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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

min {f(ξ, x)}, x ∈ C, {f(ξ, x)} = Ef(x) =
�
Ξ f(ξ, x)P (dξ)

ξ1, . . . ξν sample P ν (random) empirical measure
approx.: min ν{f(ξ, x)} = 1

ν

�ν
l=1 f(ξ

l, x), x ∈ C

Wednesday, May 16, 2012



G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

SAA-applies without ‘any’ restrictions

f on Ξ× E, random lsc fcn (loc. inf-
�
),

�
ξ, ξ1, . . . ,

�
iid

Then Eνf = ν{f(ξ, · ) = 1
ν

�ν
l=1 f(ξ

l, · ) →e Ef = {f(ξ, · }
ε-argminEνf ⇒v ε-argminEf , ∀ ε ≥ 0
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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

Stochastic Programming (with recourse)
f(ξ, x) = f01(x) +Q(ξ, x), Q(ξ, x) = infy

�
f02(ξ, y)

�� y ∈ C2(ξ, x)
�

SAA-problem: min 1
ν

�ν
l=1 f(ξ

l, x) →e Ef(x) = {f(ξ, x)}
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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

Statistical Estimation (fusion of hard & soft information)
L(ξ, h) = − lnh(ξ) if h ≥ 0,

�
h = 1, h ∈ Asoft ⊂ E

Then, estimate hν ∈ argminE
ν{L(ξ, h)}→htrue = argmin {L(ξ, h)}
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example: Normal density
mean = (0,0) ... data samples correlated

covariance: MDMT , D=  diag(4,1), M=
cos(π / 6) cos(2π / 3)
sin(π / 6) sin(2π / 3)

⎛

⎝
⎜

⎞

⎠
⎟

# samples: ν = 10,   
"soft" information:  h unimodal

Results:

htrue − hest
2

2
= 0.028, htrue − hest

∞
= 0.006
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Sampled data

        



















v1

v2

          

























 

v1

v2

normalized
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True & Estimated density








































 
 
















































 

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Measurement Errors




 
        



















v1

v2









































Absolute Error Level curves: true & estimate
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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0
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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

SAA-applies without ‘any’ restrictions

f on Ξ× E, random lsc fcn (loc. inf-
�
),

�
ξ, ξ1, . . . ,

�
iid

Then Eνf = ν{f(ξ, · ) = 1
ν

�ν
l=1 f(ξ

l, · ) →e Ef = {f(ξ, · }
ε-argminEνf ⇒v ε-argminEf , ∀ ε ≥ 0
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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

Pricing contingent claims

claims

�
Gt(

→
ξ

t
)

�
, instrum. prices

�
St(

→
ξ

t
)

�

t

, invest.

�
Xt(

→
ξ

t
)

�

max {�ST , XT �} s.t. �St, Xt−1� ≤ Gt + �St, Xt−1� + end conditions.

Use ‘improved estimation’ & sampling: max
�

pξ�ST (ξ), XT (ξ)�

Correct pricing = well regulated market??
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G : E → d, G−1(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(ξ, x)} = 0 “approximated” by Gν(x) = 0
ξ1, . . . , ξν sample, Gν(x) = 1

ν

�ν
l=1 G(ξl, x)

G : Ξ×D →→ E, set-valued G(ξ, x) ⊂ E, inclusion {G(ξ, x)} � 0
ξ1, . . . , ξν sample, approximation 1

ν

�ν
l=1 G(ξl, x) � 0

Stochastic homogenization: Variational formulation
given u(ξ, x) ∈ argmin

H
1
0 (Ω) g(ξ, u) =

1
2

�
Ω a(ξ, x)|∇u|2 dx− �h, u�

find ghom such that {u(ξ, · )} ∈ argmin ghom

via Ergodic Thm: ghom =
�
epi

w
- lim)ν 1

ν

�
l = 1νg∗(ξl, · )

�∗
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Topology of 
Hyperspaces

Painlevé, Pompeiu, Zoretti
Zarankiewicz, Hausdorff, Lubben, Moore 

Choquet, Vietoris, Fell, Attouch-Wets, Beer, ...
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Hyperspace: sets(E)

           always a Polish space 

       

      

     

   

            

(E,d)

cl-sets(E) = all closed subsets of E{ }, ∅,E ∈cl-sets(E)

dl(A,B) = distance between A& B,  metric(?) on cl-sets(E)

cl-sets(E), dl( )  Polish space = complete separable metric ??

dl(Cν ,C)→ 0 means Cν → C   (set-convergence)

C ⊂ E, d(x,C)= inf d(z, x) z ∈C{ }, d(x,∅) = ∞
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Pompeiu-Hausdorff distance

A

B
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Pompeiu-Hausdorff distance

A

B

BB+ IB

B
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Pompeiu-Hausdorff distance

A

ηA

A+ IBηA
B

d̂l(A,B) = max [ ηA, ηB ]

= dl∞(A,B)

Wednesday, May 16, 2012



A

B ρIB

Unbounded
Sets
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AB ∩ ρIB

A+ ηAIB

ηA
ρ

Unbounded
Sets
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B + ηBIB

B

d̂lρ(A,B) = max [ ηA, ηB ]

ηB

A ∩ ρ

Unbounded
Sets
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set distance (~Attouch-Wets)

   

     

   

  

    

     

d̂lρ(A,B) ≥ 0, d̂l(A,A) = 0,� inequality

but d̂lρ(A,B) = 0 possibly when A �= B

τaw topology

d̂lρ(A,B) ≤ dlρ(A,B) ≤ d̂lρ�(A,B) ρ� ≥ 2ρ+ d0
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set distance (~Attouch-Wets)

   

     

   

  

    

     

d̂lρ(A,B) ≥ 0, d̂l(A,A) = 0,� inequality

dlρ(A,B) = supx∈ρIB

�
d(x,A), d(x,B)

�

for all ρ ≥ 0, dlρ is a pseudo-metric

dl(A,B) =
�
ρ≥0 dlρ(A,B)e−ρ dρ, set-metric

but d̂lρ(A,B) = 0 possibly when A �= B

τaw topology

d̂lρ(A,B) ≤ dlρ(A,B) ≤ d̂lρ�(A,B) ρ� ≥ 2ρ+ d0
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Properties of the set-distance
Cν → C if dl(Cν , C)) → 0 ⇐⇒ for any ρ̄ ≥ 0,

�
dlρ(Cν , C) → 0 for all ρ ≥ ρ̄

d̂lρ(Cν , C) → 0 for all ρ ≥ ρ̄

(E, d) Polish =⇒ (cl-sets(E), dl) complete, metric space

(cl-sets(E), dl) Polish ⇐⇒ E = n
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space of osc-mappings
outer semicontinuous 

S

S

S

S

S

D

E

u
u

u

x

S : D →→ E osc ⇐⇒ gphS ⊂ D × E closed
gphS =

�
(x, u)

��u ∈ S(x), x ∈ E
�

-closed

=
�
x
��S(x) �= ∅

�
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space of osc-mappings
outer semicontinuous 

= D × E (or E×D)

dl(R,S) = dl(gphR, gphS), dlρ, d̂lρ

(osc-maps(D,E), dl) complete metric, Polish: D = n, E = m

S : D → E (single-valued) continuous =⇒ osc, . . .

dl(fν , f) → 0 =⇒ argmin fν ⇒v argmin f
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space of osc-mappings
outer semicontinuous 

= D × E (or E×D)

dl(R,S) = dl(gphR, gphS), dlρ, d̂lρ

(osc-maps(D,E), dl) complete metric, Polish: D = n, E = m

S : D → E (single-valued) continuous =⇒ osc, . . .

S−1(0) = sol’ns of S(x) � 0
Sν → S uniformly ⇒ dl(Sν , S) → 0

dl(fν , f) → 0 =⇒ argmin fν ⇒v argmin f
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space of lsc-fcns(E)

S = dom f

epi f

η

x

lower semicontinuous 

f : E → lsc ⇐⇒ epi f ⊂ E × closed
epi f =

�
(x, η)

�� η ≥ f(x)
�

Wednesday, May 16, 2012



space of lsc-fcns(E)
lower semicontinuous 

E

[−1, 1] unit ball = E × [−1, 1]

dl(f, g) = dl(epi f, epi g) dlρ, d̂lρ

(lsc-fcns(E), dl) complete metric, Polish E = n

dl(fν , f) → 0 =⇒ argmin fν ⇒v argmin f
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space of lsc-fcns(E)
lower semicontinuous 

E

[−1, 1] unit ball = E × [−1, 1]

dl(f, g) = dl(epi f, epi g) dlρ, d̂lρ

(lsc-fcns(E), dl) complete metric, Polish E = n

dl(fν , f) → 0 =⇒ argmin fν ⇒v argmin f
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Hit-Open & Miss-Compact Sets

B

A
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Hit-Open & Miss-Compact Sets

B

A
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Set-convergence (        ) topology
F =  cl-sets(Rn ),  all closed subsets of n

F D =  subsets Rn  that miss D = F∩ D =∅{ }
FD =  subsets Rn  that hit  D = F∩ D ≠ ∅{ }

Hit-and-miss topology (= τ f Fell topology) 

     subbase: F K K  compact{ }  & FO O open{ }
B(x,ρ) closed ball, center x radius ρ,    Bo(x,ρ) open

    a subbase F B(x,ρ ),FBo (x,ρ )   x ∈Qd ,ρ ∈Q++{ }
countable base: F B(x1 ,ρ1 )∪…∪B(xr ,ρr ) FBo (x1 ,ρ1 )∪…∪Bo (xs ,ρs ){ }
(cl-sets(Rn ),τ aw ) Polish space (separable, complete metric)

τaw = τfn:

Wednesday, May 16, 2012



Wednesday, May 16, 2012



Random Sets

Mattheron, Choquet
Salinetti-Wets, Castaing, Valadier, Hess, Stoyan, ...
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Random sets

C

C(ξ)

c(ξ)

ξ

(Ξ,A,μ)

c

(E,B, P )

(cl-sets(E), E , P )
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Random Closed Sets

 

(Ξ,A,P),   Ξ ⊂ N & E Polish,  for example n

C :Ξ       E, C(ξ) ⊂ E  closed set for all ξ ∈Ξ

& C−1(O) = ξ C(ξ)∩O ≠ ∅{ }∈A, ∀O ⊂ E,open 

⇒  dom C = C−1(E) ∈A, measurability ~ hit open sets
===============================================

→→
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Random Closed Sets

 

(Ξ,A,P),   Ξ ⊂ N & E Polish,  for example n

C :Ξ       E, C(ξ) ⊂ E  closed set for all ξ ∈Ξ

& C−1(O) = ξ C(ξ)∩O ≠ ∅{ }∈A, ∀O ⊂ E,open 

⇒  dom C = C−1(E) ∈A, measurability ~ hit open sets
===============================================

c :Ξ→  cl-sets(E), c(ξ) ~ C(ξ),  FO = F  ⊂ E closed F∩O ≠ ∅{ }
sets(E),E( ), E Effros field = σ - FO ∈  sets(n ),O open{ },            

       C  measurable ⇔ c measurable [c−1(FO ) ∈A]
E = B Borel field when E  Polish (complete separable metric space)

→→
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Measurable selection

s

S

C

• a random closed set C always admits a                     
measurable selection!

C

∃s : domC → E, A-measurable,
s(ξ) ∈ C(ξ), ∀ξ ∈ domC ⊂ Ξ
s : Ξ → E a random vector
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Castaing Representation 
C is a random closed set (& dom C measurable) ⇔ it 
admits a Castaing representation: ∃ a countable family

Graph measurability

sν :  dom C→ E, meas.-selections{ }
cl sν (ξ)

ν∈ = C(ξ), ∀ξ ∈  dom C ⊂ Ξ

Ξ,A( )  P-complete for some P,
C  random set ⇔  gph C  A⊗Bn -measurable

(negligible sets are P-measurable)
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Castaing Representation

C

s1
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Castaing Representation

C

s1

s2
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Castaing Representation

C

s1

s2

s3

s3
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Random Elements:
Convergence  (review)

a.s. (almost sure) convergence:

 convergence in probability:

convergence in distribution: 

ξ : (Ω,F , µ) → (Ξ,A, P ), ξν →� ξ

P
�
ξ
�� limν ξ

ν(ω) = ξ �= ξ(ω), ω ∈ Ω
�
= 0

P (|ξν − ξ| > ε) → 0 for all ε > 0

P ν →D P

Wednesday, May 16, 2012



a.s.-Convergence
Cν :Ξ      d ,ν ∈{ }  random closed sets

a.s. convergence:  dl Cν (ξ),C(ξ)( )→ 0 for P-almost all ξ ∈Ξ

      Cν → C  a.s.  ⇒ C  random closed set on Ξ0 ,µ(Ξ0 ) = 1

Cν → C  P-a.s. and dom Cν =  dom C. Then,
∃ Castaing representations of Cν →  a Castaing representation of C

If s :Ξ→ E  is a measurable selection of C,  then
∃ sν :Ξ→ E  selections of Cν  converging P-a.s. to  s

('Egorov's Theorem': Cν → C µ-a.s. ⇔ Cν → C almost uniformly)

✻

✻

✻

✻

→→
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Convergence in probability
Let ε oC = x ∈m d(x,C) < ε{ }, Cν ,C random sets

Δε ,ν = Cν \ ε oC( )∪ C \ ε oCν( )
µ-a.s. convergence: µ ξ Cν (ξ)→ C(ξ){ } = 1

in probability: P Δε ,ν
−1 (K )⎡⎣ ⎤⎦→ 0,∀ε > 0, K ∈K =  cpct-sets

Cν converges toC  in probability 
⇔ P(dl(Cν ,C) > ε)→ 0  for all ε > 0
⇔ every subsequence of {Cν}ν∈  

    contains a sub-subsequence converging µ-a.s to C

 i.e., in probability ⇒  in distribution h(ξ)∫ dl(Cν (ξ),C(ξ))P(dξ)→ 0⎡
⎣

⎤
⎦

C

Cν

ε
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P ν →D P ∼ distribution fcns converge

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wood prices in UF

Distribution functions

P ν , P defined on ( ,B)
P ν →D P ⇐⇒

�
h(ξ)P ν(dξ) →

�
h(ξ)P (dξ) ∀h continuous

F ν(z) = P ν
�
(−∞, z)

�
, F (z) = P

�
(−∞, z)

�
, cumulative distributions

P ν →D P ⇐⇒ F ν →p F on cont F =
�

all continuity points of F
�

→h : hypo-convergence
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P ν →D P ∼ distribution fcns converge

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wood prices in UF

Distribution functions

P ν →D P ⇐⇒ −F ν →e − F
(F ν →h F, F usc = −lsc )

P ν , P defined on ( ,B)
P ν →D P ⇐⇒

�
h(ξ)P ν(dξ) →

�
h(ξ)P (dξ) ∀h continuous

F ν(z) = P ν
�
(−∞, z)

�
, F (z) = P

�
(−∞, z)

�
, cumulative distributions

P ν →D P ⇐⇒ F ν →p F on cont F =
�

all continuity points of F
�

→h : hypo-convergence
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   P ν →D P ∼ distribution fcns converge

b1a1

b2

a2

R

P ν , P defined on ( n,Bn) random vectors ξν , ξ
P ν →D P ⇐⇒

�
h(ξ)P ν(dξ) →

�
h(ξ)P (dξ) ∀h continuous

F ν(z) = P ν(ξi ≤ zi, i = 1, . . . , n), F (z) = P (ξi ≤ zi, i = 1, . . . , n)

1. z ≤ z̃ =⇒ F (z) ≤ F (z̃) “increasing”

2. limz→∞ F (z) = 1, limzj→−∞ F (z) → 0,

3. F is usc (upper sc) lim supz�→z F (z�) ≤ F (z),

4. R = (a1, b1]× · · ·× (an, bn], V = {a1, b1}× · · ·× {an, bn} vertices of R
∀R ⊂ n, P (ξ ∈ R) =

�
v∈V sgn(v)F (v), sgn(v ∈ V ) = (−1)#a in v
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   P ν →D P ∼ distribution fcns converge

P ν →D P ⇐⇒ −F ν →e − F

b1a1

b2

a2

R

P ν , P defined on ( n,Bn) random vectors ξν , ξ
P ν →D P ⇐⇒

�
h(ξ)P ν(dξ) →

�
h(ξ)P (dξ) ∀h continuous

F ν(z) = P ν(ξi ≤ zi, i = 1, . . . , n), F (z) = P (ξi ≤ zi, i = 1, . . . , n)

1. z ≤ z̃ =⇒ F (z) ≤ F (z̃) “increasing”

2. limz→∞ F (z) = 1, limzj→−∞ F (z) → 0,

3. F is usc (upper sc) lim supz�→z F (z�) ≤ F (z),

4. R = (a1, b1]× · · ·× (an, bn], V = {a1, b1}× · · ·× {an, bn} vertices of R
∀R ⊂ n, P (ξ ∈ R) =

�
v∈V sgn(v)F (v), sgn(v ∈ V ) = (−1)#a in v
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Distribution of a random set
Borel σ -field: B = σ - F K K  compact{ }  or σ - FO O open{ }…
Distribution P,B( )  regular,      K compact subsets E

    determined by values on F K K ∈K{ } or FK K ∈K{ }
Distribution function (Choquet capacity): 

T :K → [0,1], T (∅) = 0 and  ∀ K ν ,ν ∈{0}∪{ }⊂K :

a) T (K ν ) T (K ) when K ν  K       (~ usc on Rn )
 b) Dν :K → [0,1]{ }ν∈  where  D0 (K 0 ) = 1− T (K 0 )

D1(K
0;K1) = D0 (K 0 ) − D0 (K 0 ∪ K1)  and for ν = 2,…

Dν (K 0;K1,…,K ν ) = Dν −1(K
0;K1,…,K ν −1) − Dν −1(K

0 ∪ K ν ;K1,…,K ν −1)
(~  rectangle condition on n )

(2)

(1,3)

(4)
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Existence-Uniqueness T
P on B determines a unique distribution function T  on K 

T (K ) = P(FK )

Dν (K 0;K1,…,K ν ) = P(F K 0
∩F

K1 ∩∩F
Kν )

T  on K  determines a unique probability measure P.

Proof. via Choquet Capacity Theorem 
           (refined) via probabilistic arguments 

C :Ξ     d  a random closed set
(P,B) induced probability measure:

 P(FG ) = P C−1(G)⎡⎣ ⎤⎦ ∀G ∈B, T (K ) = P C−1(K )⎡⎣ ⎤⎦ ∀K ∈K

→→

(Matheron)

(Salinetti-Wets)
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Convergence in Distribution
random sets Cν  converge in distribution to C  when 

induced Pν  narrow-converge to P :Pν →n P
⇔ T ν → p T  on K T -cont  (convergence of distribution functions)

K T -cont ?
a)∀Cν ,ν ∈N , ∃ converging subsequence  (pre-compact)
b) K ν  K =  cl K ν  

ν regularly if int K ⊂ K ν  
ν

c) distribution (fcn) continuity: limν T (K ν ) = T (cl K ν ) 
ν

d) convergence T ν → p T  on CT  continuity set ⇒ Pν →n P

e) Pν →n P⇔ T ν → p T  on CT
ub =CT ∩K ub

K ub =  finite union of rational ball, positive radius
f) ε  T (K + εB) :  countable number of discontinuities

= P ν →D P
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a detour about rates
T ν → p T  on CT ⇔ Pν →n P (Polish space:  E,d)

Pν ,P defined on B
probability sc-measures on cl-sets(E): λ
   (i) λ ≥ 0, (ii) λ λ(C1) ≤ λ(C 2 ) if C1 ⊂ C 2

   (iii) λ  is τ f -usc on cl-sets(E),  (iv) λ(∅) = 0,λ(E) = 1

   (v) λ  modular: λ(C1) + λ(C 2 ) = λ(C1 ∪C 2 ) + λ(C1 ∩C 2 )
P and λ = Pcl-sets   define each other uniquely (E  complete ⇒  tight)

Pν ,ν ∈{ }  tight: Pν →n P⇔ λν →h λ  (~ − λν →e −λ) on cl-sets(E)

tightness ~ equi-usc of {λν}ν∈ at ∅
rates: dl(λν ,λ)→ 0 (for -valued r.v., "~" Skorohod distance)
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Random Sets
Convergence & Expectation 

Artstein-Vitale-Hart-Wets, 
Cressis, Hiai, Weyl, ...
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Outer/Inner Limits
outer limit: LoνC

ν = x ∈  cluster-points{xν} , xν ∈Cν{ } =  LsνC
ν

inner limit:  LiνC
ν = x = limν x

ν , xν ∈Cν ⊂ n{ }⊂  LoνC
ν

     limit:     Cν → C  if C =  LiνC
ν =  LoνC

ν   (Painlevé - Kuratowski)

All limit sets are closed

C1 Cν C=limνC
ν
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Outer/Inner Limits
outer limit: LoνC

ν = x ∈  cluster-points{xν} , xν ∈Cν{ } =  LsνC
ν

inner limit:  LiνC
ν = x = limν x

ν , xν ∈Cν ⊂ n{ }⊂  LoνC
ν

     limit:     Cν → C  if C =  LiνC
ν =  LoνC

ν   (Painlevé - Kuratowski)

All limit sets are closed

C1 Cν C=limνC
ν

Cν → C ⇐⇒ dl(Cν , C) → 0
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Characterizing a.s. convergence
�
C;Cν : Ξ →→ n, ν ∈

�
random closed sets. Then,

1. Cν → C a.s., dl(Cν , C) → 0 a.s., Loν(Cν) ⊂ C ⊂ Liν(Cν) a.s.,

2. ∀x ∈ n and ξ ∈ Ξ1 with P (Ξ1) = 1, d(x,Cν(ξ)) → d(x,C(ξ)),

3. ∀x ∈ n and ξ ∈ Ξ1 with P (Ξ1) = 1,

lim
ρ�∞

Loν
�
Cν(ξ) ∩ (x, ρ)

�
⊂ C(ξ) ⊂ lim

ρ�∞
Liν

�
Cν(ξ) ∩ (x, ρ)

�
.
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“Proof  1. ⇔ 2.”

Cν → C ⇐⇒ ∀x ∈ n, d(x,Cν) → d(x,C) provided E = n.

Cν → C if and only if the hit-miss criterion is satisfied

C hits o(x, ρ) then Cν hits o(x, ρ) for ν ≥ νx,ρ
so, C ⊂ Liν Cν ⇐⇒ d(x,C) ≥ limsupν d(x,C

ν), ∀x

C misses (x, ρ) then Cν misses (x, ρ) for ν ≥ νx,ρ
so, C ⊃ Loν Cν ⇐⇒ d(x,C) ≥ liminfν d(x,Cν), ∀x
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Building Castaing representations
C : Ξ →→ n, a random closed set. Let

A =
�
ak = (a1k, . . . , a

n
k , a

n+1
k )

��� aik ∈ n & aff. independent
�

for ∅ �= D = D0 closed, define prjD ak = prjDn an+1
k

where Dl = prjDl−1 alk for l = 1, . . . , n
prjD ak is a singleton: intersection of n+1 “aff. independent” spheres.
Moreover,

�
prjD ak, ak ∈ A

�
also dense in D

sk : Ξ → n with sk(ξ) = prjC(ξ) ak is a measurable selection of C

� When D is a random closed set, so is ξ �→ prjD(ξ) a, a ∈ n

repeat the argument n+ 1 times to obtain sk measurable. �
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Converging Castaing representations
Cν : Ξ →→ n random closed sets converging P -a.s. to C, domCν = domC.
Then, ∃

�
sνk, k ∈

�
Castaing representations of Cν converging for each k

to a Castaing representation
�
sk, k ∈

�
of C.

� All Castaing representations are built via our earlier “projections”.
Then, ∀ξ ∈ Ξ1, sνk(ξ) → sk(ξ), P (Ξ1) = 1 the set of a.s.-convergence.
Since, P -a.s. convergence of Cν → C =⇒ (rely on 2. earlier)

d(a1k, s
ν
k(ξ)) = d(a1k, C

ν(ξ)) → d(a1k, C(ξ)) = d(a1k, sk(ξ)), ∀ξ ∈ Ξ1. �

(a) Convergence of Castaing representations �⇒ convergence of random sets!
(b) v meas-selection of C ⇒ ∃vν meas-selection of Cν converging a.s. to v.
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“Simple” random sets
C : Ξ →→ n is a simple random set if rgeC is finite.
C is a closed random set ⇐⇒ C = P -a.s. limit of simple random sets.

� ⇐: the limit of a sequence of random sets is a random set
⇒: let Cν = C ∩ ν , unif. bounded closed random set, C = Lmν Cν

build (via ”prj”) Castaing representations
�
rνk
�
k∈ of the Cν

let
�
sνk
�
k∈ � =

�
υ≤ν

�
rυk
�
υ∈ , also Castaing for Cν

Dν
k =

�
j≤k s

ν
j dl-converge uniformly to Cν as k → ∞

since each sνk = liml→∞ sνkl uniformly, sνkl simple random variables
∆ν

kl =
�

j≤k s
ν
jl is a simple random set, C(ξ) = Lmν Lmk Lml ∆ν

kl(ξ)

∆ν
kl →u Dν

k →u Cν allows diagonalization to find ∆ν
kν lν → C. �
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Sierpiński-Lyapunov Theorems
(Ξ,A) a measure space

Sierpiński (1922). Suppose P is an atomless probability measure.
Given A0, A1 ∈ A with 0 ≤ P (A0) ≤ P (A1) ≤ 1, then

∀λ ∈ [0, 1], ∃ Aλ ∈ A such that P (Aλ) = (1− λ)P (A0) + λP (A1).
In particular, it implies ∀λ ∈ [0, 1], ∃ A ∈ A such that P (A) = λ;

choose A0 = ∅ and A1 = Ξ.

Lyapunov (1940) µ : A → n atomless, σ-additive measure.
For A ∈ A, define rgeµ(A) =

�
µ(B)

��B ⊂ A ∩A
�
. Then,

rgeµ(Ξ) ⊂ n is convex and if µ is also bounded, it’s compact.
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Expectation: simple random set 
C : Ξ →→ n a simple random set, i.e., rgeC =

�
zk ∈ n

�� k ∈ K, |K| finite
�

Given r̄, s̄ ∈ EC = {C(ξ)} =⇒
∃ simple selections r, s : Ξ → n with {r(ξ)} = r̄, {s(ξ)} = s̄.

Let λ ∈ [0, 1]. Define v : Ξ → n as follows:
1. partition Ξ into subsets A= and A �=
2. A= =

�
ξ ∈ Ξ

�� r(ξ) = s(ξ)
�
∈ A

3. A =
�
ξ ∈ Ξ

�� r(ξ) = zk, s(ξ) = zl, k �= l
�
∈ A �=, a finite collection

4. split each A ∈ A �=, P (Ar) = λP (A) & As = A \Ar (Sierpiński)

set v(ξ) =

�
r(ξ) on

�
A∈A �=

Ar ∪ A=

s(ξ) on
�

A∈A �=
As

then v̄ = {v(ξ)} = λr̄ + (1− λ)s̄ =⇒ EC convex.
Clearly EC is bounded and it’s easy to show it’s also closed =⇒ compact.
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Expectation of random set
C : Ξ →→ n a closed random set

=⇒ C = P -a.s. limit of simple random sets,
say Cν →

a.s.
C with Cν � w.l.o.g

ECν = {Cν(ξ)}� are convex, compact ⇒
EC = {C(ξ)} =

�
ν ECν

=⇒ EC convex
=⇒ EC closed if C is integrably bounded
=⇒ compact if rgeC is bounded
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