}}=\operatorname{Tr}(Q)^{\frac{1}{2}}<\infty .
$$

We want to obtain weak order $h^{2 \beta-\epsilon}=h^{2-\epsilon}$.

Malliavin calculus

Theorem
For any random variable $F \in \mathbf{D}^{1,2}(H)$ and any predictable process $\Phi \in L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)$ the following integration by parts formula is valid.

$$
\mathbf{E}\left[\left\langle F, \int_{0}^{t} \Phi(s) \mathrm{d} W(s)\right\rangle_{H}\right]=\mathbf{E}\left[\int_{0}^{t}\left\langle D_{s} F, \Phi(s)\right\rangle_{\mathcal{L}_{2}^{0}} \mathrm{~d} s\right] .
$$

We will use this (essentially) with $\Phi(s)=E_{h}(t-s) P_{h}$ and

$$
F=u_{x}\left(X_{h}(t), t\right), \quad D_{s} F=D_{s} u_{x}\left(X_{h}(t), t\right)=u_{x x}\left(X_{h}(t), t\right) D_{s} X_{h}(t),
$$

where

$$
X_{h}(t)=\int_{0}^{t} E_{h}(t-s) P_{h} \mathrm{~d} W(s), \quad D_{s} X_{h}(t)=E_{h}(t-s) P_{h}
$$

and

$$
u_{x x}\left(X_{h}(t), t\right)=\mathbf{E}\left[E(T-t) G^{\prime \prime}\left(Z\left(T ; t, X_{h}(t)\right) E(T-t)\right) \mid \mathcal{F}_{t}\right] .
$$

Malliavin

The difficult term:

$$
\begin{aligned}
& \left|\mathbf{E} \int_{0}^{T}\left\langle u_{x}\left(X_{h}(t), t\right),\left(A_{h}-A\right) X_{h}(t)\right\rangle \mathrm{d} t\right| \\
& =\left|\mathbf{E} \int_{0}^{T}\left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) A u_{x}, A_{h} X_{h}\right\rangle \mathrm{d} t\right| \quad\left[K_{h}=A^{-1}-A_{h}^{-1} P_{h}\right] \\
& =\left|\int_{0}^{T} \mathbf{E}\left[\left\langle K_{h} A u_{x}\left(X_{h}(t), t\right), A_{h} \int_{0}^{t} E_{h}(t-s) P_{h} \mathrm{~d} W(s)\right\rangle\right] \mathrm{d} t\right| \\
& =\left|\int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\langle K_{h} A D_{s} u_{x}\left(X_{h}(t), t\right), A_{h} E_{h}(t-s) P_{h}\right\rangle_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d} t\right| \\
& =\left|\int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\langle K_{h} A u_{x x}\left(X_{h}(t), t\right) D_{s} X_{h}(t), A_{h} E_{h}(t-s) P_{h}\right\rangle_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d} t\right| \\
& \leq \int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\|K_{h} A u_{x x}\left(X_{h}(t), t\right) D_{s} X_{h}(t)\right\|_{\mathcal{L}_{2}^{0}}\left\|A_{h} E_{h}(t-s) P_{h}\right\|_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

Malliavin

$$
\begin{aligned}
& \cdots \leq\left|\int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\|K_{h} A u_{x x}\left(X_{h}(t), t\right) D_{s} X_{h}(t)\right\|_{\mathcal{L}_{2}^{0}}\left\|A_{h} E_{h}(t-s) P_{h}\right\|_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d} t\right| \\
& \leq \int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\|K_{h}\right\|_{\mathcal{L}}\left\|A u_{x x}\left(X_{h}(t), t\right)\right\|_{\mathcal{L}}\left\|D_{s} X_{h}(t)\right\|_{\mathcal{L}}\|I\|_{\mathcal{L}_{2}^{0}}\right. \\
& \left.\quad \times\left\|A_{h} E_{h}(t-s) P_{h}\right\|_{\mathcal{L}}\|I\|_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d} t \\
& u_{x x}\left(X_{h}(t), t\right)=\mathbf{E}\left[E(T-t) G^{\prime \prime}\left(Z\left(T ; t, X_{h}(t)\right) E(T-t)\right) \mid \mathcal{F}_{t}\right] \\
& D_{s} X_{h}(t)=E_{h}(t-s) P_{h} \\
& \leq \int_{0}^{T} \int_{0}^{t}\left\|K_{h}\right\|_{\mathcal{L}}\|A E(T-t)\|_{\mathcal{L}}|G|_{\mathcal{C}_{b}^{2}}\|E(T-t)\|_{\mathcal{L}}\left\|E_{h}(t-s) P_{h}\right\|_{\mathcal{L}} \\
& \quad \times\left\|A_{h} E_{h}(t-s) P_{h}\right\|_{\mathcal{L}} \mathrm{d} s \mathrm{~d} t\|I\|_{\mathcal{L}_{2}^{0}}^{2} \\
& \leq \\
& C h^{2} \int_{0}^{T}(T-t)^{-1} \int_{0}^{t}(t-s)^{-1} \mathrm{~d} s \mathrm{~d} t\|I\|_{\mathcal{L}_{2}^{0}}^{2}|G|_{\mathcal{C}_{b}^{2}}
\end{aligned}
$$

Almost convergent: lose ϵ.

Malliavin

Tray again, with ϵ loss:

$$
\begin{aligned}
& \cdots=\left|\int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\langle K_{h} A u_{x x}\left(X_{h}(t), t\right) D_{s} X_{h}(t), A_{h} E_{h}(t-s) P_{h}\right\rangle_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d} t\right| \\
&= \left\lvert\, \int_{0}^{T} \mathbf{E}\left[\int_{0}^{t}\left\langle A^{\frac{\epsilon}{2}} K_{h} A^{\frac{\epsilon}{2}} A^{1-\frac{\epsilon}{2}} u_{x x}\left(X_{h}(t), t\right) D_{s} X_{h}(t), A^{-\frac{\epsilon}{2}} A_{h} E_{h}(t-s) P_{h}\right\rangle_{\mathcal{L}_{2}^{0}}\right] \mathrm{d} s \mathrm{~d}\right. \\
& \leq \int_{0}^{T} \int_{0}^{t}\left\|A^{\frac{\epsilon}{2}} K_{h} A^{\frac{\epsilon}{2}}\right\|_{\mathcal{L}}\left\|A^{1-\frac{\epsilon}{2}} E(T-t)\right\|_{\mathcal{L}}|G|_{\mathcal{C}_{\mathrm{b}}^{2}}\|E(T-t)\|_{\mathcal{L}}\left\|E_{h}(t-s) P_{h}\right\|_{\mathcal{L}} \\
& \quad \times\left\|A^{-\frac{\epsilon}{2}} A_{h}^{\frac{\epsilon}{2}}\right\|_{\mathcal{L}}\left\|A_{h}^{1-\frac{\epsilon}{2}} E_{h}(t-s) P_{h}\right\|_{\mathcal{L}} \mathrm{d} s \mathrm{~d} t\|I\|_{\mathcal{L}_{2}^{0}}^{2} \\
& \leq C h^{2-2 \epsilon} \int_{0}^{T}(T-t)^{-1+\frac{\epsilon}{2}} \int_{0}^{t}(t-s)^{-1+\frac{\epsilon}{2}} \mathrm{~d} s \mathrm{~d} t\|I\|_{\mathcal{L}_{2}^{0}}^{2}|G|_{\mathcal{C}_{\mathrm{b}}^{2}} \leq C h^{2-2 \epsilon} .
\end{aligned}
$$

Here $\left\|A^{-\frac{\epsilon}{2}} A_{h}^{\frac{\epsilon}{2}}\right\|_{\mathcal{L}} \leq C$, for example, if we have a quasi-uniform mesh family.

Malliavin

In the nonlinear case we do not have formulas for $u_{x x}\left(X_{h}(t), t\right)$ and $D_{s} X_{h}(t)$ and so we must write down the equations that they satisfy and prove bounds for

$$
\left\|A^{1-\frac{\epsilon}{2}} u_{x x}\left(X_{h}(t), t\right)\right\|_{\mathcal{L}}, \quad\left\|D_{s} X_{h}(t)\right\|_{\mathcal{L}_{2}^{0}} .
$$

The remaining term is easier:

$$
\begin{aligned}
& \left|\mathbf{E} \int_{0}^{T} \operatorname{Tr}\left[u_{x x}\left(X_{h}(t), t\right)\left[P_{h} Q P_{h}-Q\right]\right] \mathrm{d} t\right| \\
& =\left|\mathbf{E} \int_{0}^{T} \operatorname{Tr}\left[u_{x x}\left(X_{h}(t), t\right)\left[\left(P_{h}+I\right) Q\left(P_{h}-I\right)\right]\right] \mathrm{d} t\right| \\
& =\left|\mathbf{E} \int_{0}^{T} \operatorname{Tr}\left[A^{1-\frac{\epsilon}{2}} u_{x x}\left(X_{h}(t), t\right)\left[\left(P_{h}+I\right) Q\left(P_{h}-I\right) A^{-1+\frac{\epsilon}{2}}\right]\right] \mathrm{d} t\right| \\
& \leq \mathbf{E} \int_{0}^{T}\left\|A^{1-\frac{\epsilon}{2}} u_{x x}\left(X_{h}(t), t\right)\right\|_{\mathcal{L}}\left\|P_{h}+I\right\|_{\mathcal{L}} \operatorname{Tr}(Q)\left\|\left(P_{h}-I\right) A^{-1+\frac{\epsilon}{2}}\right\|_{\mathcal{L}} \mathrm{d} t \\
& \leq C h^{2-\epsilon} \int_{0}^{T}(T-t)^{-1+\frac{\epsilon}{2}} \mathrm{~d} t \operatorname{Tr}(Q) .
\end{aligned}
$$

Weak convergence: Malliavin

The above argument is not rigorous because the Kolmogorov equation is not valid for $x \in H$. To handle this we project onto the eigenspaces of A in order to get a finite dimensional Kolmogorov equation. Auxiliary process $Z_{m}(s)=Z_{m}(s ; t, x)$:

$$
Z_{m}(s)=E_{m}(s-t) P_{m} \xi+\int_{t}^{s} E_{m}(s-r) P_{m} \mathrm{~d} W(r)
$$

Define $u_{m}: H \times[0, T] \rightarrow \mathbf{R}$ by

$$
u_{m}(x, t)=\mathbf{E}\left[G\left(Z_{m}(T ; t, x)\right)\right]
$$

Then $u_{m}(x, t)=u_{m}\left(P_{m} x, t\right)$, to be used with $x=X_{h}(t)$. The partial derivatives are

$$
\begin{aligned}
u_{m, x}(x, t) & =\mathbf{E}\left[E_{m}(T-t) P_{m} G^{\prime}\left(Z_{m}(T ; t, x)\right)\right], \\
u_{m, x x}(x, t) & =\mathbf{E}\left[E_{m}(T-t) P_{m} G^{\prime \prime}\left(Z_{m}(T ; t, x)\right) E_{m}(T-t) P_{m}\right] .
\end{aligned}
$$

Malliavin

Auxiliary process:

$$
Z_{m}(s)=E_{m}(s-t) P_{m} \xi+\int_{t}^{s} E_{m}(s-r) P_{m} \mathrm{~d} W(r)
$$

Define $u_{m}: H \times[0, T] \rightarrow \mathbf{R}$ by

$$
u_{m}(x, t)=\mathbf{E}\left[G\left(Z_{m}(T ; t, x)\right)\right] .
$$

Kolmogorov's equation:

$$
\begin{cases}u_{m, t}(x, t)-\left\langle u_{m, x}(x, t), A_{m} x\right\rangle+\frac{1}{2} \operatorname{Tr}\left(u_{m, x x}(x, t) P_{m} Q P_{m}\right)=0, \\ u(x, T)=G\left(P_{m} x\right) & t \in[0, T), x \in H\end{cases}
$$

Malliavin

This leads to the weak error formula:

$$
\begin{aligned}
\mathbf{E}[& \left.G\left(X_{h}(T)\right)-G(X(T))\right] \\
= & \mathbf{E} \int_{0}^{T}\left\{-\left\langle u_{m, x}\left(X_{h}(t), t\right),\left(A_{h}-A_{m}\right) X_{h}(t)\right\rangle\right. \\
& \left.\quad+\frac{1}{2} \operatorname{Tr}\left[u_{m, x x}\left(X_{h}(t), t\right)\left[P_{h} Q P_{h}-P_{m} Q P_{m}\right]\right]\right\} \mathrm{d} t .
\end{aligned}
$$

In the first term we write

$$
\begin{aligned}
\left\langle u_{m, x},\left(A_{h}-A_{m}\right) X_{h}\right\rangle= & \left\langle u_{m, x},\left(P_{h} A_{h}-A_{m} P_{h}\right) X_{h}\right\rangle \\
= & \left\langle\left(A_{h} P_{h}-P_{h} A_{m}\right) u_{m, x}, X_{h}\right\rangle \\
= & \left\langle A_{h} P_{h}\left(I-A_{h}^{-1} P_{h} A_{m}\right) u_{m, x}, X_{h}\right\rangle \\
= & \left\langle A_{h} P_{h}\left(I-P_{m}+A^{-1} A P_{m}-A_{h}^{-1} P_{h} A P_{m}\right) u_{m, x}, X_{h}\right\rangle \\
= & \left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) A P_{m} u_{m, x}, A_{h} X_{h}\right\rangle \\
& +\left\langle\left(I-P_{m}\right) u_{m, x}, A_{h} X_{h}\right\rangle .
\end{aligned}
$$

Malliavin

Similar treatment of the other term:

$$
\begin{aligned}
& \operatorname{Tr}\left(u_{m, x x}\left[P_{h} Q P_{h}-P_{m} Q P_{m}\right]\right)=\operatorname{Tr}\left(u_{m, x x}\left[P_{h}+P_{m}\right] Q\left[P_{h}-P_{m}\right]\right) \\
& \quad=\operatorname{Tr}\left(u_{m, x x}\left[P_{h}+P_{m}\right] Q\left[P_{h}-I+I-P_{m}\right]\right) \\
& \quad=\operatorname{Tr}\left(u_{m, x x}\left[P_{h}+P_{m}\right] Q\left[P_{h}-I\right]\right)+\operatorname{Tr}\left(u_{m, x x}\left[P_{h}+P_{m}\right] Q\left[I-P_{m}\right]\right) .
\end{aligned}
$$

In both cases we get an extra term containing $I-P_{m}$.
For fixed h, let $m \rightarrow \infty$, show that extra terms $\rightarrow 0$. Then let $h \rightarrow 0$.

Malliavin

The main term is

$$
\begin{aligned}
& \left|\mathbf{E} \int_{0}^{T}\left\langle\left(A^{-1}-A_{h}^{-1} P_{h}\right) A P_{m} u_{m, x}, A_{h} X_{h}\right\rangle \mathrm{d} t\right| \text { Malliavin integration by parts... } \\
& \leq \int_{0}^{T} \int_{0}^{t}\left\|A^{\frac{\epsilon}{2}} K_{h} A^{\frac{\epsilon}{2}}\right\|_{\mathcal{L}}\left\|A^{-\frac{\epsilon}{2}} A_{m} E_{m}(T-t) P_{m}\right\|_{\mathcal{L}}|G|_{\mathcal{C}_{\mathrm{b}}^{2}}\left\|E_{m}(T-t) P_{m}\right\|_{\mathcal{L}} \\
& \quad \times\left\|E_{h}(t-s) P_{h}\right\|_{\mathcal{L}}\left\|A^{-\frac{\epsilon}{2}} A_{h}^{\frac{\epsilon}{2}}\right\|_{\mathcal{L}}\left\|A_{h}^{1-\frac{\epsilon}{2}} E_{h}(t-s) P_{h}\right\|_{\mathcal{L}} \mathrm{d} s \mathrm{~d} t\|I\|_{\mathcal{L}_{2}^{0}}^{2} \\
& \leq C h^{2-2 \epsilon} \int_{0}^{T}(T-t)^{-1+\frac{\epsilon}{2}} \int_{0}^{t}(t-s)^{-1+\frac{\epsilon}{2}} \mathrm{~d} s \mathrm{~d} t\|I\|_{\mathcal{L}_{2}^{0}}^{2}|G|_{\mathcal{C}_{\mathrm{b}}^{2}} \leq C h^{2-2 \epsilon}
\end{aligned}
$$

which is independent of m. The extra term becomes

$$
\begin{aligned}
& \left|\mathbf{E} \int_{0}^{T}\left\langle\left(I-P_{m}\right) u_{m, x}, A_{h} X_{h}\right\rangle \mathrm{d} t\right| \\
& \leq \mathbf{E} \int_{0}^{T}\left\|\left(I-P_{m}\right) A^{-1+\epsilon}\right\|_{\mathcal{L}}\left\|A^{1-\epsilon} E_{m}(T-t) P_{m}\right\|_{\mathcal{L}}|G|_{\mathcal{C}_{\mathrm{b}}^{1}}\left\|A_{h} X_{h}(t)\right\|_{H} \mathrm{~d} t \\
& \leq C \lambda_{m}^{-1+\epsilon} \int_{0}^{T}(T-t)^{-1+\epsilon} \mathrm{d} t|G|_{\mathcal{C}_{\mathrm{b}}^{1}}\left\|A_{h} P_{h}\right\|_{\mathcal{L}} \sup _{t \in[0, T]}\left\|X_{h}(t)\right\|_{L_{2}(\Omega, H)} \rightarrow 0,
\end{aligned}
$$

as $m \rightarrow \infty$ for fixed h.

Malliavin

More precisely,

$$
\begin{aligned}
\mid \mathbf{E} & {\left[G\left(X_{h}(T)\right)-G(X(T))\right] \mid } \\
& \leq C h^{2-2 \epsilon}+C h^{-2} \lambda_{m}^{-1+\epsilon}+\text { other terms of the same form. }
\end{aligned}
$$

Therefore

$$
\left|\mathbf{E}\left[G\left(X_{h}(T)\right)-G(X(T))\right]\right| \leq C h^{2-2 \epsilon} .
$$

Malliavin

More precisely,

$$
\begin{aligned}
\mid \mathbf{E} & {\left[G\left(X_{h}(T)\right)-G(X(T))\right] \mid } \\
& \leq C h^{2-2 \epsilon}+C h^{-2} \lambda_{m}^{-1+\epsilon}+\text { other terms of the same form. }
\end{aligned}
$$

Therefore

$$
\left|\mathbf{E}\left[G\left(X_{h}(T)\right)-G(X(T))\right]\right| \leq C h^{2-2 \epsilon}
$$

This type of analysis has been carried out for the nonlinear heat equation:

- Debussche [Debussche(2011)], multiplicative noise in 1-D, time-stepping,
- Wang and Gan [Wang and Gan(2012)], additive noise in multi-D, time-stepping,
- Andersson and L [Andersson and Larsson(2012)], additive noise in multi-D, multiplicative noise in 1-D, spatial discretization.

References

圊 A．Andersson and S．Larsson．
Weak convergence for a spatial approximation of the nonlinear stochastic heat equation．
preprint 2012.
囯 A．de Bouard and A．Debussche．
Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation．
Appl．Math．Optim．，54：369－399， 2006.
直 A．Debussche．
Weak approximation of stochastic partial differential equations：the nonlinear case．
Math．Comp．，80：89－117， 2011.
A．Debussche and J．Printems．
Weak order for the discretization of the stochastic heat equation．
Math．Comp．，78：845－863， 2009.

References

(A. Grorud and É. Pardoux.
Intégrales hilbertiennes anticipantes par rapport à un processus de Wiener cylindrique et calcul stochastique associé.
Appl. Math. Optim., 25:31-49, 1992.
围 M. Kovács, S. Larsson, and F. Lindgren.
Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise.
BIT Numer. Math., 52:85-108, 2012a.
(i. M. Kovács, S. Larsson, and F. Lindgren.

Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise ii. fully discrete schemes.
BIT Numer. Math., 2012b.
doi:10.1007/s10543-012-0405-1.

References

囯 F. Lindner and R. L. Schilling.
Weak order for the discretization of the stochastic heat equation driven by impulsive noise.
Potential Anal., 2012.
doi:10.1007/s11118-012-9276-y.
R
X. Wang and S. Gan.

Weak convergence analysis of the linear implicit euler method for semilinear stochastic partial differential equations with additive noise.
Journal of Mathematical Analysis and Applications, 2012.

