Random Sets

Roger J-B Wets Mathematics, University of California, Davis

> May 2012, ETH-Zürich Lecture #2

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

 $\min \mathbb{E}\{f(\boldsymbol{\xi}, x)\}, \ x \in C, \quad \mathbb{E}\{f(\boldsymbol{\xi}, x)\} = Ef(x) = \int_{\Xi} f(\boldsymbol{\xi}, x) P(d\boldsymbol{\xi}) \\ \boldsymbol{\xi}^{1}, \dots, \boldsymbol{\xi}^{\nu} \text{ sample } P^{\nu} \text{ (random) empirical measure} \\ \text{approx.: } \min \mathbb{E}^{\nu}\{f(\boldsymbol{\xi}, x)\} = \frac{1}{\nu} \sum_{l=1}^{\nu} f(\boldsymbol{\xi}^{l}, x), \ x \in C \end{cases}$

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

SAA-applies without 'any' restrictions

 $f \text{ on } \Xi \times E, \text{ random lsc fcn (loc. inf-<math>\int), \{ \boldsymbol{\xi}, \boldsymbol{\xi}^1, \dots, \} \text{ iid}$ Then $E^{\nu}f = \mathbb{E}^{\nu} \{ f(\boldsymbol{\xi}, \cdot) = \frac{1}{\nu} \sum_{l=1}^{\nu} f(\boldsymbol{\xi}^l, \cdot) \xrightarrow{e} Ef = \mathbb{E} \{ f(\boldsymbol{\xi}, \cdot) \}$ ε -argmin $E^{\nu}f \Rightarrow_{v} \varepsilon$ -argmin $Ef, \forall \varepsilon \ge 0$

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

Stochastic Programming (with recourse) $f(\xi, x) = f_{01}(x) + Q(\xi, x), \quad Q(\xi, x) = \inf_{y} \{f_{02}(\xi, y) \mid y \in C_{2}(\xi, x)\}$ SAA-problem: $\min_{\nu} \frac{1}{\nu} \sum_{l=1}^{\nu} f(\xi^{l}, x) \xrightarrow{e} Ef(x) = \mathbb{E}\{f(\xi, x)\}$

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

Statistical Estimation (fusion of hard & soft information) $L(\xi, h) = -\ln h(\xi)$ if $h \ge 0, \int h = 1, h \in A^{\text{soft}} \subset E$ Then, estimate $h^{\nu} \in \operatorname{argmin}_{E} \mathbb{E}^{\nu} \{L(\xi, h)\} \rightarrow h^{\text{true}} = \operatorname{argmin} \mathbb{E} \{L(\xi, h)\}$

example: Normal density

mean = (0,0) ... data samples correlated

covariance: MDM^T , $D = \text{diag}(4,1), M = \begin{pmatrix} \cos(\pi/6) & \cos(2\pi/3) \\ \sin(\pi/6) & \sin(2\pi/3) \end{pmatrix}$

samples: v = 10,

"soft" information: h unimodal

Results:

 $\|h^{true} - h^{est}\|_{2}^{2} = 0.028, \|h^{true} - h^{est}\|_{1} = 0.006$

Sampled data

normalized

True & Estimated density

Measurement Errors

Absolute Error

Level curves: true & estimate

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

SAA-applies without 'any' restrictions $f \text{ on } \Xi \times E, \text{ random lsc fcn (loc. inf-} f), \quad \{ \boldsymbol{\xi}, \boldsymbol{\xi}^1, \dots, \} \text{ iid}$ Then $E^{\nu} f = \mathbb{E}^{\nu} \{ f(\boldsymbol{\xi}, \cdot) = \frac{1}{\nu} \sum_{l=1}^{\nu} f(\boldsymbol{\xi}^l, \cdot) \xrightarrow{e} Ef = \mathbb{E} \{ f(\boldsymbol{\xi}, \cdot \} \in \mathbb{C} \}$ ε -argmin $E^{\nu} f \Rightarrow_{v} \varepsilon$ -argmin $Ef, \forall \varepsilon \geq 0$

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

Pricing contingent claims claims $\left\{ G^t(\vec{\xi}^t) \right\}$, instrum. prices $\left\{ S^t(\vec{\xi}^t) \right\}_t$, invest. $\left\{ X^t(\vec{\xi}^t) \right\}$ max $\mathbb{E}\left\{ \langle S^T, X^T \rangle \right\}$ s.t. $\langle S^t, X^{t-1} \rangle \leq G^t + \langle S^t, X^{t-1} \rangle + \text{end conditions.}$

Use 'improved estimation' & sampling: $\max \sum p_{\xi} \langle S^T(\xi), X^T(\xi) \rangle$ Correct prícing = well regulated market??

 $EG(x) = \mathbb{E}\{G(\boldsymbol{\xi}, x)\} = 0 \quad \text{``approximated'' by } G^{\nu}(x) = 0$ $\xi^1, \dots, \xi^{\nu} \text{ sample, } G^{\nu}(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x)$

 $G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\xi, x)\} \ni 0$ ξ^1, \dots, ξ^{ν} sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G(\xi^l, x) \ni 0$

Stochastic homogenization: Variational formulation given $u(\xi, x) \in \operatorname{argmin}_{H_0^1(\Omega)} g(\xi, u) = \frac{1}{2} \int_{\Omega} a(\xi, x) |\nabla u|^2 dx - \langle h, u \rangle$ find g^{hom} such that $\mathbb{E}\{u(\boldsymbol{\xi}, \cdot)\} \in \operatorname{argmin} g^{\text{hom}}$ via Ergodic Thm: $g^{\text{hom}} = \left(\operatorname{epi}_w - \operatorname{lim}\right) \nu \frac{1}{\nu} \sum l = 1^{\nu} g^*(\boldsymbol{\xi}^l, \cdot) \right)^*$

Topology of Hyperspaces

Painlevé, Pompeiu, Zoretti Zarankiewicz, Hausdorff, Lubben, Moore Choquet, Vietoris, Fell, Attouch-Wets, Beer, ...

Hyperspace: sets(E)

- \Box (*E*,*d*) always a Polish space
- $\Box \quad C \subset E, \ d(x,C) = \inf \left\{ d(z,x) \middle| z \in C \right\}, \quad d(x,\emptyset) = \infty$
- $\Box \quad \text{cl-sets}(E) = \{ \text{all closed subsets of } E \}, \quad \emptyset, E \in \text{cl-sets}(E) \}$
- $\square \quad dl(A,B) = \text{distance between } A \& B, \text{ metric}(?) \text{ on } \text{cl-sets}(E)$
- $\bigcap (cl-sets(E), dl) Polish space = complete separable metric ??$
- $\square \quad dl(C^{\nu}, C) \to 0 \text{ means } C^{\nu} \to C \text{ (set-convergence)}$

Pompeiu-Hausdorff distance

Pompeiu-Hausdorff distance

Pompeiu-Hausdorff distance

set distance (~Attouch-Wets) τ_{aw} topology

- $\Box \quad \hat{dl}_{\rho}(A,B) \ge 0, \ \hat{dl}(A,A) = 0, \Delta \text{ inequality}$
- \square but $\hat{d}_{\rho}(A,B) = 0$ possibly when $A \neq B$

 $\Box \quad \hat{dl}_{\rho}(A,B) \le dl_{\rho}(A,B) \le \hat{dl}_{\rho'}(A,B) \quad \rho' \ge 2\rho + d_0$

set distance (~Attouch-Wets) τ_{aw} topology

- $\Box \quad \hat{dl}_{\rho}(A,B) \ge 0, \ \hat{dl}(A,A) = 0, \Delta \text{ inequality}$
- $\square \quad \text{but} \quad d\hat{l}_{\rho}(A,B) = 0 \text{ possibly when } A \neq B$
- $\Box \quad dl_{\rho}(A,B) = \sup_{x \in \rho B} \left[d(x,A), d(x,B) \right]$
- $\Box \quad \text{for all } \rho \ge 0, \ dl_{\rho} \text{ is a pseudo-metric}$
- $\Box \qquad d\!l(A,B) = \int_{\rho \ge 0} d\!l_{\rho}(A,B) e^{-\rho} d\rho, \text{ set-metric}$
- $\Box \quad \hat{dl}_{\rho}(A,B) \le dl_{\rho}(A,B) \le \hat{dl}_{\rho'}(A,B) \quad \rho' \ge 2\rho + d_0$

Properties of the set-distance

 $C^{\nu} \to C \text{ if } dl(C^{\nu}, C)) \to 0 \iff \text{ for any } \bar{\rho} \ge 0,$ $\begin{cases} dl_{\rho}(C^{\nu}, C) \to 0 & \text{ for all } \rho \ge \bar{\rho} \\ d\hat{l}_{\rho}(C^{\nu}, C) \to 0 & \text{ for all } \rho \ge \bar{\rho} \end{cases}$

(E, d) Polish \Longrightarrow (cl-sets(E), d) complete, metric space (cl-sets(E), d) Polish $\iff E = \mathbb{R}^n$

space of osc-mappings outer semicontinuous

 $S: D \rightrightarrows E \text{ osc } \iff \operatorname{gph} S \subset D \times E \text{ closed}$ $\operatorname{gph} S = \left\{ (x, u) \, \middle| \, u \in S(x), x \in E \right\}$

space of osc-mappings outer semicontinuous $\mathbb{B} = \mathbb{B}_D \times \mathbb{B}_E \text{ (or } \mathbb{B}_{E \times D})$ $dl(R,S) = dl(\operatorname{gph} R, \operatorname{gph} S), \quad dl_{\rho}, \ dl_{\rho}$ $(\operatorname{osc-maps}(D, E), d)$ complete metric, Polish: $D = \mathbb{R}^n, E = \mathbb{R}^m$ $S: D \to E \text{ (single-valued) continuous} \Longrightarrow \text{osc, } \dots$

 $dl(f^{\nu}, f) \to 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f$

space of osc-mappings outer semicontinuous $\mathbb{B} = \mathbb{B}_D \times \mathbb{B}_E \text{ (or } \mathbb{B}_{E \times D})$ $dl(R,S) = dl(\operatorname{gph} R, \operatorname{gph} S), \quad dl_{\rho}, \ dl_{\rho}$ $(\operatorname{osc-maps}(D, E), d)$ complete metric, Polish: $D = \mathbb{R}^n, E = \mathbb{R}^m$ $S: D \to E$ (single-valued) continuous \Longrightarrow osc, ...

 $d\!l(f^{\nu}, f) \to 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f$

$$S^{-1}(0) = \text{sol'ns of } S(x) \ni 0$$

$$S^{\nu} \to S \text{ uniformly} \Rightarrow dl(S^{\nu}, S) \to 0$$

space of Isc-fcns(E) Iower semicontinuous

$f: E \to \overline{\mathbb{R}} \, \text{lsc} \iff \text{epi} \, f \subset E \times \mathbb{R} \text{ closed}$ $\text{epi} \, f = \left\{ (x, \eta) \, \big| \, \eta \ge f(x) \right\}$

space of Isc-fcns(E) lower semicontinuous

 \mathbb{B}_{E} [-1,1] unit ball $\mathbb{B} = \mathbb{B}_{E} \times [-1,1]$

 $dl(f,g) = dl(\operatorname{epi} f, \operatorname{epi} g)$ dl_{ρ}, dl_{ρ} (lsc-fcns(E), dl) complete metric, Polish $E = \mathbb{R}^n$

 $dl(f^{\nu}, f) \to 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f$

space of Isc-fcns(E) lower semicontinuous

$$\mathbb{B}_{E}$$
[-1,1] unit ball $\mathbb{B} = \mathbb{B}_{E} \times [-1,1]$

 $dl(f,g) = dl(\operatorname{epi} f, \operatorname{epi} g) \qquad dl_{\rho}, \ d\hat{l}_{\rho}$

 $(\operatorname{lsc-fcns}(E), d)$ complete metric, Polish $E = \mathbb{R}^n$

$$d(f^{\nu}, f) \to 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f$$

Hit-Open & Miss-Compact Sets

Hit-Open & Miss-Compact Sets

 \mathbb{R}^n : Set-convergence ($\tau_{aw} = \tau_f$) topology $\mathcal{F} = \text{cl-sets}(\mathbb{R}^n)$, all closed subsets of \mathbb{R}^n \mathcal{F}^{D} = subsets \mathbb{R}^{n} that *miss* $D = \{F \cap D = \emptyset\}$ \mathcal{F}_D = subsets \mathbb{R}^n that *hit* $D = \{F \cap D \neq \emptyset\}$ Hit-and-miss topology (= τ_f Fell topology) subbase: $\{\mathcal{F}^{K} | K \text{ compact}\} \& \{\mathcal{F}_{O} | O \text{ open}\}$ $\mathbb{B}(x,\rho)$ closed ball, center x radius ρ , $\mathbb{B}^{o}(x,\rho)$ open a subbase $\left\{ \mathcal{F}^{\mathbb{B}(x,\rho)}, \mathcal{F}_{\mathbb{B}^{o}(x,\rho)} \mid x \in \mathbb{Q}^{d}, \rho \in \mathbb{Q}_{++} \right\}$ countable base: $\left\{ \mathcal{F}^{\mathbb{B}(x^1,\rho_1)\cup\ldots\cup\mathbb{B}(x^r,\rho_r)} \cap \mathcal{F}_{\mathbb{B}^o(x^1,\rho_1)\cup\ldots\cup\mathbb{B}^o(x^s,\rho_s)} \right\}$ $(cl-sets(\mathbb{R}^n), \tau_{aw})$ Polish space (separable, complete metric)

Random Sets

Mattheron, Choquet Salinetti-Wets, Castaing, Valadier, Hess, Stoyan, ...

Random sets

Random Closed Sets

 $(\Xi, \mathcal{A}, P), \quad \Xi \subset \mathbb{R}^{N} \& E \text{ Polish, for example } \mathbb{R}^{n}$ $C : \Xi \implies E, \ C(\xi) \subset E \text{ closed set for all } \xi \in \Xi$ $\& \ C^{-1}(O) = \left\{ \xi \left| C(\xi) \cap O \neq \emptyset \right\} \in \mathcal{A}, \ \forall O \subset E, \text{open} \right.$ $\Rightarrow \text{ dom } C = C^{-1}(E) \in \mathcal{A}, \text{ measurability } \sim \text{ hit open sets}$

Random Closed Sets

 $(\Xi, \mathcal{A}, P), \quad \Xi \subset \mathbb{R}^N \& E \text{ Polish, for example } \mathbb{R}^n$ $C : \Xi \implies E, \ C(\xi) \subset E \text{ closed set for all } \xi \in \Xi$ $\& \ C^{-1}(O) = \left\{ \xi \left| C(\xi) \cap O \neq \emptyset \right\} \in \mathcal{A}, \ \forall O \subset E, \text{open} \right. \\ \implies \text{ dom } C = C^{-1}(E) \in \mathcal{A}, \text{ measurability } \sim \text{ hit open sets} \right\}$

 $c: \Xi \to \text{cl-sets}(E), \ c(\xi) \sim C(\xi), \ \mathcal{F}_o = \left\{ F \subset E \text{ closed} \middle| F \cap O \neq \emptyset \right\}$ $\left(\text{sets}(E), \mathcal{E} \right), \ \mathcal{E} \text{ Effrös field} = \sigma - \left\{ \mathcal{F}_o \in \text{ sets}(\mathbb{R}^n), O \text{ open} \right\},$

C measurable $\Leftrightarrow c$ measurable $[c^{-1}(\mathcal{F}_o) \in \mathcal{A}]$ $\mathcal{E} = \mathcal{B}$ Borel field when *E* Polish (complete separable metric space)

Measurable selection

• a random closed set C always admits a measurable selection!

□ C is a random closed set (& dom C measurable) ⇔ it
 admits a Castaing representation: ∃ a <u>countable</u> family

 $\left\{s^{\nu}: \operatorname{dom} C \to E, \operatorname{meas.-selections}\right\}$ $\operatorname{cl} \bigcup_{\nu \in \mathbb{N}} s^{\nu}(\xi) = C(\xi), \forall \xi \in \operatorname{dom} C \subset \Xi$

□ Graph measurability

 $(\Xi, \mathcal{A}) P\text{-complete for some } P, \qquad (\text{negligible sets are } P\text{-measurable})$ C random set \Leftrightarrow gph $C \mathcal{A} \otimes \mathcal{B}_n$ -measurable

Random Elements: Convergence (review) $\boldsymbol{\xi}: (\Omega, \mathcal{F}, \mu) \to (\Xi, \mathcal{A}, P), \quad \boldsymbol{\xi}^{\nu} \stackrel{\star}{\to} \boldsymbol{\xi}$ a.s. (almost sure) convergence: $P\{\xi \mid \lim_{\nu} \boldsymbol{\xi}^{\nu}(\omega) = \boldsymbol{\xi} \neq \boldsymbol{\xi}(\omega), \, \omega \in \Omega\} = 0$ convergence in probability: $P(|\boldsymbol{\xi}^{\nu} - \boldsymbol{\xi}| > \varepsilon) \to 0 \text{ for all } \varepsilon > 0$ convergence in distribution: $P^{\nu} \xrightarrow{\mathcal{D}} P$

a.s.-Convergence

* $\{C^{\nu}: \Xi \Rightarrow \mathbb{R}^{d}, \nu \in \mathbb{N}\}$ random closed sets

* a.s. convergence: $dl(C^{\nu}(\xi), C(\xi)) \to 0$ for *P*-almost all $\xi \in \Xi$ $C^{\nu} \to C$ a.s. $\Rightarrow C$ random closed set on $\Xi_0, \mu(\Xi_0) = 1$

*
$$C^{\nu} \rightarrow C P$$
-a.s. and dom $C^{\nu} = \text{dom } C$. Then,

 \exists Castaing representations of $C^{\nu} \rightarrow$ a Castaing representation of *C* If $s : \Xi \rightarrow E$ is a measurable selection of *C*, then

 $\exists s^{v} : \Xi \to E$ selections of C^{v} converging *P*-a.s. to *s*

* ('Egorov's Theorem': $C^{\nu} \to C \ \mu$ -a.s. $\Leftrightarrow C^{\nu} \to C$ almost uniformly)

Convergence in probability

Let $\varepsilon^{o}C = \left\{ x \in \mathbb{R}^{m} | d(x,C) < \varepsilon \right\}, C^{v}, C$ random sets $\Delta_{\varepsilon,v} = \left(C^{v} \setminus \varepsilon^{o}C \right) \cup \left(C \setminus \varepsilon^{o}C^{v} \right)$ μ -a.s. convergence: $\mu \left\{ \xi | C^{v}(\xi) \to C(\xi) \right\} = 1$ in probability: $P \left[\Delta_{\varepsilon,v}^{-1}(K) \right] \to 0, \forall \varepsilon > 0, K \in \mathcal{K} = \text{ cpct-sets}$

 C^{ν} converges to *C* in probability $\Leftrightarrow P(dl(C^{\nu}, C) > \varepsilon) \rightarrow 0$ for all $\varepsilon > 0$ \Leftrightarrow every subsequence of $\{C^{\nu}\}_{\nu \in \mathbb{N}}$ contains a sub-subsequence converging μ -a.s to *C*

i.e., in probability \Rightarrow in distribution $\left[\int h(\xi) dl(C^{\nu}(\xi), C(\xi)) P(d\xi) \rightarrow 0\right]$

$P^{\nu} \xrightarrow{\mathcal{D}} P \sim \text{distribution fcns converge}$

 P^{ν}, P defined on $(\mathbb{R}, \mathcal{B})$ $P^{\nu} \xrightarrow{\mathcal{D}} P \iff \int h(\xi) P^{\nu}(d\xi) \to \int h(\xi) P(d\xi) \ \forall h \text{ continuous}$

 $F^{\nu}(z) = P^{\nu}((-\infty, z)), \quad F(z) = P((-\infty, z)), \text{ cumulative distributions}$

 $P^{\nu} \xrightarrow{\mathcal{D}} P \iff F^{\nu} \xrightarrow{p} F$ on cont $F = \{ all continuity points of F \}$

 \xrightarrow{h} : hypo-convergence

$P^{\nu} \xrightarrow{\mathcal{D}} P \sim \text{distribution fcns converge}$

 P^{ν}, P defined on $(\mathbb{R}, \mathcal{B})$ $P^{\nu} \xrightarrow{\mathcal{D}} P \iff \int h(\xi) P^{\nu}(d\xi) \to \int h(\xi) P(d\xi) \ \forall h \text{ continuous}$

 $F^{\nu}(z) = P^{\nu}((-\infty, z)), \quad F(z) = P((-\infty, z)), \text{ cumulative distributions}$

 $P^{\nu} \xrightarrow{\mathcal{D}} P \iff F^{\nu} \xrightarrow{p} F$ on cont $F = \{ all continuity points of F \}$

$$\begin{array}{cccc} P^{\nu} \xrightarrow{\mathcal{D}} P \iff -F^{\nu} \xrightarrow{e} -F \\ (F^{\nu} \xrightarrow{h} F, F, F \quad \text{usc} = -\text{lsc} \\ \xrightarrow{h} : \text{hypo-convergence} \end{array}$$

 $P^{\nu} \xrightarrow{\mathcal{D}} P \sim \text{distribution fcns converge}$ P^{ν}, P defined on $(\mathbb{R}^n, \mathcal{B}_n)$ random vectors $\boldsymbol{\xi}^{\nu}, \boldsymbol{\xi}$ $P^{\nu} \xrightarrow{\mathcal{D}} P \iff \int h(\xi) P^{\nu}(d\xi) \to \int h(\xi) P(d\xi) \quad \forall h \text{ continuous}$ $F^{\nu}(z) = P^{\nu}(\xi_i \le z_i, i = 1, \dots, n), \quad F(z) = P(\xi_i \le z_i, i = 1, \dots, n)$ 1. $z \leq \tilde{z} \implies F(z) \leq F(\tilde{z})$ "increasing" bo R 2. $\lim_{z\to\infty} F(z) = 1$, $\lim_{z\to\infty} F(z) \to 0$, 3. F is use (upper sc) $\limsup_{z' \to z} F(z') \leq F(z)$, b1

4.
$$R = (a_1, b_1] \times \cdots \times (a_n, b_n], \quad V = \{a_1, b_1\} \times \cdots \times \{a_n, b_n\}$$
 vertices of R
 $\forall R \subset \mathbb{R}^n, \ P(\boldsymbol{\xi} \in R) = \sum_{v \in V} \operatorname{sgn}(v) F(v), \quad \operatorname{sgn}(v \in V) = (-1)^{\# a \text{ in } v}$

 $P^{\nu} \xrightarrow{\mathcal{D}} P \sim \text{distribution fcns converge}$ P^{ν}, P defined on $(\mathbb{R}^n, \mathcal{B}_n)$ random vectors $\boldsymbol{\xi}^{\nu}, \boldsymbol{\xi}$ $P^{\nu} \xrightarrow{\mathcal{D}} P \iff \int h(\xi) P^{\nu}(d\xi) \to \int h(\xi) P(d\xi) \quad \forall h \text{ continuous}$ $F^{\nu}(z) = P^{\nu}(\xi_i \le z_i, i = 1, \dots, n), \quad F(z) = P(\xi_i \le z_i, i = 1, \dots, n)$ 1. $z \leq \tilde{z} \implies F(z) \leq F(\tilde{z})$ "increasing" R 2. $\lim_{z\to\infty} F(z) = 1$, $\lim_{z\to\infty} F(z) \to 0$, 3. F is use (upper sc) $\limsup_{z' \to z} F(z') \leq F(z)$, b1 4. $R = (a_1, b_1] \times \cdots \times (a_n, b_n], V = \{a_1, b_1\} \times \cdots \times \{a_n, b_n\}$ vertices of R $\forall R \subset \mathbb{R}^n, \ P(\boldsymbol{\xi} \in R) = \sum_{v \in V} \operatorname{sgn}(v) F(v), \quad \operatorname{sgn}(v \in V) = (-1)^{\# a \text{ in } v}$

$$(P^{\nu} \xrightarrow{\mathcal{D}} P \iff -F^{\nu} \xrightarrow{e} -F)$$

Distribution of a random set

Borel σ -field: $\mathcal{B} = \sigma - \{\mathcal{F}^K | K \text{ compact}\} \text{ or } \sigma - \{\mathcal{F}_O | O \text{ open}\} \dots$ Distribution (P, \mathcal{B}) regular, \mathcal{K} compact subsets Edetermined by values on $\{\mathcal{F}^{K} | K \in \mathcal{K}\}$ or $\{\mathcal{F}_{K} | K \in \mathcal{K}\}$ Distribution function (Choquet capacity): $T: \mathcal{K} \to [0,1], T(\emptyset) = 0 \text{ and } \forall \left\{ K^{\nu}, \nu \in \{0\} \cup \mathbb{N} \right\} \subset \mathcal{K}:$ a) $T(K^{\nu}) \searrow T(K)$ when $K^{\nu} \searrow K$ (~ usc on \mathbb{R}^{n}) b) $\{D_v: \mathcal{K} \to [0,1]\}_{v \in \mathbb{N}}$ where $D_0(K^0) = 1 - T(K^0)$ ⁽⁴⁾ $D_1(K^0; K^1) = D_0(K^0) - D_0(K^0 \cup K^1)$ and for v = 2,... $D_{\nu}(K^{0};K^{1},\ldots,K^{\nu}) = D_{\nu-1}(K^{0};K^{1},\ldots,K^{\nu-1}) - D_{\nu-1}(K^{0}\cup K^{\nu};K^{1},\ldots,K^{\nu-1})$ (~ rectangle condition on \mathbb{R}^n)

Existence-Uniqueness T

P on \mathcal{B} determines a unique distribution function *T* on \mathcal{K} $T(K) = P(\mathcal{F}_K)$ $D_v(K^0; K^1, \dots, K^v) = P(\mathcal{F}^{K^0} \cap \mathcal{F}_{K^1} \cap \dots \cap \mathcal{F}_{K^v})$ *T* on \mathcal{K} determines a unique probability measure *P*.

Proof. via Choquet Capacity Theorem (Matheron) (refined) via probabilistic arguments (Salinetti-Wets)

 $C: \Xi \rightrightarrows \mathbb{R}^{d} \text{ a random closed set}$ (P,B) induced probability measure: $P(\mathcal{F}_{G}) = P\left[C^{-1}(G)\right] \quad \forall G \in \mathcal{B}, \quad T(K) = P\left[C^{-1}(K)\right] \quad \forall K \in \mathcal{K}$

Convergence in Distribution

random sets C^{ν} converge in distribution to C when

induced P^{ν} narrow-converge to $P: P^{\nu} \rightarrow_{n} P = P^{\nu} \xrightarrow{\mathcal{D}} P$ $\Leftrightarrow T^{\nu} \rightarrow_{p} T$ on $\mathcal{K}_{T\text{-cont}}$ (convergence of distribution functions) $\mathcal{K}_{T\text{-cont}}$?

a) $\forall C^{\nu}, \nu \in N, \exists$ converging subsequence (pre-compact) b) $K^{\nu} \nearrow K = \operatorname{cl} \bigcup_{\nu} K^{\nu}$ regularly if int $K \subset \bigcup_{\nu} K^{\nu}$ c) distribution (fcn) continuity: $\lim_{\nu} T(K^{\nu}) = T(\operatorname{cl} \bigcup_{\nu} K^{\nu})$ d) convergence $T^{\nu} \rightarrow_{p} T$ on C_{T} continuity set $\Rightarrow P^{\nu} \rightarrow_{n} P$ e) $P^{\nu} \rightarrow_{n} P \Leftrightarrow T^{\nu} \rightarrow_{p} T$ on $C_{T}^{ub} = C_{T} \cap \mathcal{K}^{ub}$

 \mathcal{K}^{ub} = finite union of rational ball, positive radius f) $\varepsilon \mapsto T(K + \varepsilon \mathbb{B})$: countable number of discontinuities

a detour about rates

 $T^{\nu} \rightarrow_{p} T$ on $C_{T} \Leftrightarrow P^{\nu} \rightarrow_{n} P$ (Polish space: E, d)

 P^{ν}, P defined on \mathcal{B}

probability sc-measures on cl-sets(E): λ

(i) $\lambda \ge 0$, (ii) $\lambda \nearrow \lambda(C^1) \le \lambda(C^2)$ if $C^1 \subset C^2$ (iii) λ is τ_f -usc on cl-sets(*E*), (iv) $\lambda(\emptyset) = 0, \lambda(E) = 1$ (v) λ modular: $\lambda(C^1) + \lambda(C^2) = \lambda(C^1 \cup C^2) + \lambda(C^1 \cap C^2)$ *P* and $\lambda = P_{\text{cl-sets}}$ define each other uniquely (*E* complete \Rightarrow tight) $\{P^v, v \in \mathbb{N}\}$ tight: $P^v \rightarrow_n P \Leftrightarrow \lambda^v \rightarrow_h \lambda (\sim -\lambda^v \rightarrow_e -\lambda)$ on cl-sets(*E*) tightness \sim equi-usc of $\{\lambda^v\}_{v \in \mathbb{N}}$ at \emptyset rates: $dl(\lambda^v, \lambda) \rightarrow 0$ (for \mathbb{R} -valued r.v., " \sim " Skorohod distance)

Random Sets Convergence & Expectation

Artstein-Vitale-Hart-Wets, Cressis, Hiai, Weyl, ...

Outer/Inner Limits

outer limit: $\operatorname{Lo}_{v}C^{v} = \left\{ x \in \operatorname{cluster-points}\{x^{v}\}, x^{v} \in C^{v} \right\} = \operatorname{Ls}_{v}C^{v}$ inner limit: $\operatorname{Li}_{v}C^{v} = \left\{ x = \lim_{v} x^{v}, x^{v} \in C^{v} \subset \mathbb{R}^{n} \right\} \subset \operatorname{Lo}_{v}C^{v}$ limit: $C^{v} \to C$ if $C = \operatorname{Li}_{v}C^{v} = \operatorname{Lo}_{v}C^{v}$ (Painlevé - Kuratowski) All limit sets are closed

Outer/Inner Limits

outer limit: $\operatorname{Lo}_{v}C^{v} = \left\{ x \in \operatorname{cluster-points}\{x^{v}\}, x^{v} \in C^{v} \right\} = \operatorname{Ls}_{v}C^{v}$ inner limit: $\operatorname{Li}_{v}C^{v} = \left\{ x = \lim_{v} x^{v}, x^{v} \in C^{v} \subset \mathbb{R}^{n} \right\} \subset \operatorname{Lo}_{v}C^{v}$ limit: $C^{v} \to C$ if $C = \operatorname{Li}_{v}C^{v} = \operatorname{Lo}_{v}C^{v}$ (Painlevé - Kuratowski) All limit sets are closed

Characterizing a.s. convergence

 $\left\{C; C^{\nu}: \Xi \rightrightarrows \mathbb{R}^n, \nu \in \mathbb{N}\right\}$ random closed sets. Then,

1. $C^{\nu} \to C \ a.s., \ d(C^{\nu}, C) \to 0 \ a.s., \ \operatorname{Lo}_{\nu}(C^{\nu}) \subset C \subset \operatorname{Li}_{\nu}(C^{\nu}) \ a.s.,$

2. $\forall x \in \mathbb{R}^n \text{ and } \xi \in \Xi_1 \text{ with } P(\Xi_1) = 1, d(x, C^{\nu}(\xi)) \to d(x, C(\xi)),$

3. $\forall x \in \mathbb{R}^n \text{ and } \xi \in \Xi_1 \text{ with } P(\Xi_1) = 1,$

 $\lim_{\rho \nearrow \infty} \operatorname{Lo}_{\nu} \left(C^{\nu}(\xi) \cap \mathbb{B}(x,\rho) \right) \subset C(\xi) \subset \lim_{\rho \nearrow \infty} \operatorname{Li}_{\nu} \left(C^{\nu}(\xi) \cap \mathbb{B}(x,\rho) \right).$

"Proof 1. \Leftrightarrow 2."

 $C^{\nu} \to C \iff \forall x \in \mathbb{R}^n, d(x, C^{\nu}) \to d(x, C) \text{ provided } E = \mathbb{R}^n.$

 $C^{\nu} \to C$ if and only if the hit-miss criterion is satisfied

C hits $\mathbb{B}^{o}(x,\rho)$ then C^{ν} hits $\mathbb{B}^{o}(x,\rho)$ for $\nu \geq \nu_{x,\rho}$ so, $C \subset \operatorname{Li}_{\nu} C^{\nu} \iff d(x,C) \geq \operatorname{limsup}_{\nu} d(x,C^{\nu}), \forall x$

 $C \text{ misses } \mathbb{B}(x,\rho) \text{ then } C^{\nu} \text{ misses } \mathbb{B}(x,\rho) \text{ for } \nu \geq \nu_{x,\rho}$ so, $C \supset \operatorname{Lo}_{\nu} C^{\nu} \iff d(x,C) \geq \operatorname{liminf}_{\nu} d(x,C^{\nu}), \forall x$

Building Castaing representations

 $C: \Xi \rightrightarrows \mathbb{R}^n$, a random closed set. Let

$$A = \left\{ a_k = (a_k^1, \dots, a_k^n, a_k^{n+1}) \, \middle| \, a_k^i \in \mathbb{Q}^n \ \& \ \text{aff. independent} \right\}$$

for $\emptyset \neq D = D^0$ closed, define $\operatorname{prj}_D a_k = \operatorname{prj}_{D^n} a_k^{n+1}$ where $D^l = \operatorname{prj}_{D^{l-1}} a_k^l$ for $l = 1, \dots, n$ $\operatorname{prj}_D a_k$ is a singleton: intersection of n+1 "aff. independent" spheres. Moreover, $\{\operatorname{prj}_D a_k, a_k \in A\}$ also dense in D

 $s_k : \Xi \to \mathbb{R}^n$ with $s_k(\xi) = \operatorname{prj}_{C(\xi)} a_k$ is a measurable selection of C

 \square When D is a random closed set, so is $\xi \mapsto \operatorname{prj}_{D(\xi)} a, a \in \mathbb{R}^n$ repeat the argument n+1 times to obtain s_k measurable. \square

Converging Castaing representations

 $C^{\nu}: \Xi \Rightarrow \mathbb{R}^n$ random closed sets converging *P-a.s.* to *C*, dom $C^{\nu} = \text{dom } C$. Then, $\exists \{s_k^{\nu}, k \in \mathbb{N}\}$ Castaing representations of C^{ν} converging for each k to a Castaing representation $\{s_k, k \in \mathbb{N}\}$ of *C*.

 $\Box \text{ All Castaing representations are built via our earlier "projections".} \\ \text{Then, } \forall \xi \in \Xi_1, s_k^{\nu}(\xi) \to s_k(\xi), \ P(\Xi_1) = 1 \text{ the set of } a.s.\text{-convergence.} \\ \text{Since, } P\text{-}a.s. \text{ convergence of } C^{\nu} \to C \Longrightarrow \qquad (\text{rely on } 2. \text{ earlier}) \end{cases}$

 $d(a_k^1, s_k^{\nu}(\xi)) = d(a_k^1, C^{\nu}(\xi)) \to d(a_k^1, C(\xi)) = d(a_k^1, s_k(\xi)), \forall \xi \in \Xi_1. \quad \Box$

(a) Convergence of Castaing representations $\not\Rightarrow$ convergence of random sets! (b) v meas-selection of $C \Rightarrow \exists v^{\nu}$ meas-selection of C^{ν} converging a.s. to v.

"Simple" random sets

 $C: \Xi \Rightarrow \mathbb{R}^n$ is a *simple* random set if rge C is finite. C is a closed random set $\iff C = P \text{-} a.s.$ limit of simple random sets.

 $\Box \Leftarrow: \text{ the limit of a sequence of random sets is a random set} \\ \Rightarrow: \text{ let } C^{\nu} = C \cap \nu \mathbb{B}, \text{ unif. bounded closed random set, } C = \text{Lm}_{\nu} C^{\nu} \\ \text{ build (via "prj") Castaing representations } \{r_{k}^{\nu}\}_{k \in \mathbb{N}} \text{ of the } C^{\nu} \\ \text{ let } \{s_{k}^{\nu}\}_{k \in \mathbb{N}'} = \bigcup_{v \leq \nu} \{r_{k}^{v}\}_{v \in \mathbb{N}}, \text{ also Castaing for } C^{\nu} \\ D_{k}^{\nu} = \bigcup_{j \leq k} s_{j}^{\nu} dl \text{-converge uniformly to } C^{\nu} \text{ as } k \to \infty \\ \text{ since each } s_{k}^{\nu} = \lim_{l \to \infty} s_{kl}^{\nu} \text{ uniformly, } s_{kl}^{\nu} \text{ simple random variables} \\ \Delta_{kl}^{\nu} = \bigcup_{j \leq k} s_{jl}^{\nu} \text{ is a simple random set, } C(\xi) = \text{Lm}_{\nu} \text{Lm}_{k} \text{Lm}_{l} \Delta_{kl}^{\nu}(\xi) \end{cases}$

 $\Delta_{kl}^{\nu} \xrightarrow{u} D_k^{\nu} \xrightarrow{u} C^{\nu}$ allows diagonalization to find $\Delta_{k^{\nu}l^{\nu}}^{\nu} \to C$. \Box

Sierpiński-Lyapunov Theorems

 (Ξ, \mathcal{A}) a measure space

Sierpiński (1922). Suppose P is an atomless probability measure. Given $A_0, A_1 \in \mathcal{A}$ with $0 \leq P(A_0) \leq P(A_1) \leq 1$, then $\forall \lambda \in [0, 1], \exists A_\lambda \in \mathcal{A}$ such that $P(A_\lambda) = (1 - \lambda)P(A_0) + \lambda P(A_1)$. In particular, it implies $\forall \lambda \in [0, 1], \exists A \in \mathcal{A}$ such that $P(A) = \lambda$; choose $A_0 = \emptyset$ and $A_1 = \Xi$.

Lyapunov (1940) $\mu : \mathcal{A} \to \mathbb{R}^n$ atomless, σ -additive measure. For $A \in \mathcal{A}$, define rge $\mu(A) = \{\mu(B) \mid B \subset A \cap \mathcal{A}\}$. Then, rge $\mu(\Xi) \subset \mathbb{R}^n$ is convex and if μ is also bounded, it's compact.

Expectation: simple random set

 $C: \Xi \rightrightarrows \mathbb{R}^n \text{ a simple random set, i.e., rge } C = \left\{ z^k \in \mathbb{R}^n \, \big| \, k \in K, |K| \text{ finite } \right\}$ Given $\bar{r}, \bar{s} \in EC = \mathbb{E}\{C(\boldsymbol{\xi})\} \implies$

 $\exists \text{ simple selections } r, s : \Xi \to \mathbb{R}^n \text{ with } \mathbb{E}\{r(\boldsymbol{\xi})\} = \bar{r}, \mathbb{E}\{s(\boldsymbol{\xi})\} = \bar{s}.$ Let $\lambda \in [0, 1]$. Define $v : \Xi \to \mathbb{R}^n$ as follows:

- 1. partition Ξ into subsets A_{\pm} and \mathcal{A}_{\neq}
- 2. $A_{\pm} = \{\xi \in \Xi \mid r(\xi) = s(\xi)\} \in \mathcal{A}$
- 3. $A = \{\xi \in \Xi \mid r(\xi) = z_k, s(\xi) = z_l, k \neq l\} \in \mathcal{A}_{\neq}$, a finite collection 4. split each $A \in \mathcal{A}_{\neq}$, $P(A_r) = \lambda P(A)$ & $A_s = A \setminus A_r$ (Sierpiński)

set
$$v(\xi) = \begin{cases} r(\xi) & \text{on } \bigcup_{A \in \mathcal{A}_{\neq}} A_r \cup A_= \\ s(\xi) & \text{on } \bigcup_{A \in \mathcal{A}_{\neq}} A_s \end{cases}$$

then $\bar{v} = \mathbb{E}\{v(\xi)\} = \lambda \bar{r} + (1 - \lambda)\bar{s} \implies EC$ convex. Clearly EC is bounded and it's easy to show it's also closed \implies compact.

Expectation of random set

 $C: \Xi \rightrightarrows \mathbb{R}^n \text{ a closed random set} \\ \Longrightarrow C = P\text{-}a.s. \text{ limit of simple random sets,} \\ \text{say } C^{\nu} \xrightarrow[a.s.]{} C \text{ with } C^{\nu} \nearrow \text{ w.l.o.g} \\ EC^{\nu} = \mathbb{E}\{C^{\nu}(\boldsymbol{\xi})\} \nearrow \text{ are convex, compact } \Rightarrow \\ EC = \mathbb{E}\{C(\boldsymbol{\xi})\} = \bigcup_{\nu} EC^{\nu} \end{cases}$

- $\implies EC \text{ convex}$
- $\implies EC \text{ closed if } C \text{ is integrably bounded} \\ \implies \text{compact if } \text{rge} C \text{ is bounded}$

