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G~1(0) soln’s of G(z) = 0, approximations?

EG(z) =E{G(& x)} =0 “approximated” by G”(x) =0
& S ample Cn = % Mm@y

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

5{f(&2)} v C, E{f(§ )} = Ef(z) = [z f(

¢t .. €Y sample PY (random) emplrlcal measure

e mam BRI AE mll= = e ), e O
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G:E—RY G71(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(& x)} =0 “approximated” by G”(x) =0
& S ample Cn = % Mm@y

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

SA A-applies without ‘any’ restrictions
f on E x E, random lsc fen (loc. inf-[), {5,51, s } iid
Then BV f =E*{f(€, ) = s X1, f(€, ) & Ef =E{f(€, -}

e-argmin EY f =, e-argmin Ef, Ve > 0
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G~1(0) soln’s of G(z) = 0, approximations?

= E{G(&,x)} =0 “approximated” by G¥(x) =0
- tisample 2GR ()=t ElE 2

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

Stochastic Programming (With recourse)

f(f,il?) :f01($)—|-Q(f,$), Q(fv lnf {fOZ y |Z/ECZ 57 )}
SAA-problem: min = >, f(¢,z) & Ef( eI
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G:E—RY G71(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(& x)} =0 “approximated” by G”(x) =0
& S ample Cn = % Mm@y

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

Statistical Estimation (fusion of hard & soft information)
Ele )= Inh(efith 0 [Eh S hieAses
Then, estimate h” € argming [EY{L(&, h)}—h*™" = argminIE{L(&, h)}
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mean = (0,0) ... data samples correlated
covariance: MDM ", D= diag(4,1), M=

# samples: v =10,

"soft" information: /4 unimodal

Results:

hl‘rue Ze! h est

2
2

o0
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oS 6) oo

sin(w/6) smm(2r/3) .

=0.028, [A™ —h""| =0.006




normalized
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Absolute Error Level curves: true & estimate
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G:E—RY G 1(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(&,x)} =0 “approximated” by G¥(z) =0
EE e & ample Gl — % ey G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30
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Exhr— TR

G~1(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(&,x)} =0 “approximated” by G¥(z) =0
EE e & ample Gl — % ey G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30

SA A-applies without ‘any’ restrictions

f on E x E, random lsc fen (loc. inf-[), {5,51, s ,} iid

Then EY f =

E{f(€, ) =3 2 f€, ) & Ef =E{f(§, -}

e-argmin B f =, e-argmin Ef, Ve > 0
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G:E—RY G 1(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(&,x)} =0 “approximated” by G¥(z) =0
EE e & ample Gl — % ey G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30

Pricing contingent claims
—y —y ¢
claims {Gt(ﬁ )}, instrum. prices {St(ﬁ )} , invest. {Xt(g )}
!
max E{(S?, X1)} s.t. (8, X*~1) < G + (8%, X*~1) + end conditions.

Use ‘improved estimation’ & sampling: max > pe (ST (€), X1(€))
Correct pricing = well regulated market??
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G~1(0) soln’s of G(x) = 0, approximations?

— BEC & i —0 “approximatfd” by G (x) =0
EE e & ample Gl — % e G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30

Stochastic homogenization Variational formulation
given u(§, ) € argming () g = 2 [, a(é, z)|Vul* dz — (h,u)
(it ge Eseheihelt {u(£’ , )} € argmin ghom

vila: BErgodictiihm: g om— (epiw lim)vL Yl = Bl ))
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Topology of
Hyperspaces

Painlevé, Pompeiu, Zoretti
Zarankiewicz, Hausdorff, Lubben, Moore
Choquet, Vietoris, Fell, Attouch-Wets, Beer, ...




(E,d) always a Polish space

CcE, dx,C)=inf{d(z,x)|zeC}, d(x,D)=oo

cl-sets(E) = {all closed subsets of E}, &, E € cl-sets(E)

dl(A, B) = distance between A & B, metric(?) on cl-sets(E)

(cl—sets(E ), dl) Polish space = complete separable metric ??

dl(C",C)— 0 means C" — C (set-convergence)
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e ewyeegyy
%
:

Taw tOpology

A A

d,(A,B) >0, d(A,A) =0, A inequality

but alAp(A, B) = 0 possibly when A # B
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e ewyeegyy
%
:

Taw tOpOlogy
cﬂAp(A, B) >0, cz’Z(A, A) = 0, A inequality
but alAp(A, B) = 0 possibly when A # B
dl A B — SUD,c, B [d(a},A), d(x,B)]

for all p > 0, d, 1s a pseudo-metric

f >0 oA Blew?dp, set-nietric

d,(A,B) <d,(A,B)<dy(AB) p>2 +do

Wednesday, May 16, 2012



C" - Cifd(C”,C)) >0 < for any p > 0,
{UEP(C”,C) — 0 forall p>p

A

d,(C”,C)—=0 forall p>p

(E,d) Polish = (cl-sets(F), d) complete, metric space

(cl-sets(F),d) Polish «<— E =R"

Wednesday, May 16, 2012



outer SEMALCONELWULOUS

S:D=Fosc < gphS CD x E closed
gph S = {(z,u) |u € S(z),z € F}

S(x)-closed

dom S= {z|S(z) #0} D ’

Wednesday, May 16, 2012



outer SeMLCONELWILOUS

D — %E (OI’ %EXD)
d(R,S) =d(gph R,gphS), d,, d,
(osc-maps(D, E),d) complete metric, Polish: D =R", E =R™

S : D — FE (single-valued) continuous = osc, ...

d(f", f) - 0= argmin f¥ =, argmin f
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outer SeMLCONELWILOUS

D — %E (OI’ %EXD)
d(R,S) =d(gph R,gphS), d,, d,
(osc-maps(D, E),d) complete metric, Polish: D =R", E =R™

S : D — FE (single-valued) continuous = osc, ...

(cﬂ(f’/, f) = 0 = argmin f” =, argmin f]

S~1(0) = sol’'ns of S(z) 0
SY — S uniformly = d(S",S) — 0

Wednesday, May 16, 2012



lower semicontiruous

f:E—-Rlsc < epif C E xR closed
epi f = {(z,n) |n > f(z)}




Lower semaLeontLnious

ELiF e i ballfliR a3 e =l

d(f,g) = d(epif,epig) d,, d,
(Iscfens(F), d) complete metric, Polish £ = R"”

d(f”, f) - 0= argmin f” =, argmin f
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Lower semaLeontLnious

ELiF e i ballfliR a3 e =l

d(f,g) = d(epif,epig) d,, d,
(Iscfens(F), d) complete metric, Polish £ = R"”

d(f”, f) - 0= argmin f” =, argmin f
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Taw — TFf

F = cl-sets(R"), all closed subsets of R”"
= subsets R" that miss D = {F @) — @}

F, = subsets R” that hit D={F N\ D =&}
Hit-and-miss topology (= 7, Fell topology)

subbase: {F*|K compact} & {F, |0 open]
B(x,p) closed ball, center x radius p, B°(x,p) of
a subbase | F 07 ¢ £ g | xeQ’,pe Q..

B(x! UG
countable base: {F PR pe ) F B )}

(cl-sets(R"),7_ ) Polish space (separable, complete metric)
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(2,A,P), ZcR" & E Polish, for example R”
C:Z2 = E, C(§)C E closed set forall ¢ € Z
& C(0)={&|C(&)NO#D}eA, VO c E,open

= dom C = C™'(E) € A, measurability ~ hit open sets
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(2,A,P), ZcR" & E Polish, for example R”
C:Z2 = E, C(§)C E closed set forall ¢ € Z
& C(0)={&|C(&)NO#D}eA, VO c E,open

= dom C = C™'(E) € A, measurability ~ hit open sets

c:E— clsets(E), c(&)~C(), F,={F cEclosed|F N0 =D}
(sets(E),E), E Effros field = G—{FO e sets(R"), 0 open},

C measurable <> ¢ measurable [¢™ (F,) € A]

t = B Borel field when E Polish (complete separable metric space)

Wednesday, May 16, 2012



e arandom closed set C always admits a
measurable selection!

ds : dom C' — FE, A-measurable,
s(6)e C(€), VE edom(C C =

s: = — F arandom vector
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O Cisarandom closed set (& dom C measurab!

admits a Castaing representation: 4 a countab

{sv . dom C —> E, meas.—selections}

| ] s'©)=C(),Vée domCcE

O Graph measurability

(E,A) P-complete for some P,

(negligible sets are P-measurable)

C random set < gph C A ® B -measurable

Wednesday, May 16, 2012
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€:(Q7‘F7M)%(E7A7P)7 51/46

O a.s. (almost sure) convergence:

P{¢| lim, &"(w) = £ # £&(w), w € Q} =0

0 convergence 1n probability:

P(lg" —& >¢) —0foralle >0

O convergence in distribution: PY 3 P

Wednesday, May 16, 2012



s {CV =2 R%veN } random closed sets

% a.s.convergence: dl (C Ze)E (f)) — 0 for P-almost all & € =2
C" — C as. = C random closed seton =, u(=,) =1

C" = C P-as.and dom C" = dom C. Then,

1 Castaing representations of C" — a Castaing representation of C

If s : = — E 1s a measurable selection of C, then

ds" :E — E selections of C" converging P-a.s.to s

# ('Egorov's Theorem': C¥ — C u-a.s. < C' — C almost uniformly)

Wednesday, May 16, 2012



Let £°C ={xeR"|d(x,C)<¢e}, C*,C random sets
A, =fCivee)ufc et
p-as. convergence: 1{&|C"(&)— C(&)}=1
in probability: P| A;',(K)|—0,Ve>0,K e K = cpct-sets

C" converges to C in probability
< PAIC",C)>¢€e)—0 foralle>0

& every subsequence of {C"},

contains a sub-subsequence converging (-a.s to C

i.e., in probability = in distribution [ [n@aic@).c)paé) — o}
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P ~ dlstrlbutlon fcns converge

P¥, P defined on (R, B)
P"B P < [h(§) P¥(d§) — [ h(§) P(d) Yh continuous

F(z) = P"((—00,2)), F(z)=P((—00,z)), cumulative distributions

e P e e G CONt e — { all continuity points of F}

by . hypo-convergence
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P ~ dlstrlbutlon fcns converge

P¥, P defined on (R, B)
P"B P < [h(§) P¥(d§) — [ h(§) P(d) Yh continuous

F(z) = P"((—00,2)), F(z)=P((—00,z)), cumulative distributions

e P e e G CONt e — { all continuity points of F}

(PP R P «— —F"% —F)
(Feis B 1 dige = for)

by . hypo-convergence

Wednesday, May 16, 2012



P ~ distribution fens Converge“

P, P defined on (R"™, B,,) random vectors &7, &
P"B P < [h(&) P"(d§) — [ h(&) P(dE) Vh continuous

IR e (s e e s B R 2 e A

A

1. — F(z) < F(Z) “increasing” b

o it o Al Al e e n e S =)

3. F is usc (upper sc) limsup,,_,, F(2') < F(z),

4. R=(a1,b1] x --- X (an,bp|, V ={a1,b1} X - x{an,bn} vertices of R
VRCR", P(€ € R) = X",cy sen(®)F(v), sgn(ve V) = (~1)#e in -
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- pr — P ~ distribution fens Convergem

P, P defined on (R"™, B,,) random vectors &7, &
P"B P < [h(&) P"(d§) — [ h(&) P(dE) Vh continuous

IR e (s e e s B R 2 e A

A

1. — F(z) < F(Z) “increasing” b

o it o Al Al e e n e S =)

3. F is usc (upper sc) limsup,,_,, F(2') < F(z),

4. R=(a1,b1] x --- X (an,bp|, V ={a1,b1} X - x{an,bn} vertices of R
VRC R, P(€ € R) = Yoy sgn(v)F(v), sg(v e V) = (—D#e i °

(e
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Borel o-field: B = G—{FK K compact} or G—{FO O open}
Distribution (P,B) regular, K compact subsets E
determined by values on {FK K € K} or {FK K e K}

Distribution function (Choquet capacity):

T:K—[0,1,T(@)=0and V{K*,ve{0} UN}cK:

(1,3)
a) T(K') \\T(K)when K" \\K  (~usconR")

b){D, :K —[0,1]} _ where D,(K°)=1-T(K")

4)
D,(K°;K"Y=D,(K*)-D,(K" UK") and for v=2,...
DK SR o K= Do (R K = D (R Ok ke o

(~ rectangle condition on R")

Wednesday, May 16, 2012
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P on B determines a unique distribution function 7 on K
T'(K)=P(F)
DV(KO;Kla---aKV) = P(FKO o FKI e FKV)

T on K determines a unique probability measure P.

Proof. via Choquet Capacity Theorem (Matheron)

(refined) via probabilistic arguments (Salinetti-Wets)

C :Z=R? arandom closed set

(P,B) induced probability measure:
P(F,)=P|C(G)] VGeB, T(K)=P|C'(K)| VKeK



Wednesday, May 16, 2012

random sets C” converge in distribution to C when
induced P" narrow-convergeto P:P* — P _ pr n» p

(convergence of distribution functions)

T -cont

&T"— TonkK

K

T -cont °

a) VC",v € N, d converging subsequence (pre-compact)

b)K" /" K= cl| ] K" regularly ifint K c | ] K"

c) distribution (fcn) continuity: lim , 7(K") = T(cl Uv K")

d) convergence T* — T on C, continuity set = P" — P
OB Peei s on @Gl E e
K = finite union of rational ball, positive radius

f) e T(K + €B): countable number of discontinuities



T"— T on C, & P" —, P (Polish space: E,d)
P',P defined on B

probability sc-measures on cl-sets(E): A

> O,l S MCHSMCHIfC e C?
(1)

A is T ,-usc on cl-sets(E), @ MD)=0,M(E)=1
A modular: A(CH+ ACH=AMC' UC*)+AC' nC?)

Pand A=P

cl-sets

{Pv,v € N} tight: P" > PSS A" >, A(~— A" —, —A) on cl-sets(E)

define each other uniquely (£ complete = tight)

tightness ~ equi-usc of {A"} _ at <
rates: dl(A",A1) — 0 (for R-valued r.v., "~" Skorohod distance)
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Random Sets
Convergence & Expectation

Artstein-Vitale-Hart-Wets,
Cressis, Hiai, Weyl, ...




imit: Lo C" = {x e cluster-points{x"} ,x" € C V} =g (E"

inner limit: Li C" = {x — it e EE e R”} & Lo C"

limit: C"—>CifC= LiC"= Lo,C" (Painlevé - Kuratowski)

All limit sets are closed
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imit: Lo C" = {x e cluster-points{x"} ,x" € C V} =g (E"

inner limit: Li C" = {x — it e EE e R”} & Lo C"

limit: C"—>CifC= LiC"= Lo,C" (Painlevé - Kuratowski)

All limit sets are closed
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{C’; CiiE=nli e ]N} random closed sets. Then,

G —=Ca.s- dC% C)= 0 a5 Lo (Chre Cae il (Ciia:s
2. Vx € R™ and £ € E, with P(=1) =1, d(z,C¥(§)) — d(z, C(£)),
3. Vx € R™ and f € =1 with P(El) g

pli/(moo Lo, (C¥(§) NB(z,p)) C C(§) C pli/(moo B CaimiBis ol
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C¥ - C < VzxeR" d(z,C") — d(z,C) provided £ = R".

C" — (C if and only if the hit-miss criterion is satisfied

C' hits B°(x, p) then C* hits B°(z, p) for v > v, ,
sopCia@ iy, CF < diz,Cli> limsup. d( Celva

C' misses B(z, p) then C* misses B(z, p) for v > v, ,
sesCEmilher G —— = d (e CHllmmind s d s € vin

Wednesday, May 16, 2012



C : =2 = R", a random closed set. Let

A= {ak — (@ . .,aZ’,aZH) | ai € Q" & aff. independent }

for ) # D = D" closed, define Prjp Gx = Prpn CLZ+1

where D' = prjpi—: aﬁc QIR ="
prjp ax is a singleton: intersection of n+1 “aff. independent” spheres.
Moreover, {prj DOk, Qf € A} also dense in D

s : = — R™ with s4(§) = Drjc(e) @k 18 a measurable selection of C

When D is a random closed set, so is & +— Prip(e) @, ¢ € R
repeat the argument n + 1 times to obtain s; measurable.
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C" : = = R™ random closed sets converging P-a.s. to C, dom C* = dom C. _1
Then, 3{3%, k e N} Castaing representations of C'¥ converging for each k

to a Castaing representation {sk, k e 1N} of C.

All Castaing representations are built via our earlier “projections”.
Then, V&€ € =1, s7.(€) — sp(€), P(Z21) = 1 the set of a.s.-convergence.
Since, P-a.s. convergence of ¥ — C' = (rely on 2. earlier)

d(ay, sy (€)) = d(ay, C*(£)) — d(ay, C(§)) = d(ay, 5k(£)), V& € Ex.

(a) Convergence of Castaing representations % convergence of random sets!
(b) v meas-selection of C' = Jv” meas-selection of C' converging a.s. to v.
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C := = R"is a simple random set if rge C' is finite.
(' is a closed random set <= (C = P-a.s. limit of simple random sets.

<: the limit of a sequence of random sets is a random set
=: let 'Y = C' N vIB, unif. bounded closed random set, C' = Lm, C”
build (via ”prj”) Castaing representations {r,’; }k ol thesCE

let {SZ}%N, = {r%}UGN, also Castaing for C”
o= Uj<k s d-converge uniformly to C* as k — 00
since each sy = lim;_,, s}; uniformly, s7, simple random variables

|74

w = U<y 57 1s a simple random set, C'(£) = Lm, Lmy Lm; A} (&)

AL Dy 2 C" allows diagonalization to find AY.,, — C.
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=, A) a measure space

Sierpinski (1922). Suppose P is an atomless probability measure.
(Given Ao,Al & ./4 with 0 S P(Ao) S P(Al) S 1, then

VA€ [0,1], 3 Ay € A such that P(A)) = (1 — AN)P(Ag) + AP(Ay).
In particular, it implies VA € [0,1], 3 A € A such that P(A) = X;
choose Ag = () and A; = =.

Lyapunov (1940) p : A — R™ atomless, o-additive measure.
For A € A, define rge u(A) = {u(B) | B C AN A}. Then,
rge (=) C R™ is convex and if u is also bounded, it’s compact.
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C : 2 = R"™ a simple random set, i.e., rgeC' = {zk e R" ‘ k € K, |K| finite }
Given 7,5 € EC =E{C(§)} =

1 simple selections r, s : = — R” with E{r(&)} =7, E{s(§)} = 5.
Let A € [0,1]. Define v : = — IR™ as follows:

1. partition = into subsets A— and A

A = B ciEin(e)i=— s(E) e
3. A={£ € E|r(&) = 2k, 8(§) = 21,k # 1} € A, a finite collection
4. split each A € A, P(A,) = AP(A) & A; = A\ A, (Sierpinski)

set v(£) =

9

2

\

r(&) on UAeA;é A alol
8(5) on UAE.A# As

then v =E{v(é)} =+ (1 - A5 = EC convex.
Clearly EC is bounded and it’s easy to show it’s also closed = compact.
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C:==1R" a closed random set
—> (' = P-a.s. limit of simple random sets,

say C¥ — C with C¥ . w.l.o.g

ECY =TE{C" (&)} ~ are convex, compact =
FC = B{C(§)} = U, BC¥

—> FE'C convex
—> E(C' closed it C' is integrably bounded
—> compact if rge C is bounded
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