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Outline

» Quick review of strong convergence analysis.

» Weak convergence analysis.
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Semigroup approach

Linear SPDE with additive noise:

dX(t) + AX(t)dt = BdW(t), t >0
{X(O) = Xo

(Q, F,P,{Fi}t>0), filtered probability space

‘H, U Hilbert spaces

{W(t)}+>0, Q-Wiener process in U with respect to {F;}+>0

{X(t)}¢>0, stochastic process in H

B: U — H, bounded linear operator

E(t) = e ™, t > 0, Gy-semigroup of bounded linear operators on H

vV vV.v v v Vv .Y

Xo is an Fp-measurable H-valued random variable



Mild solution

dX(t) + AX(t)dt = BdW(t), t >0
X(0) = Xo

The unique solution is given by (mild solution)

X(t) = E(t)Xo + /t E(t — s)BdW(s)



Stochastic heat equation

D)~ nue.t)= W(e ),  E€DCRY t>0

u(é, t) =0, £€dD, t>0
U(f,O) = U, fe D

X(0) = Xo

» H=U=LyD), ||l (-,-), D C RY, bounded domain
A=A=—A, D(A) = H¥D) N HY(D), B =1
probability space (2, F, P)

W (t), Q-Wiener process on H

X(t), H-valued stochastic process

{dX+Ath—dW, t>0

vV vy VvYyy

» E(t) = e ™ analytic semigroup generated by —A

Mild solution (stochastic convolution):

X(¢) = E(t)XO—&—/t E(t—s)dW(s), t>0
0



The finite element method

triangulations {7x}o<h<1, mesh size h

finite element spaces {Sh}o<h<1, Sh C H3(D) = H*

Sp continuous piecewise poly degree < r —1, r > 2

Xn(t) € Spi (dXp, x) + (VXn, Vx)dt = (dW, x) Vx € Sp, t >0
An: Sp — Sp, discrete Laplacian, (Ap, x) = (Vo, Vx) Vb, x € Sp
Ap = NAp

Py: Ly — Sp, orthogonal projection, (Phf,x) = (f,x) Vx € Sh

vV vV v vV v v .Y

Xh(t) € S, Xh(O) = PpXo
dX, + ApXpdt = PpdW, t>0

PyW(t) is Qn-Wiener process with Qn = PrQPh.
Mild solution, with E,(t) = e~ %%,

Xn(t) = En(t)PaXo + /t En(t — 5)Py dW/(s)
0
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Regularity and strong convergence
1/2 .
[vls = IA°/2v] = (ZA v.o)?) ", H =D(N?), BeR
Theorem. If ||AP~1/2Q1/2||45 < oo for some 3 € [0, r], then
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Regularity and strong convergence

12 .
[vls = IA7/2v] = (ZA v6)F) " HP=D(\?), BeR
Theorem. If ||AP~1/2Q1/2||45 < oo for some 3 € [0, r], then

Xl 0,0 < C<\|X0HL2(Q,H13) + ||/\(B_1)/2Ql/2||HS)

1X(8) = X(®) sy < CH° (IX6 ey + 1A Q2 s

Two cases:
> If QY225 = Tr(Q) < oo, then 3 = 1.

> Q=1 d=1A=-2

then [|[A—1/2| 45 < oo for < 1/2.



Proofs

The proofs are based on

> [t isometry

t 2 t
€| [ Foawe)| =€ [ 1F0 s s
0 0
» Smoothing property
t
| In2Evds < v
0

» Error estimates for the approximation of the semigroup



Approximation of the semigroup

us+Au=0, t>0 upt+Nup =0, t>0
( ) = Uh(O) = PhV
u(t) = (f)V un(t) = En(t)Ppv

Denote

Fa(t)v = En(t)Phv — E(t)v,  |vls = [N2v]].

We have, for 0 < 5 <'r,
> |Fa(t)v] < Ch®|v]g, t>0

t 1/2
. (/O IFa(s)vl2ds) " < Ch’lvlsa, £ 0

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems
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The stochastic wave equation

2
%(& t)—Au(é,t) = W(,t), E(€DCRY t>0
u(é,t) =0, €€dD, t>0

oe0) = w, PO =m,  EeD
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The stochastic wave equation

02 .
5 (60— Bu(, 1) = W(S. 1),

u(€,t)=0,
o(€,0) = o, 2(E,0) = .

A=—A, D(N) = H? = H*D)n H}(D)

£eDCRY t>0
£EedD, t>0

&eD
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The stochastic wave equation

e - due. ) = W(E.D).  EeDCRY £>0
u(é,t) =0, €€dD, t>0
oe0) = w, PO =m,  EeD

A=—A, D(N) = H? = H*D)n H}(D)

. /2
H? = DV1), |v|ﬁ:||Aﬁ/2vH:(ZA @), per

X:[L‘I’t],A:R 0’}, B:m, U= H° = L,(D)

HP=HP x HP7Y, H=H"=H’x H™!, D(A)=#!
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Abstract framework

dX(t) + AX(t)dt = BdW(t), t>0
X(0) = Xo
> {X(t)}es0, H = H° x H~'-valued stochastic process

> {W(t)}eso, U = HO%valued Q-Wiener process w.r.t. {F;}e>o

e | cos(tAV/?) A=1/2 sin(tA/?)
> E(t) =" = [—/\1/2 sin(tAl/?) cos(tA/?) |’
Co-semigroup on ‘H

Here

cos(tAY?)y = Zcos(t\/)\»j)(v, ®;)dj, (A, ¢j) are eigenpairs of A
j=1
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Regularity

12/67



Regularity

Theorem. (With X(0) = 0 for simplicity.) If |[A(?=1/2Q1/2||ys < oo for
some 3 > 0, then there exists a unique weak solution

t /t A" 2sin ((t — s)AY2) dW(s)
X(t) = [Xg(t)] :/O E(t—s)BdW(s) = |70 .

0

cos ((t — s)AY2) dW(s)

and

IX(D) @) < COIAETD2QVP s, HP = A7 x A7,



Spatial discretization
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Spatial discretization

v
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v
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An: S; — Sf, discrete Laplacian, (Ap, x) = (V), VX), Vx € S,
Py: H® — Sf. orthogonal projection, (Puf,x) = (f,x), Vx € S,

0 — 0
weln o] e[

v

v

v
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Spatial discretization

v

triangulations {7, }o<n<1, mesh size h

v

finite element spaces {5/ }o<h<1

v

S; C H = HL(D) continuous piecewise polynomials of degree r — 1
An: S; — Sf, discrete Laplacian, (Ap, x) = (V), VX), Vx € S,
Py: H® — Sf. orthogonal projection, (Puf,x) = (f,x), Vx € S,

0 — 0
w=ln o] e[

N {dXh(t) + ApXp(t)dt = B, dW(t), t>0

v

v

v

Xn(0) = Xo,n
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Spatial discretization

» triangulations {7h}o<n<1, mesh size h

> finite element spaces {5/ }o<n<1

» S/ C H = HL(D) continuous piecewise polynomials of degree r — 1
> Ap: S; — Sp, discrete Laplacian, (A, x) = (V¢, V), Vx € S
> P, H — Si,, orthogonal projection, (Pxf,x) = (f,x), Vx € S},

0 —I 0
“a=ln o] el
N {dXh(t)+AhXh(t)dt—Bde(t), t>0

Xn(0) = Xo,n

cos(t/\},/2) /\;1/2 sin(t/\}/z)

» Ep(t) = e % =
(1) [—/\i/2 sin(t/\}/z) cos(t/\i/2)

13 /67



Spatial discretization
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Spatial discretization

The mild solution is:

i) = [0

t
A, sin (8 — s)AY?) P d W (s)

— "Bt s)Braw(s) = |Jo "
/0 /cos((t )N ?) PrdW(s)

where, for example,

Np,

cos(t/\i/z)v = Z cos (t\/Anj) (V, dnj)bnjs
j=1

and (Anj, ¢nj) are eigenpairs of Ap.

14 /67



Spatially semidiscrete: approximation of the semigroup

t)+Av(t) =0, t>0
{Vtt( ) + Av(t) = v(t) = A=?sin (t/\l/z)f

v(0) =0, »w(0)="f

= vp(t) = A, 2 sin (A} ?) Paf

Vh,tt(t) + /\hvh(t) =0,t>0
Vh(O) =0, Vh,t(o) = Puf

We have, for Kp(t) = A, 2 sin (tAy?) Py — A=1/2sin (tAY2) and r =2,

| Kn(t)F|| < C(E)R||F| o "initial regularity of order 3"
|Kn(t)FIl < 2||F]l -2 "initial regularity of order 0" (stability)

IKn(E)FI| < C(£)A37||F|lfors O0< B <3

Note: [[v(t)|l < |Ifllipn "initial regularity of order 2"

15 /67



Spatially semidiscrete: Strong convergence

Theorem. Let Xy = 0 and r = 2. If |[AP—1/2QY/2||4s < oo for some
B €10, 3], then

2 _
[ Xn,1() = X1 (t) [l (g, 0y < C(t) h35||/\(ﬁ 1)/2Q1/2||HS

Higher order FEM:  O(h71%), B e [0,r+1].

16

67



Weak convergence

The law of X,(T):
tix,(T) = P o Xp(T) ™
converges weakly to the law of X(T), if

(bxy(), ) = (x(r), ) ash—0 Ve eCy(H,R)
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Weak convergence

The law of X,(T):
bxy)y =Po Xp(T)7?
converges weakly to the law of X(T), if
(bxy(Tys @) = (ux(T)> @) ash—0 Yy €Cy(H,R)
Since

(x, (1), ) = /H<P(X)duxh(T)(X) = /Q</9(Xh(7—7w))dp(w) = E[p(Xa(T))],

this means

E[0(Xs(T))] = E[¢(X(T))] ash—0 Ve e Cy(H,R).

17 /67



Weak convergence
Test functions:

¢ € Cp(H, R) = continuous and bounded functions
But we will use

¢ € C2(H,R) = not necessarily bounded but with

continuous and bounded derivatives Dy and D2
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Weak convergence
Test functions:

¢ € Cp(H, R) = continuous and bounded functions
But we will use

¢ € C2(H,R) = not necessarily bounded but with

continuous and bounded derivatives Dy and D2

It can be shown that C2(H,R) is dense in C,,(H, R) for H = L»(D)
[Grorud and Pardoux(1992)].

By a modification of the Portmanteau theorem, it follows that it is
sufficient to use test functions in C3(H,R).

Our goal is now to show

E[G(Xw(T))] —E[G(X(T))] = O(h**) ash—0 VG eCi(H,R).

The weak rate is twice the strong rate of convergence.



Weak convergence

We will prove this for linear problems (heat and wave equations).
But first we will perform formal calculations for the nonlinear problem

dX(t) + [AX(t) — F(X(2))]dt = g(X(¢))dW(t), t € (0, T]; X(0) = Xo,

or in mild form
X(¢) = E(t)X + / CE(t — 5)F(X(s)) ds
0
+/ E(t—s)g(X(s))dW(s), te]o,T].
0
The semidiscrete approximation is
Xn(t) = En(t)PaXo + /Ot En(t — 5)Pyf(Xa(s)) ds

+ /Ot En(t — s)Phg(Xn(s)) dW(s), te[o,T].

19 /67



Weak error representation: preliminaries

dX(t) + [AX(t) — F(X(t))]dt = g(X(t))dW(t), t € (0, T]; X(0) = Xo,

Aucxiliary process Z(s) = Z(s; t,§): if £ is Fy-measurable and
0<t<s<T

2() = E(s— 1)+ [ E(s— (2 ar+ [ Els - ne(Z(r) aw(r
Define u: H x [0, T] — R by

u(x,t) = E[G(Z(T;t.x))].
If G € C3(H,R), then u is a solution to Kolmogorov's equation

ue(x, 1) = (ux(x, £), Ax = £(x)) + 3 Tr (uw(x, t)g(x) Qg (x)") = 0,
te[0,T), x € D(A),
u(x, T) = G(x)



Weak convergence
If £ is Fi-measurable and 0 <t <s< T:
2(s5t.6) = Els =)+ [ E(s = NAX()dr+ [ E(e— Ng(X()dW(r)
Define u: H x [0, T] — R by
u(x,t) = E{G(Z( T; t,x))}.
With random F;-measurable input &:

u(s.t) = E|G(Z(T;£.6)) |
Hence

E[u(¢, t)] = E[E[G(Z(T; t,f))\]—}“ - E[G(Z(T; t, g))]



Weak convergence

So we have

Elu(¢. £)] = E[6(Z(T: £,9))]-
Note also

Z(T;t,8) =Z(T;s,Z(s; t,£))
Then

E[u(¢. £)] = E[G(Z(T:t,9))]
—E[6(2(Ti5.2(s:1.)))| = E[u(s. Z(5:.))].
that is, the expected value of v is constant along trajectories

y=Z2(s:t,¢), seltT]



Weak convergence
Assume X,(0) = X(0) for simplicity.

E(GOX(T)) = G(X(T))) = E(u(Xa(T), T) = u(X(T), T))
= E(u(X(T), T) = u(X(0),0)) = E(u(X4(T), T) = u(X4(0),0))

-
[t6's formula: = E/ (uy, dXp) + %uxxd[Xh,Xh]
0

)
S / {ueX(8),£) = ((Xa(1), £), AnXi(2) = PhF(X(0)))
0

3 Trluo (X (2), 1)Prg (X (1)) Qe(Xa(1))" Pa] }

Kolm. eq: ue(Xi(t). £) = (ux(Xa(t), £), AXi(t) — F(Xn(t))
L Tr{un(Xn(1), D)8 (Xa(1)) Qe(Xa(£))"]

= [ { = 0. (0 = AX(0) = (P = DFOXH(E)

41T i O1P1() Q6() Py — 2()Q8() ] b,
where « = Xp(t).

23 /67



Weak convergence

The first term:
T
E/O —(ux(Xn(t), 1), (An — A)Xn(t) — (Pn — 1)f(Xh(2))) dt,
Here (ApXp — Prf(Xp))dt = —d Xy + Prg dW, so we get
T
E [ (uX(0) 0.4 (1) + (AX4(0) = FX4(1)) ).

We identify the residual of Xp: dXu(t) 4+ [AXn(t) — F(Xn(t)] dt.



Weak convergence

The first term:
T
E/O —(ux(Xn(t), 1), (An — A)Xn(t) — (Pn — 1)f(Xh(2))) dt,
Here (ApXp — Prf(Xp))dt = —d Xy + Prg dW, so we get
T
E [ (uX(0) 0.4 (1) + (AX4(0) = FX4(1)) ).

We identify the residual of Xp: dXu(t) 4+ [AXn(t) — F(Xn(t)] dt.
Related to a posteriori error analysis?



Weak convergence

u(x,t) = E{G(Z( T, t,x))}.
The derivative uy(x,t) € H is given by
(s, 1) 6) = E|(G(Z(T:£.)), ZUT: £.%)6) |
= E[(ZUT:,x)" 6" (Z(T; ). 9)]

So, in order to bound norms of uy(x,t) = E[Z/(T;t,x)*G'(Z(T:t,x))],

we must study the linearized adjoint equation:
T
n(s) = E(T —s)G'(Z(T;t,x)) + / E(T —r)f'(Z(r; t,x))n(r)dr
S

,
+/ E(T —r)[g'(Z(r; t,x))n(r)] dW(r)

The second derivative is related to the second adjoint variation.

25 /67



Weak convergence
Let us compute ux(x, t) in the simplest case, the linear case:

u(x, t) = E[G(Z(T; t,x))} = E[G(E(T — )X+ /tT E(T — s)BdW(s))]

Then

(1(x.2).6) = E[(6'(E(T — )+ /tTE(T ~$)BAW(s)). E(T — 1)9) ]
- E[(E(T — )G’ (2(T: t,x)),¢>}

so that uy(x, t) = E[E(T — )G (2(T;t, ))} This is (t) = 7(t; £, x),

where 1(s) = n(s; t,x) = E[ (T —s)*G'(Z(T;t,x )} is the solution of

(T- s)A

the adjoint equation, recall E(T —s)* = e~

i(s)—A*n(s) =0, s<T; n(T)=G'(Z(T;t,x)).

Similarly, we have u(x, t) = E[E(T — 1) G"(Z(T; t,x))E(T — t)]



Weak convergence
Another difficulty: the Kolmogorov equation is proved only for x € D(A).

up(x, t) — (ux(x, t), Ax — f(x)) + %Tr(uxx(x7 t)g(x)Qg(x)*) =0,
t€[0,T), x € D(A),
u(x, T) = G(x)

Project onto the eigenspaces of A. Auxiliary process Zp,(s) = Zn(s: t, x):
Zn(s) = En(s — t)Pmé + /5 Em(s — r)Pnf(Zn(r))dr
t
+ /ts Em(s — r)Pmg(Zn(r))dW(r).
Define up, - Hx [0, T] = R by
m(x, £) = |G (Zn(T: £,%))]
Then up(x, t) = Uum(Pmx, t), to be used with x = Xj(t).

The Kolmogorov equation is now well-defined.
Must verify that additional terms vanish as m — oo.



Weak convergence

The first term again:

-
E/ —(ux(Xn(t), t), (An — A)Xn(t) — (Pn — 1) (Xh(t))) dt,
0
For the heat equation, we have here A=A, A, = Ay, so that
(ux, (A/—, — A)Xh> = <(AhPh — A)UX, Xh>

= (ApPh(A™Y — A1 PR)Auy, X)
= (A7 — A1 Py) Auy, ApXe)

Related to the “elliptic’ error (A=* — A, 1 P},). But the norms are badly

distributed between the factors. For the heat equation this can be
handled (to some extent) by rewriting by means of Malliavin calculus.



Weak convergence

Here we try to explain why the norms on the previous slide are “badly
distributed”. We compute for the linear heat equation:

(uy, (Ap — )Xh> = (A1 - A lP,,)AuX,A,,X,,>
X, t) = E[ (2(T: %)),
AuX(Xh( ),t) = E[AE )G (Z(T; t, Xa(1))) | Fe ]
A _Ahl'DhHC(H) < CH
[AE(T — t)llcmy < C( —t)7h
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Weak convergence
Hence, the bad term becomes

‘E/OT<uX(Xh(t),t),(Ah — A)X(2)) dt]
_ ‘E/OT <(A*1 — AP Au(Xa(1), t),AhXh(t)> dt‘

= ‘E/OT <(A*1 — A 'PY)E[AE(T — t)G'(Z(T; t, Xh(t)))|]-"t],AhXh(t)> dt’

)
<c / A7 = 43 PallcnllAE(T = )] s0p | 6'(6)
xe
X [|AnXn(t) | Lo m) dt

-
< Ch2/ (T =)' dt[Gler sup [[ARXa()ll a1y
0 te[0,T]

Here: sup [[AnXa(t)lagm) < 00 if [AZ Q% |lus with 8 =2

te[0,T]
(regularity and strong convergence of order 5 = 2). But the rate is only
h? = h®, not h?.



Weak convergence

Here we have not been able to exploit the possibility for the integral to
absorb a singularity at t =0, i.e.,

-
/ (T —t)"'t7*dt (almost convergent).
0

This can be achieved by an integration by parts from the Malliavin
calculus.
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Weak convergence: the linear case

This explains some difficulties encountered in connection with the
nonlinear problem.
The story is more complete for the linear problem:

dX(t) + AX(t)dt = BdW(t), t>0
X(0) = Xo

| will present this now for the heat and wave equations.
(We have also studied the linearized Cahn-Hilliard-Cook equation.)
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Weak convergence: the linear case

This explains some difficulties encountered in connection with the
nonlinear problem.

The story is more complete for the linear problem:

dX(t) + AX(t)dt = BdW(t), t>0
X(0) = Xo

| will present this now for the heat and wave equations.

(We have also studied the linearized Cahn-Hilliard-Cook equation.)

We use a trick introduced by

De Bouard and Debussche (nonlinear Schrédinger equation)
[de Bouard and Debussche(2006)].

Debussche and Printems (linear heat equation)

[Debussche and Printems(2009)].

The trick is: Remove the troublesome term (A, — A)X} by means of an
integrating factor.



Weak error representation: preliminaries

Apply the integrating factor E(T — t) to get Y(t) = E(T — t)X(¢):

dY(t) = E(T —t)BdW(t), t € (0, T]; Y(0) = E(T)Xo,
with mild solution
Y(t) = E(T)Xo +/Ot E(T — s)BdW(s).
Similarly, consider
dYu(t) = Ep(T — t)BdW(t), t € (0, T]; Yn(0) = Ex(T)PpXo,
with mild solution
Ya(t) = En(T)PpXo + /Ot En(T — 5)BydW(s).

Note: X(T)=Y(T), Xa(T) = Yi(T).
No drift term in eq. for Y and Y.
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Weak error representation: preliminaries
Aucxiliary problem: Z(s) = Z(s;t,£), & is a Fr-measurable,
dZ(s) = E(T —s)BdW(s), se (t, T]; Z(t)=¢.

s

Unique mild solution: Z(s;t,&) =&+ | E(T — r)BdW(r).
Define u: H x [0, T] — R by u(x, ) = E[G(Z(T; t.x))].

The partial derivatives are:

ux(x,t) = E[G/ Z(T, lL,X))]7
ux(x, t) = E[G"(Z(T: t,x))].

If G € C2(H,R), then u is a solution to Kolmogorov's equation

u(x, T) = G(x)

{ ue(x, t) + L Tr (u(x, t)E(T — t)BQIE(T — t)B]*) =0, t € [0, T), x € H
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Weak error representation
THEOREM. If

Tr (/OT E(1)BQIE(1)B] dt) < o

and G € C2(H,R), then the weak error
en(T) = E[G(Xh(T))] — E[G(X(T))]
has the representation

en(T) = E[u(Yn(0),0) — u(Y(0),0)]
4 ;E/OTTr (s Va(2), 1)
x [En(T — t)By + E(T — t)B]Q[EN(T — t)By — E(T — t)B]*) dt
= E[u(Y4(0),0) — u(Y(0),0)]
+ ;E/OTTr (uxx(yh(t)’t)
% [E(T = t)By — E(T — 1)BIQIENT — t)By + E(T — t)B]") dt.
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Weak convergence: proof

Use It6 formula and Kolmogorov equation as before:

E[G(Xy(T))] — E[G(X(T))]
= E[G(Y4(T))] — E[G(Y(T))]

= E[u(Ya(T), T) = u(Y(T). T)]
- E{u(vh(r), T) — u(Y4(0), 0)} + E[u(vh(O), 0) — u(Y(O),O)}
— Eu(Y4(0),0) — u(Y(0),0)] + E/O {u(v(e), 1)

+ % Tr (uXX(Yh(t), t)[En(T — t)Bh Q[E(T — t)Bh]*) } dt

= E [u(Y4(0),0) — u(Y(0),0)] + %E/0 Tr (uXX(Yh(t), )

x {[En(T ~ )BIQIENT — t)Bs)* — E(T — t)BQB"E(T —¢)°} ) dt.



Weak convergence: proof
Here the expression

[S, T] = Tr(uxSQT™)
is symmetric:
[S, T] = Tr(uSQT™) = Tr(SQT* uy)
=Tr([SQT ux]™) = Tr(u TQS™) = [T, 5],

because Q, uy are selfadjoint and Tr(5*) = Tr(S), Tr(ST) = Tr(TS).
Hence, we have a conjugate rule

[S+T,S—T]=[S,S]-[T,T]
Therefore,

Tr (el N [En(s) Bl QIEN(s) Bal" — [E(5)BQIE(s)B]'} )

= Tr (weel&: r)IER(5)Bn + E(5)BIQIEN(s)Bn — E(5)BI")

= Tr (weel&: 1)IER(5)Bh — E(5) BIQIEN(s)By + E(5)B]")

Note, by the way, that B, € L(U, H) with By, : U — Sp, Ep(s) : Sh — S,
and we consider E;(s)Bp € L(U, H). Hence, [Ex(s)By]* # B En(s)*.



Weak convergence: heat equation

Here A=A, B=1, Ay = An, By = Ph.

dX + AXdt = dW, t > 0; X(0) = Xo, (1)
dXp + ApXpdt = P,dW, t > 0; Xh(O) = Py Xo. (2)
Theorem

Let X and X}, be the solutions of (1) and (2), respectively. Let

G € C3(H,R) and assume that |A°Z" Q% ||us = ||A"Z Q¥ ||us < oo for
some 3 € (0,1]. Then there are C > 0, hg > 0, depending on G, Xp, Q,
B, and T but not on h, such that for h < hg,

[E[GXA(T)) — GX(T))]| < CH?|log(h).

If, in addition Xy € L1(Q, H25), then C is independent of T as well.
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Proof

en(T) = E[u(Yn(0),0) — u(Y(0),0)]
T
+%E/0 Tr (uXX(Yh(t),t)
X [En(T — t)Pn+ E(T — t)]Q[EX(T — t)Pr — E(T — t)]*) dt
Approximation of the semigroup:

I(En(2)Ps — E()V]| = [IFa(t)v]| < Cht"Z |v],, 0<y<s<r.



Proof

In the initial error we have
Y4(0) — Y(0) = Ex(T)PuXo — E(T)Xo = Fa(T)Xo,
so that
E (u(Y4(0),0) — u(Y(0),0))
= E/01<ux(Y(0) +5(Yn(0) = ¥(0)),0), Y4(0) — ¥(0)) ds

= E/1<uX(E(T)X0 + sFr(T)Xo,0), F(T)Xo) ds.
0

Thus, recalling ux(x,t) = E[G'(Z(T;t,x))],

[E (u(Y4(0),0) — u(¥(0),0))] < fgglqu(XaO)ll E(lIFa(T)Xoll)

2B

< ChP T2 E(|Xol,) sup |G’ (x)[l, 0<~ <28
xeH

If v = 23 there is no dependence on T.



Proof
The main term: use | Tr(ST)| < ||S|lus|| T ||lus

]E/OTTr (sl Yi(2). )
X [En(T = )Py + E(T = D]QIENT — £)Py — E(T — 0)]") dt|
_ ’E/OTTr (s (Yalt), DIET — )Py + E(T — )
><A¥A?Q%Q%A%A¥Fhw—t)) dt‘
- | / Tr (un(Va(2), YA T [E(T = )Py + E(T = 0))°
« AT QAT JFh(T—t))dt‘
<E / o Ya(8), YA T [En(T — )Py + E(T — 6)]) A7 Q¥ [lus

x QAT ATZ" Fy(T — t) s dt



Proof
Use |STlus < ISIl || T llms:

T
. <E / e (Ya(2), ) (AT [En(T = )Py + E(T — )" AT Q% lus
0
< QAT AT F(T — t)|us dt

-1 1
< sup flua( D)l AT Q2 Ilks
(x,)EHX[0,T]

!
1-8 1-8
x / I (En(t)Ph + E(O) Loy | AT Fu(D)] 2o .
0

Here
(t)eHw[0.T] [t (%, )| £ (1) < sup 1G" ()l £ (hy-
Recall
1A vl = [Vvall = A2 vall,  vi € S,

1A vall < [IA3vall, vk € Sk, 6 € [0, 3],
IA°(En(2) Py + E(0))l| ey < Ce™t7°, 6 =12 €[0,3].



Proof

Now consider |A"Z" Fy(t)]| (). Analyticity:
A Fu(t)ll ey < CE°, 6 €0, 3].
Approximation:
IFa(t)v] < Cht™ 7 |v];, 0<y<s<r

Hence

1-8 1 _J
JAZ Fa(®) ey < PO IA2 Fa(®)l5y < CHPE, B e [o0,1]

Therefore, for 5 € (0,1] one may estimate the above integral:

)
15 1-p
| 1A (E(0Ps + E@)cn| A Fal)lc de
0

=
(/ /h? ) (t)Pn+ E(t ))HL(H)HA_T[Fh(t)Hg(H)dt

h? T
< C/ e+ € | et R de < Ch)log(h))|
0 h?

and the proof is complete.
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Weak convergence: heat equation

By inspection of the above proof we see that the error estimate is

[E(G(Xn(T)) - ( (7))
< ch?? TE(|Xoly )SgZIIG’(X)llH

+ Ch*|log(h)|5~ Sg’gllG"(X)llz mlAT Q% |is.
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Weak convergence: heat equation

By inspection of the above proof we see that the error estimate is

[E(G(Xx(T)) — ( (T)))]
“E(1Xol, )SgEHG’(X)HH

+ Ch*|log(h)|5~ Sg’gllG"(X)Ilz mlAT Q% |is.

The previous theorem does not allow g > 1.

This is satisfactory if the order of the FEM is r = 2.

Under a slightly stronger condition on A and @ we now extend the result
to the case g > 1.
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Weak convergence: heat equation

Theorem

Let X and X;, be the solutions of (1) and (2), respectively. Let

G € C2(H,R) and assume that ||A’~1Q||, = [A*71Q|| < oo for some
B € [1,5]. Then there are C >0, hg > 0, depending on G, Xp, Q, 3,
and T but not on h, such that for h < hg,

[E(G(Xn(T)) — G(X(T)))| < Ch*"|log(h)|.

If, in addition Xy € L1(Q, H??), then C is independent of T as well.

This theorem differs in the assumption about Q. According to the
theorem on “alternative conditions” in the first part of my lectures we
have

=1 1 _
1A= Q% s <IN Q-

Thus, the new condition implies the previous one. If A and Q commute,
then they coincide.
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Proof

The initial error term is treated as before. For the main term we
distribute factors differently:
T
‘E/ Tr (uXX(Yh(t), t)
0
% [En(T — t)Py — E(T — )] Q[En(T — t)By + E(T — t)B]*) dt‘
T
—[e [ T (untvh(0)0)
0
x Fp(t)AP AP QIEN(T — t)Py + E(T — t)]*) dt)

T
<C sup [t (X, t)HE(H)HAﬁ_lQHTr/ ||Fh(t)Aﬁ_1H£(H)6_Mdt.
(x,t)EHX[0,T] 0

Hence,

"

| IR@A e s = ([

0 0
T

h?8
SC/
0

h?8 T
4 [ IRA e dt
h28

dt + Chm/ t~te~wtdt < Ch*"|log(h)|.

h2s
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Weak convergence: the wave equation
Recall the notation:

10— 1|0 X X0
O B I |

o C(t) A=125(t)
E(t)=e "= [_/\1/25(15) C(t) }

where C(t) = cos(tA'/?) and S(t) = sin(tA1/?).
Spatially discrete:

0o -/ 0
Ah = |:Ah O:| s Bh = |:Ph:| y XhO = PhX().

Eh(t) —=e A =

Gi(t)  APS(t)
“N2Su(t)  Ga(t) |

with Gy(t) = cos(t/\},/z), Sn(t) = Si“(f/\},/z)-
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Weak convergence: the wave equation

Theorem
Let g € C2(H°,R) and assume that |A®~2 QA= 2|1, < oo and that

Xo € L1(Q, H*?) for some j3 € [0, £X]. Then, there are C >0, hy > 0,

depending on g, Xo, Q, and T but not on h, such that for h < hg,
|E(g(Xh1(T)) — g(Xa(T)))| < Ch7a?.

Note: the test function g depends on the first component Xi only.
Again the new condition on @ implies the previous one:

N Q| < I~ QAE .

Therefore, the rate of weak convergence is twice the rate of strong
convergence.
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Proof

We only make a brief discussion of the main term.
The error operator for the first component is

Kn(t) := A, 2 Sp(t)Pr — A2 S(1).
We have
|Kn(t)w|| < C(T)h7T8|wls_y, we HL se0,r+1],

or
IKn(E)NZ V| < C(T)h5|v], v e H=.

We use s = 24:

IKn()A> 2 iy < C(T)AF22, £ €0, T], 28 € [0,r +1].

We use a test function of the form

G(x) = g(P1x) = g(x1), forx= [X]_,XQ]T eH=H"x H
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Proof

The main term is

‘E(/OTTr(Uxx(Yh(t),t)
x [En(T — t)By + E(T — t)B]Q[EX(T — t)By — E(T — t)B]") dt)‘
The integrand simplifies to (with s = T — t)
‘E(Tr (e (Ya(t), )[En(s) Bn + E(5) BIQ[En(s) B — E(s)B]*))‘
- ‘E(Tr (IEn(5)Bh — E(s)BIQLEA(5)Bh + E(s)B]" thue( Ya(t), t)*)) ‘
- ‘E(Tr (Kn(s)QIA, 2 Sh(s)Ph + A2 S(s)lg" (PLZ(T; t, Yh(t)))))‘
< KRS iy 1N 2 QA2 7,
X [N A FSh()Ph -+ A S()]l iy sup 18 ()l iy

x€HO

< C(T)h 2N L QA |r, sup 1" ()]l -
x€HO



Weak convergence: completely discrete

This weak error representation formula has been generalized so that it
applies to completely discrete approximations. Recall

X(t) = E()X + /t E(t — 5)BdW(s),
0
Y(£) = E(T = )X(t) = E(T)Xo + /t E(T — 5)BdW/(s),
0
X(T) = Y(T).

Assume that 5(( T) is the result of some temporal and spatial
approximation. Construct a process { Y (t)}:c[o, 7] of the form

Y(t)

E(T)>"<0+/OtE(Ts)BdW(s) with X(T) = Y(T).

Here {E_(f)}te[o,T] C B(S,S) and B € B(U,S), where S is a Hilbert
subspace of H with the same norm (typically S = H or S is a

finite-dimensional subspace of H). E(t) can be obtained by time
interpolation of the time stepping operator.
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Weak convergence

Theorem
If G € C3(H,R), then the weak error e(T) has the representation

e(T)=E [U(V(O), 0) — u(Y(0), 0)}
+3E [T (V0. 0000
where
O(t)= (E(T - t)B+ E(T —t)B)Q(E(T — t)B - E(T — t)B)",

or

O(t) = (E(T - t)B— E(T —t)B)Q(E(T — t)B+ E(T —t)B)".

This has been applied to fully discrete schemes for the linear heat, wave
and Cahn-Hilliard-Cook equations, [Debussche and Printems(2009)],
[Kovécs et al.(2012a)], [Kovécs et al.(2012b)],

[Lindner and Schilling(2012)].



Weak convergence: Malliavin calculus
I will now explain how the integration by parts from the Malliavin
calculus can be used. As we have seen this is not needed for linear
problems, but the main difficulty occurs already there, so | will present
the argument for the linear heat equation.

Assume for simplicity that Xy = 0, so that
t
X(t) = / E(t—s)dW(s),
0
t
Xn(t) = / En(t — 5)PpdW(s)
0

and the weak error

E[G(X(T)) - G(X(T))]

—E /O [ {0(0). 1), (An — AX(2)

+ 3T [ Xi(2), €)[PhQPH — QI } dt.
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Weak convergence: Malliavin

We assume as usual, for some 3 € [0, r/2],
51 01 81
[A77 Q2[lns = [[A77 || 2o < o0

To be specific, let 5 = 1:

B=1 _ 1 1 1
1A Q% [lus = [|Q¥[|us = [1/]l 5 = Tr(Q)* < .

We want to obtain weak order h28—¢€ = p2—¢
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Malliavin calculus

Theorem
For any random variable F € DY2(H) and any predictable process

® € Ly([0, T] x Q, £3) the following integration by parts formula is valid.

E{<F,/0td>(s)dW(s)>H} - E[/Ot<DsF,<b(s)>£g ds}.

We will use this (essentially) with ®(s) = E,(t — s)Py, and
F = u(Xn(t),t), DsF = Dsu(Xn(t), t) = te(Xn(t), t)Ds Xp(t),
where

Xh(t)—/otEh(t—s)Pde(s), DoXi(t) = En(t — 5)Pp,

and

U (Xn(t), t) = E[E(T — £)G"(Z(T: t, Xp(£))E(T — t))|F].
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Malliavin

The difficult term:

’E/OT@X(xh() t), (Ap — A)X(t) dt’

)
= e[ (A7 - AP AU A A [k = AT A

E :<KhAuX(Xh(t), t), Ap /t Ex(t — 5)Pp dW(s)H dr‘

0

J
_ /OTE:/ot (KoAD.s(Xh(2) ). Asfi(t — 5)P) ] ds et
J

E'/t<KhAu (Xn(t), )Ds xh(t),A,,Eh(t—s)Ph>£g} dsdt’

IN

/ E / | Kn At (Xn(t), £) Ds X (£ )||Lg||AhEh(t—s)Ph||£g} dsdt
0



Malliavin

T t
g‘/ E[/ KAt (Xn(1), DX (2) | gl AnE(t — )Pl g ds |
0 0

T t
< [ E[ [ 1uelanao. OllcIDXs(e el

X | AnEn(t = )Pallc 1] cs | ds dt

U (Xn(t), t) = E[E(T — £)G"(Z(T; t, Xu(£))E(T — t))|F]
DSXh(t) = Eh(t — S)Ph

T pt
< [ [ 1A — eIl IECT — OlclEnte - )Pl

X ||AnEn(t — 5)Pal|c dsdt [[1]%
T t
< Ch2/ (T—t)_l/ (t—S)_ldet||/||f:g|G|cg
0 0

Almost convergent: lose €.
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Malliavin

Tray again, with ¢ loss:
T t
= ]/ E[/ <KhAuXX(Xh(t),t)DsXh(t),AhEh(tfs)Ph>£g} dsdt‘
0 0
T t € € € €
:‘/ E{/ (AthAéAl’quX(Xh(t),t)DsXh(t),A’éAhEh(t—s)Ph>Lg] dsd
0 0

T t
< / / 1A% Ky A% ||| AV 5 E(T = 1)) | Glez | E(T — )| cl|En(t — 5)Pallc
0 0
X A2 AZ | cl|A, 2 En(t — 5)Pallc dsdt |12

T t
< ChHe/ (Tft)*1+§/ (t—s)" 1tz dsdtH/||2£g|G|Ci < Ch* %,
0 0

Here ||A*§AEH£ < C, for example, if we have a quasi-uniform mesh
family.



Malliavin

In the nonlinear case we do not have formulas for us. (Xx(t),t) and

DsXp(t) and so we must write down the equations that they satisfy and
prove bounds for

[AY2 e (Xn(2): 8|5 11D Xn(t)]] co-
The remaining term is easier:
]E/OTTr [ (X3 (2), D[P QPs — Q] |
_ ‘E/OTTr [t (Xn(2), )[(Ph + 1) Q(Ph — 1] dt‘
_ ‘E/OTTr (A5 U (Xn(£), )[(Ph + 1)Q(Py — A1F5]] dt’

)
<E [ 1A S (6(0). el Pr 1 THQ)I(Py — DA
0

rdt

.
< Chzfﬁ/ (T —t) 12 dt Tr(Q).
0
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Weak convergence: Malliavin

The above argument is not rigorous because the Kolmogorov equation is
not valid for x € H. To handle this we project onto the eigenspaces of A
in order to get a finite dimensional Kolmogorov equation. Auxiliary
process Zy,(s) = Zn(s; t, x):

Zn(s) = Epn(s — t)Pmé + /S En(s — r)PndW(r).
Define v, - H x [0, T] — R by
Um(x,t) = E[G(Zm(T; t,x))]

Then um(x,t) = um(Pmx, t), to be used with x = Xj,(t). The partial
derivatives are
Umx(x, t) = E[Em(T — )P G (Z(T; t, x))],

Umoe (X, ) = E[Em(T — )P G (Zon(T; £,%)) Em(T — t)Pr].



Malliavin

Auxiliary process:
Zn(s) = Em(s — t)Pmé + /S En(s— r)Pn, dW(r).
t
Define um : H x [0, T] — R by
Um(x,t) = E[G(Zm(T; t,x))}.

Kolmogorov's equation:

Um,t(X, 1) — (Um x(x, ), Amx) + %Tr (Um (X, t)PmQPr) = 0,
te0,T), x e H,
u(x, T) = G(Pmx)
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Malliavin

This leads to the weak error formula:

E[G(Xy(T)) ~ G(X(T))]

T
—E [ { = (maX6(0) ). (A~ An)Xs(0)
0
+ 3Tt [t (Xn(£), ) [PhQPh — P QP } dt
In the first term we write

(Umos (An = Am)Xn) = (Um s (PhAR — AmPh)Xp)
= ((AnPh — PpAm)tm.x; Xp)
= (AnPh(l — Ay PrAm) tm x, Xa)
= (ApPy(I—Pm + A" AP, — AT PR AP, Um s, Xn)
= (A7 — A Y PY) AP x, AnXn)
+ (I = Pm)Um,x, AnXn).
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Similar treatment of the other term:

Tr (Um,xx[PhQ'Dh - PmQPmD =Tr (Um,xx[Ph + Pm]Q[Ph - Pm])
= Tt (tmsx[Ph + Penl Q[Pr — | + 1 — Pp])

- Tr (um’XX[Ph + Pm]Q[Ph - I]) + Tr (ufn,XX[Ph + Pm]Q[/ - Pm])

In both cases we get an extra term containing | — Pp,.

For fixed h, let m — oo, show that extra terms — 0. Then let h — 0.
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Malliavin
The main term is

‘E/ ((A™ 1 1P,,)AP,,,u,,LX,AhXh)dt Malliavin integration by parts...

7%AmEm(T - t)Pm||L|G‘C§||Em(T - t)PmHL

I

X IIEh(t — $)Pullc| A2 AL l|A

VEEN(t — 5)Pyllc dsdt 11129

T t
< Ch2—2f/ (T - t)—1+%/ (£ —5) 7+ dsde || 1]2|Gles < CH2 %,
0 0
which is independent of m. The extra term becomes
T
‘E/ (1= P, AnX) |
0
-
< E/ (1 = Pm)A ||| AV En(T — )Pl 2| Gler [|AnXn(t) 1 dt
0
-
< C)\;”E/ (T — )7 dt[Gle [[AnPhll sup [IXa(8)lly0.m) — O,
0 tel0,T]

as m — oo for fixed h.
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More precisely,

E[6(x(T)) — 6(x(7)]|
< Ch?72 4 Ch—2A\1*¢ 4 other terms of the same form.

Therefore

‘E[G(xh(r)) - G(X(T))} ‘ < che,
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More precisely,

E[6(x(T)) — 6(x(7)]|
< Ch?72 4 Ch—2A\1*¢ 4 other terms of the same form.

Therefore

‘E[G(xh(r)) - G(X(T))} ‘ < che,

This type of analysis has been carried out for the nonlinear heat equation:

» Debussche [Debussche(2011)], multiplicative noise in 1-D,
time-stepping,

» Wang and Gan [Wang and Gan(2012)], additive noise in multi-D,
time-stepping,

> Andersson and L [Andersson and Larsson(2012)], additive noise in
multi-D, multiplicative noise in 1-D, spatial discretization.
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