Random Sets

Roger J-B Wets

Mathematics, University of California, Davis

May 2012, ETH-Zürich

Lecture \#2
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?
$E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad$ "approximated" by $G^{\nu}(x)=0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, $G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)$
$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$
$\min \mathbb{E}\{f(\boldsymbol{\xi}, x)\}, x \in C, \quad \mathbb{E}\{f(\boldsymbol{\xi}, x)\}=E f(x)=\int_{\Xi} f(\xi, x) P(d \xi)$ $\xi^{1}, \ldots \xi^{\nu}$ sample P^{ν} (random) empirical measure approx.: $\min \mathbb{E}^{\nu}\{f(\boldsymbol{\xi}, x)\}=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\xi^{l}, x\right), x \in C$
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?
$E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad$ "approximated" by $G^{\nu}(x)=0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, $G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)$
$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

SAA-applies without 'any' restrictions
f on $\Xi \times E$, random lsc fcn (loc. inf- \int), $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{1}, \ldots,\right\}$ iid
Then $E^{\nu} f=\mathbb{E}^{\nu}\left\{f(\boldsymbol{\xi}, \cdot)=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\boldsymbol{\xi}^{l}, \cdot\right) \xrightarrow{e} E f=\mathbb{E}\{f(\boldsymbol{\xi}, \cdot\}\right.$
$\varepsilon-\operatorname{argmin} E^{\nu} f \Rightarrow_{v} \varepsilon-\operatorname{argmin} E f, \forall \varepsilon \geq 0$
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?
$E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0$ "approximated" by $G^{\nu}(x)=0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, $G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)$
$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

Stochastic Programming (with recourse)
$f(\xi, x)=f_{01}(x)+Q(\xi, x), Q(\xi, x)=\inf _{y}\left\{f_{02}(\xi, y) \mid y \in C_{2}(\xi, x)\right\}$ SAA-problem: $\min \frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\xi^{l}, x\right) \xrightarrow{e} E f(x)=\mathbb{E}\{f(\xi, x)\}$
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?

$$
\begin{gathered}
E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad \text { "approximated" by } G^{\nu}(x)=0 \\
\xi^{1}, \ldots, \xi^{\nu} \text { sample, } G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)
\end{gathered}
$$

$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

Statistical Estimation (fusion of hard \& soft information)

$$
L(\xi, h)=-\ln h(\xi) \text { if } h \geq 0, \int h=1, h \in A^{\mathrm{soft}} \subset E
$$

Then, estimate $h^{\nu} \in \operatorname{argmin}_{E} \mathbb{E}^{\nu}\{L(\boldsymbol{\xi}, h)\} \rightarrow h^{\text {true }}=\operatorname{argmin} \mathbb{E}\{L(\boldsymbol{\xi}, h)\}$

example: Normal density

mean $=(0,0) \ldots$ data samples correlated
covariance: $M D M^{T}, D=\operatorname{diag}(4,1), M=\left(\begin{array}{cc}\cos (\pi / 6) & \cos (2 \pi / 3) \\ \sin (\pi / 6) & \sin (2 \pi / 3)\end{array}\right)$
\# samples: $v=10$,
"soft" information: h unimodal

Results:

$$
\left\|h^{t r u e}-h^{e s t}\right\|_{2}^{2}=0.028, \quad\left\|h^{t r u e}-h^{e s t}\right\|_{\infty}=0.006
$$

$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?
$E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad$ "approximated" by $G^{\nu}(x)=0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, $G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)$
$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?

$$
\begin{gathered}
E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad \text { "approximated" by } G^{\nu}(x)=0 \\
\xi^{1}, \ldots, \xi^{\nu} \text { sample, } G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)
\end{gathered}
$$

$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

SAA-applies without 'any' restrictions
f on $\Xi \times E$, random lsc fcn (loc. inf- \int), $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{1}, \ldots,\right\}$ iid Then $E^{\nu} f=\mathbb{E}^{\nu}\left\{f(\boldsymbol{\xi}, \cdot)=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\boldsymbol{\xi}^{l}, \cdot\right) \xrightarrow{e} E f=\mathbb{E}\{f(\boldsymbol{\xi}, \cdot\}\right.$ ε-argmin $E^{\nu} f \Rightarrow_{v} \varepsilon$-argmin $E f, \forall \varepsilon \geq 0$
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?

$$
\begin{gathered}
E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad \text { "approximated" by } G^{\nu}(x)=0 \\
\xi^{1}, \ldots, \xi^{\nu} \text { sample, } G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)
\end{gathered}
$$

$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

Pricing contingent claims
claims $\left\{G^{t}\left(\overrightarrow{\boldsymbol{\xi}}^{t}\right)\right\}$, instrum. prices $\left\{S^{t}\left(\overrightarrow{\boldsymbol{\xi}}^{t}\right)\right\}_{t}$, invest. $\left\{X^{t}\left(\overrightarrow{\boldsymbol{\xi}}^{t}\right)\right\}$
$\max \mathbb{E}\left\{\left\langle S^{T}, X^{T}\right\rangle\right\}$ s.t. $\left\langle S^{t}, X^{t-1}\right\rangle \leq G^{t}+\left\langle S^{t}, X^{t-1}\right\rangle+$ end conditions.
Use 'improved estimation' \& sampling: $\max \sum p_{\xi}\left\langle S^{T}(\xi), X^{T}(\xi)\right\rangle$ correct pricing $=$ well regulated market??
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?

$$
\begin{gathered}
E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad \text { "approximated" by } G^{\nu}(x)=0 \\
\xi^{1}, \ldots, \xi^{\nu} \text { sample, } G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)
\end{gathered}
$$

$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

Stochastic homogenization: Variational formulation given $u(\xi, x) \in \operatorname{argmin}_{H_{0}^{1}(\Omega)} g(\xi, u)=\frac{1}{2} \int_{\Omega} a(\xi, x)|\nabla u|^{2} d x-\langle h, u\rangle$ find $g^{\text {hom }}$ such that $\mathbb{E}\{u(\boldsymbol{\xi}, \cdot)\} \in \operatorname{argmin} g^{\text {hom }}$
via Ergodic Thm: $\left.g^{\mathrm{hom}}=\left(\mathrm{epi}_{w}-\lim \right) \nu \frac{1}{\nu} \sum l=1^{\nu} g^{*}\left(\boldsymbol{\xi}^{l}, \cdot\right)\right)^{*}$

Topology of Hyperspaces

Painlevé, Pompeiu, Zoretti

Zarankiewicz, Hausdorff, Lubben, Moore Choquet, Vietoris, Fell, Attouch-Wets, Beer, ...

- (E, d) always a Polish space
- $C \subset E, d(x, C)=\inf \{d(z, x) \mid z \in C\}, \quad d(x, \varnothing)=\infty$
- cl-sets $(E)=\{$ all closed subsets of $E\}, \quad \varnothing, E \in \operatorname{cl}-\operatorname{sets}(E)$
- $\quad \operatorname{dl}(A, B)=$ distance between $A \& B$, metric(?) on cl-sets (E)
$\square \quad(\mathrm{cl}-\operatorname{sets}(E), d l)$ Polish space $=$ complete separable metric ??
$\square \quad d l\left(C^{v}, C\right) \rightarrow 0$ means $C^{v} \rightarrow C$ (set-convergence)

Pompeiu-Hausdorff distance

unbounded

unbounded

set distance (~Attouch-Wets)
$\tau_{a w}$ topology$\hat{d}_{\rho}(A, B) \geq 0, \hat{d}(A, A)=0, \triangle$ inequality

- but $\quad \hat{l}_{\rho}(A, B)=0$ possibly when $A \neq B$

$$
\hat{d}_{\rho}(A, B) \leq d_{\rho}(A, B) \leq \hat{d}_{\rho^{\prime}}(A, B) \quad \rho^{\prime} \geq 2 \rho+d_{0}
$$

MHMMMMMHMMMHMHM set distance (\sim Attouch-Wets)
$\tau_{a w}$ topology

- $\quad \hat{l}_{\rho}(A, B) \geq 0, \hat{d}(A, A)=0, \triangle$ inequality
- but $\hat{l}_{\rho}(A, B)=0$ possibly when $A \neq B$
- $\quad d l_{\rho}(A, B)=\sup _{x \in \rho \boldsymbol{B}}[d(x, A), d(x, B)]$
- for all $\rho \geq 0, d l_{\rho}$ is a pseudo-metric
- $d l(A, B)=\int_{\rho \geq 0} d l_{\rho}(A, B) e^{-\rho} d \rho$, set-metric
- $\quad \hat{d}_{\rho}(A, B) \leq d l_{\rho}(A, B) \leq \hat{d}_{\rho^{\prime}}(A, B) \quad \rho^{\prime} \geq 2 \rho+d_{0}$

Properties of the set-distance
$C^{\nu} \rightarrow C$ if $\left.d\left(C^{\nu}, C\right)\right) \rightarrow 0 \Longleftrightarrow$ for any $\bar{\rho} \geq 0$,

$$
\begin{cases}d_{\rho}\left(C^{\nu}, C\right) \rightarrow 0 & \text { for all } \rho \geq \bar{\rho} \\ \hat{d_{\rho}}\left(C^{\nu}, C\right) \rightarrow 0 & \text { for all } \rho \geq \bar{\rho}\end{cases}
$$

(E, d) Polish $\Longrightarrow($ cl-sets $(E), d l)$ complete, metric space

$$
(\operatorname{cl}-\operatorname{sets}(E), d l) \text { Polish } \Longleftrightarrow E=\mathbb{R}^{n}
$$

space of osc-mappings

 outer semicontinuous$S: D \rightrightarrows E$ osc $\Longleftrightarrow \operatorname{gph} S \subset D \times E$ closed $\operatorname{gph} S=\{(x, u) \mid u \in S(x), x \in E\}$

$\mathbb{B}=\mathbb{B}_{D} \times \mathbb{B}_{E}\left(\right.$ or $\left.\mathbb{B}_{E \times D}\right)$
$d l(R, S)=d l(\operatorname{gph} R, \operatorname{gph} S), \quad d l_{\rho}, \hat{d}{ }_{\rho}$
(osc-maps $(D, E), d l)$ complete metric, Polish: $D=\mathbb{R}^{n}, E=\mathbb{R}^{m}$

$$
S: D \rightarrow E \text { (single-valued) continuous } \Longrightarrow \text { osc, } \ldots
$$

$d l\left(f^{\nu}, f\right) \rightarrow 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f$
$\mathbb{B}=\mathbb{B}_{D} \times \mathbb{B}_{E}\left(\right.$ or $\left.\mathbb{B}_{E \times D}\right)$
$d l(R, S)=d l(\operatorname{gph} R, \operatorname{gph} S), \quad d l_{\rho}, \hat{d}_{\rho}$
(osc-maps $(D, E), d l)$ complete metric, Polish: $D=\mathbb{R}^{n}, E=\mathbb{R}^{m}$

$$
S: D \rightarrow E \text { (single-valued) continuous } \Longrightarrow \text { osc, } \ldots
$$

$$
d\left(f^{\nu}, f\right) \rightarrow 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f
$$

$$
\begin{aligned}
& S^{-1}(0)=\text { sol'ns of } S(x) \ni 0 \\
& S^{\nu} \rightarrow S \text { uniformly } \Rightarrow d l\left(S^{\nu}, S\right) \rightarrow 0
\end{aligned}
$$

space of Isc-fcins(E)
lower semicontinuous
$f: E \rightarrow \overline{\mathbb{R}}$ lsc \Longleftrightarrow epi $f \subset E \times \mathbb{R}$ closed epi $f=\{(x, \eta) \mid \eta \geq f(x)\}$

$$
d l\left(f^{\nu}, f\right) \rightarrow 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f
$$

$\mathbb{B}_{E} \quad$ unit ball $\mathbb{B}=\mathbb{B}_{E} \times[-1,1]$
$d\left(f(f, g)=d l(\right.$ epi f, epi $g) \quad d l_{\rho}, \hat{d}_{\rho}$
$(\operatorname{lscfcns}(E), d l)$ complete metric, Polish $E=\mathbb{R}^{n}$

$$
d l\left(f^{\nu}, f\right) \rightarrow 0 \Longrightarrow \operatorname{argmin} f^{\nu} \Rightarrow_{v} \operatorname{argmin} f
$$

Hit-Open \& Miss-Compact Sets

Hit-Open \& Miss-Compact Sets

\mathbb{R}^{n} : Set-convergence ($\left.{ }^{\tau_{a w}}=\tau_{f}\right)$ topology

$\mathcal{F}=\operatorname{cl}$-sets $\left(\mathbb{R}^{n}\right)$, all closed subsets of \mathbb{R}^{n}

$$
\begin{aligned}
& F^{D}=\text { subsets } \mathbb{R}^{n} \text { that miss } D=\{F \cap D=\varnothing\} \\
& F_{D}=\text { subsets } \mathbb{R}^{n} \text { that hit } D=\{F \cap D \neq \varnothing\}
\end{aligned}
$$

Hit-and-miss topology ($=\tau_{f}$ Fell topology)
subbase: $\left\{F^{K} \mid K\right.$ compact $\} \&\left\{F_{o} \mid O\right.$ open $\}$
$\mathbb{B}(x, \rho)$ closed ball, center x radius $\rho, \mathbb{B}^{o}(x, \rho)$ open
a subbase $\left\{F^{\mathbb{B}(x, \rho)}, F_{\mathbb{B}^{0}(x, \rho)} \mid x \in \mathbb{Q}^{d}, \rho \in \mathbb{Q}_{++}\right\}$
countable base: $\left\{F^{\mathbb{B}\left(x^{1}, \rho_{1}\right) \cup \ldots \cup \mathbb{B}\left(x^{r}, \rho_{r}\right)} \cap F_{\mathbb{B}^{o}\left(x^{1}, \rho_{1}\right) \cup \ldots \cup \mathbb{B}^{o}\left(x^{s}, \rho_{s}\right)}\right\}$
(cl-sets $\left.\left(\mathbb{R}^{n}\right), \tau_{a w}\right)$ Polish space (separable, complete metric)

Random Sets

Mattheron, Choquet
Salinetti-Wets, Castaing, Valadier, Hess, Stoyan, ... Random Closed Sets
$(\Xi, \mathcal{A}, P), \quad \Xi \subset \mathbb{R}^{N} \& E$ Polish, for example \mathbb{R}^{n}
$C: \Xi \rightrightarrows E, C(\xi) \subset E$ closed set for all $\xi \in \Xi$
$\& C^{-1}(O)=\{\xi \mid C(\xi) \cap O \neq \varnothing\} \in A, \forall O \subset E$, open
$\Rightarrow \operatorname{dom} C=C^{-1}(E) \in A$, measurability \sim hit open sets

Random Closed Sets
$(\Xi, \mathcal{A}, P), \quad \Xi \subset \mathbb{R}^{N} \& E$ Polish, for example \mathbb{R}^{n}
$C: \Xi \rightrightarrows E, C(\xi) \subset E$ closed set for all $\xi \in \Xi$
$\& C^{-1}(O)=\{\xi \mid C(\xi) \cap O \neq \varnothing\} \in A, \forall O \subset E$, open
$\Rightarrow \operatorname{dom} C=C^{-1}(E) \in A$, measurability \sim hit open sets

$$
c: \Xi \rightarrow \operatorname{cl}-\operatorname{sets}(E), c(\xi) \sim C(\xi), F_{o}=\{F \subset E \operatorname{closed} \mid F \cap O \neq \varnothing\}
$$

$$
(\operatorname{sets}(E), E), E \text { Effrös field }=\sigma-\left\{F_{o} \in \operatorname{sets}\left(\mathbb{R}^{n}\right), O \text { open }\right\}
$$

C measurable $\Leftrightarrow c$ measurable $\left[c^{-1}\left(F_{o}\right) \in A\right]$
$E=\mathcal{B}$ Borel field when E Polish (complete separable metric space)

Castaing Representation

- C is a random closed set (\& dom C measurable) \Leftrightarrow it admits a Castaing representation: \exists a countable family

$$
\begin{aligned}
& \left\{s^{v}: \operatorname{dom} C \rightarrow E, \text { meas.-selections }\right\} \\
& \operatorname{cl} \bigcup_{v \in \mathbb{N}} s^{v}(\xi)=C(\xi), \forall \xi \in \operatorname{dom} C \subset \Xi
\end{aligned}
$$

- Graph measurability
$(\Xi, A) P$-complete for some P,
C random set $\Leftrightarrow \operatorname{gph} C A \otimes \mathcal{B}_{n}$-measurable

Castaing Representation

Castaing Representation

Castaing Representation

Random Elements:
Convergence (review)

$$
\boldsymbol{\xi}:(\Omega, \mathcal{F}, \mu) \rightarrow(\Xi, \mathcal{A}, P), \quad \boldsymbol{\xi}^{\nu} \xrightarrow{\star} \boldsymbol{\xi}
$$

a.s. (almost sure) convergence:

$$
P\left\{\xi \mid \lim _{\nu} \boldsymbol{\xi}^{\nu}(\omega)=\xi \neq \boldsymbol{\xi}(\omega), \omega \in \Omega\right\}=0
$$

convergence in probability:

$$
P\left(\left|\boldsymbol{\xi}^{\nu}-\boldsymbol{\xi}\right|>\varepsilon\right) \rightarrow 0 \text { for all } \varepsilon>0
$$

convergence in distribution: $P^{\nu} \xrightarrow{\mathcal{P}} P$

a.s.-Convergence

* $\left\{C^{\nu}: \Xi \rightrightarrows \mathbb{R}^{d}, v \in \mathbb{N}\right\}$ random closed sets
* a.s. convergence: $\operatorname{dl}\left(C^{v}(\xi), C(\xi)\right) \rightarrow 0$ for P-almost all $\xi \in \Xi$ $C^{v} \rightarrow C$ a.s. $\Rightarrow C$ random closed set on $\Xi_{0}, \mu\left(\Xi_{0}\right)=1$
* $C^{v} \rightarrow C P$-a.s. and $\operatorname{dom} \mathrm{C}^{v}=\operatorname{dom} C$. Then,
\exists Castaing representations of $C^{v} \rightarrow$ a Castaing representation of C If $s: \Xi \rightarrow E$ is a measurable selection of C, then $\exists s^{v}: \Xi \rightarrow E$ selections of C^{v} converging P-a.s. to s
* ('Egorov's Theorem': $\mathrm{C}^{\nu} \rightarrow C \mu$-a.s. $\Leftrightarrow C^{\nu} \rightarrow C$ almost uniformly)

Convergence in probability

Let $\varepsilon^{o} C=\left\{x \in \mathbb{R}^{m} \mid d(x, C)<\varepsilon\right\}, C^{v}, C$ random sets

$$
\Delta_{\varepsilon, v}=\left(C^{v} \backslash \varepsilon^{o} C\right) \cup\left(C \backslash \varepsilon^{o} C^{v}\right)
$$

μ-a.s. convergence: $\mu\left\{\xi \mid C^{\nu}(\xi) \rightarrow C(\xi)\right\}=1$
in probability: $P\left[\Delta_{\varepsilon, v}^{-1}(K)\right] \rightarrow 0, \forall \varepsilon>0, K \in K=$ cpct-sets

C^{v} converges to C in probability
$\Leftrightarrow P\left(d l\left(C^{v}, C\right)>\varepsilon\right) \rightarrow 0$ for all $\varepsilon>0$
\Leftrightarrow every subsequence of $\left\{C^{\nu}\right\}_{v \in \mathbb{N}}$ contains a sub-subsequence converging μ-a.s to C
i.e., in probability \Rightarrow in distribution $\left[\int h(\xi) d l\left(C^{v}(\xi), C(\xi)\right) P(d \xi) \rightarrow 0\right]$

$P^{\nu} \xrightarrow{\mathcal{D}} P \sim$ distribution fcns converge

P^{ν}, P defined on $(\mathbb{R}, \mathcal{B})$
$P^{\nu} \xrightarrow{\mathcal{D}} P \Longleftrightarrow \int h(\xi) P^{\nu}(d \xi) \rightarrow \int h(\xi) P(d \xi) \forall h$ continuous
$F^{\nu}(z)=P^{\nu}((-\infty, z)), \quad F(z)=P((-\infty, z))$, cumulative distributions $P^{\nu} \xrightarrow{P} P \Longleftrightarrow F^{\nu} \xrightarrow{p} F$ on cont $F=\{$ all continuity points of $F\}$

\xrightarrow{h} : hypo-convergence

$$
\begin{aligned}
& P^{\nu} \xrightarrow{\mathcal{D}} P \Longleftrightarrow-F^{\nu} \xrightarrow{e}-F \\
& \left(F^{\nu} \xrightarrow{h} F, F \text { usc }=- \text { lsc }\right) \\
& \quad \underline{\rightarrow}: \text { hypo-convergence }
\end{aligned}
$$

P^{ν}, P defined on $\left(\mathbb{R}^{n}, \mathcal{B}_{n}\right) \quad$ random vectors $\boldsymbol{\xi}^{\nu}, \boldsymbol{\xi}$
$P^{\nu} \xrightarrow{\mathcal{P}} P \Longleftrightarrow \int h(\xi) P^{\nu}(d \xi) \rightarrow \int h(\xi) P(d \xi) \forall h$ continuous
$F^{\nu}(z)=P^{\nu}\left(\xi_{i} \leq z_{i}, i=1, \ldots, n\right), \quad F(z)=P\left(\xi_{i} \leq z_{i}, i=1, \ldots, n\right)$

1. $z \leq \tilde{z} \Longrightarrow F(z) \leq F(\tilde{z})$ "increasing"
2. $\lim _{z \rightarrow \infty} F(z)=1, \lim _{z_{j} \rightarrow-\infty} F(z) \rightarrow 0$,
3. F is usc (upper sc) $\lim \sup _{z^{\prime} \rightarrow z} F\left(z^{\prime}\right) \leq F(z)$,

4. $R=\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right], \quad V=\left\{a_{1}, b_{1}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}$ vertices of R $\forall R \subset \mathbb{R}^{n}, P(\boldsymbol{\xi} \in R)=\sum_{v \in V} \operatorname{sgn}(v) F(v), \quad \operatorname{sgn}(v \in V)=(-1)^{\# a \text { in } v}$

$$
F^{\nu}(z)=P^{\nu}\left(\xi_{i} \leq z_{i}, i=1, \ldots, n\right), \quad F(z)=P\left(\xi_{i} \leq z_{i}, i=1, \ldots, n\right)
$$

1. $z \leq \tilde{z} \Longrightarrow F(z) \leq F(\tilde{z})$ "increasing"
2. $\lim _{z \rightarrow \infty} F(z)=1, \lim _{z_{j} \rightarrow-\infty} F(z) \rightarrow 0$,
3. F is use (upper sc) $\lim \sup _{z^{\prime} \rightarrow z} F\left(z^{\prime}\right) \leq F(z)$,

4. $R=\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right], \quad V=\left\{a_{1}, b_{1}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}$ vertices of R $\forall R \subset \mathbb{R}^{n}, P(\boldsymbol{\xi} \in R)=\sum_{v \in V} \operatorname{sgn}(v) F(v), \quad \operatorname{sgn}(v \in V)=(-1)^{\# a \text { in } v}$

$$
P^{\nu} \xrightarrow{\mathcal{P}} P \Longleftrightarrow-F^{\nu} \xrightarrow{e}-F
$$

Distribution of a random set

Borel σ-field: $\mathcal{B}=\sigma-\left\{\mathcal{F}^{K} \mid K\right.$ compact $\}$ or $\sigma-\left\{F_{o} \mid O\right.$ open $\} \ldots$
Distribution (P, \mathcal{B}) regular, $\quad K$ compact subsets E determined by values on $\left\{F^{K} \mid K \in K\right\}$ or $\left\{F_{K} \mid K \in K\right\}$
Distribution function (Choquet capacity):
$T: \mathcal{K} \rightarrow[0,1]^{(2)}, T(\varnothing)=0$ and $\forall\left\{K^{v}, v \in\{0\} \cup \mathbb{N}\right\} \subset \mathcal{K}_{(1,3)}$
a) $T\left(K^{v}\right) \searrow T(K)$ when $K^{v} \searrow K \quad\left(\sim\right.$ usc on $\left.\mathbb{R}^{n}\right)$
b) $\left\{D_{v}: K \rightarrow[0,1]\right\}_{v \in \mathbb{N}}$ where $D_{0}\left(K^{0}\right)=1-T\left(K^{0}\right)$
(4)
$D_{1}\left(K^{0} ; K^{1}\right)=D_{0}\left(K^{0}\right)-D_{0}\left(K^{0} \cup K^{1}\right)$ and for $v=2, \ldots$
$D_{v}\left(K^{0} ; K^{1}, \ldots, K^{v}\right)=D_{v-1}\left(K^{0} ; K^{1}, \ldots, K^{v-1}\right)-D_{v-1}\left(K^{0} \cup K^{v} ; K^{1}, \ldots, K^{v-1}\right)$
(\sim rectangle condition on \mathbb{R}^{n})

Existence-Uniqueness T

P on \mathcal{B} determines a unique distribution function T on \mathcal{K}

$$
\begin{aligned}
& T(K)=P\left(F_{K}\right) \\
& D_{v}\left(K^{0} ; K^{1}, \ldots, K^{v}\right)=P\left(F^{K^{0}} \cap F_{K^{1}} \cap \cdots \cap F_{K^{v}}\right)
\end{aligned}
$$

T on K determines a unique probability measure P.

Proof. via Choquet Capacity Theorem (Matheron) (refined) via probabilistic arguments (Salinetti-Wets)
$C: \Xi \rightrightarrows \mathbb{R}^{d}$ a random closed set
(P, \mathcal{B}) induced probability measure:

$$
P\left(\mathcal{F}_{G}\right)=P\left[C^{-1}(G)\right] \quad \forall G \in \mathcal{B}, \quad T(K)=P\left[C^{-1}(K)\right] \quad \forall K \in \mathcal{K}
$$ random sets C^{v} converge in distribution to C when induced P^{v} narrow-converge to $P: P^{v} \rightarrow_{n} P=P^{\nu} \xrightarrow{D} P$

$\Leftrightarrow T^{v} \rightarrow_{p} T$ on $K_{T \text {-cont }}$ (convergence of distribution functions) $K_{T-\text { cont }}$?
a) $\forall C^{v}, v \in N, \exists$ converging subsequence (pre-compact)
b) $K^{v} \nearrow K=\mathrm{cl} \bigcup_{v} K^{v}$ regularly if int $K \subset \bigcup_{V} K^{v}$
c) distribution (fcn) continuity: $\lim _{v} T\left(K^{v}\right)=T\left(\mathrm{cl} \bigcup_{v} K^{v}\right)$
d) convergence $T^{v} \rightarrow_{p} T$ on C_{T} continuity set $\Rightarrow P^{v} \rightarrow_{n} P$
e) $P^{v} \rightarrow_{n} P \Leftrightarrow T^{v} \rightarrow_{p} T$ on $C_{T}^{u b}=C_{T} \cap \mathcal{K}^{u b}$
$\mathcal{K}^{u b}=$ finite union of rational ball, positive radius
f) $\varepsilon \mapsto T(K+\varepsilon \mathbb{B})$: countable number of discontinuities

a detour about rates

$T^{v} \rightarrow_{p} T$ on $C_{T} \Leftrightarrow P^{v} \rightarrow_{n} P$ (Polish space: E, d)
P^{v}, P defined on \mathcal{B}
probability sc-measures on cl-sets(E): λ
(ii) $\lambda \geq 0$, (iii) $\lambda \nearrow \lambda\left(C^{1}\right) \leq \lambda\left(C^{2}\right)$ if $C^{1} \subset C^{2}$
(iii) λ is τ_{f}-usc on cl-sets (E), (iv) $\lambda(\varnothing)=0, \lambda(E)=1$
(vv) λ modular: $\lambda\left(C^{1}\right)+\lambda\left(C^{2}\right)=\lambda\left(C^{1} \cup C^{2}\right)+\lambda\left(C^{1} \cap C^{2}\right)$
P and $\lambda=P_{\text {cl-sets }}$ define each other uniquely (E complete \Rightarrow tight) $\left\{P^{v}, v \in \mathbb{N}\right\}$ tight: $P^{v} \rightarrow_{n} P \Leftrightarrow \lambda^{v} \rightarrow_{h} \lambda\left(\sim-\lambda^{\nu} \rightarrow_{e}-\lambda\right)$ on cl-sets (E) tightness \sim equi-usc of $\left\{\lambda^{v}\right\}_{v \in \mathbb{N}}$ at \varnothing
rates: $d l\left(\lambda^{v}, \lambda\right) \rightarrow 0$ (for \mathbb{R}-valued r.v., " $\sim "$ Skorohod distance)

Random Sets

Convergence \& Expectation

Artstein-Vitale-Hart-Wets,
Cressis, Hiai, Weyl, ...

Characterizing a.s. convergence

$\left\{C ; C^{\nu}: \Xi \rightrightarrows \mathbb{R}^{n}, \nu \in \mathbb{N}\right\}$ random closed sets. Then,

1. $C^{\nu} \rightarrow C$ a.s., dl $\left(C^{\nu}, C\right) \rightarrow 0$ a.s., $\operatorname{Lo}_{\nu}\left(C^{\nu}\right) \subset C \subset \operatorname{Li}_{\nu}\left(C^{\nu}\right)$ a.s.,
2. $\forall x \in \mathbb{R}^{n}$ and $\xi \in \Xi_{1}$ with $P\left(\Xi_{1}\right)=1, d\left(x, C^{\nu}(\xi)\right) \rightarrow d(x, C(\xi))$,
3. $\forall x \in \mathbb{R}^{n}$ and $\xi \in \Xi_{1}$ with $P\left(\Xi_{1}\right)=1$,

$$
\lim _{\rho \nearrow \infty} \operatorname{Lo}_{\nu}\left(C^{\nu}(\xi) \cap \mathbb{B}(x, \rho)\right) \subset C(\xi) \subset \lim _{\rho \nearrow \infty} \operatorname{Li}_{\nu}\left(C^{\nu}(\xi) \cap \mathbb{B}(x, \rho)\right)
$$

"Proof 1. $\Leftrightarrow 2 . "$

$$
C^{\nu} \rightarrow C \Longleftrightarrow \forall x \in \mathbb{R}^{n}, d\left(x, C^{\nu}\right) \rightarrow d(x, C) \text { provided } E=\mathbb{R}^{n} .
$$

$C^{\nu} \rightarrow C$ if and only if the hit-miss criterion is satisfied
C hits $\mathbb{B}^{o}(x, \rho)$ then C^{ν} hits $\mathbb{B}^{o}(x, \rho)$ for $\nu \geq \nu_{x, \rho}$ so, $C \subset \operatorname{Li}_{\nu} C^{\nu} \Longleftrightarrow d(x, C) \geq \limsup _{\nu} d\left(x, C^{\nu}\right), \forall x$
C misses $\mathbb{B}(x, \rho)$ then C^{ν} misses $\mathbb{B}(x, \rho)$ for $\nu \geq \nu_{x, \rho}$ so, $C \supset \operatorname{Lo}_{\nu} C^{\nu} \Longleftrightarrow d(x, C) \geq \liminf _{\nu} d\left(x, C^{\nu}\right), \forall x$

HM4 M M M M M M M M M M Building Castaing representations

$C: \Xi \rightrightarrows \mathbb{R}^{n}$, a random closed set. Let

$$
A=\left\{a_{k}=\left(a_{k}^{1}, \ldots, a_{k}^{n}, a_{k}^{n+1}\right) \mid a_{k}^{i} \in \mathbb{Q}^{n} \& \text { aff. independent }\right\}
$$

for $\emptyset \neq D=D^{0}$ closed, define $\operatorname{prj}_{D} a_{k}=\operatorname{prj}_{D^{n}} a_{k}^{n+1}$ where $D^{l}=\operatorname{prj}_{D^{l-1}} a_{k}^{l}$ for $l=1, \ldots, n$
$\operatorname{prj}_{D} a_{k}$ is a singleton: intersection of $\mathrm{n}+1$ "aff. independent" spheres. Moreover, $\left\{\operatorname{prj}_{D} a_{k}, a_{k} \in A\right\}$ also dense in D
$s_{k}: \Xi \rightarrow \mathbb{R}^{n}$ with $s_{k}(\xi)=\operatorname{prj}_{C(\xi)} a_{k}$ is a measurable selection of C
\square When D is a random closed set, so is $\xi \mapsto \operatorname{prj}_{D(\xi)} a, a \in \mathbb{R}^{n}$ repeat the argument $n+1$ times to obtain s_{k} measurable. \square

 Converging Castaing representations

$C^{\nu}: \Xi \rightrightarrows \mathbb{R}^{n}$ random closed sets converging P-a.s. to $C, \operatorname{dom} C^{\nu}=\operatorname{dom} C$. Then, $\exists\left\{s_{k}^{\nu}, k \in \mathbb{N}\right\}$ Castaing representations of C^{ν} converging for each k to a Castaing representation $\left\{s_{k}, k \in \mathbb{N}\right\}$ of C.
\square All Castaing representations are built via our earlier "projections". Then, $\forall \xi \in \Xi_{1}, s_{k}^{\nu}(\xi) \rightarrow s_{k}(\xi), P\left(\Xi_{1}\right)=1$ the set of a.s.-convergence. Since, P-a.s. convergence of $C^{\nu} \rightarrow C \Longrightarrow \quad$ (rely on 2. earlier)

$$
d\left(a_{k}^{1}, s_{k}^{\nu}(\xi)\right)=d\left(a_{k}^{1}, C^{\nu}(\xi)\right) \rightarrow d\left(a_{k}^{1}, C(\xi)\right)=d\left(a_{k}^{1}, s_{k}(\xi)\right), \forall \xi \in \Xi_{1} .
$$

(a) Convergence of Castaing representations \nRightarrow convergence of random sets!
(b) v meas-selection of $C \Rightarrow \exists v^{\nu}$ meas-selection of C^{ν} converging a.s. to v.

"Simple" random sets

$C: \Xi \rightrightarrows \mathbb{R}^{n}$ is a simple random set if rge C is finite.
C is a closed random set $\Longleftrightarrow C=P$-a.s. limit of simple random sets.
$\square \Leftarrow$: the limit of a sequence of random sets is a random set
\Rightarrow : let $C^{\nu}=C \cap \nu \mathbb{B}$, unif. bounded closed random set, $C=\mathrm{Lm}_{\nu} C^{\nu}$ build (via "prj") Castaing representations $\left\{r_{k}^{\nu}\right\}_{k \in \mathbb{N}}$ of the C^{ν} let $\left\{s_{k}^{\nu}\right\}_{k \in \mathbb{N}^{\prime}}=\bigcup_{v \leq \nu}\left\{r_{k}^{v}\right\}_{v \in \mathbb{N}}$, also Castaing for C^{ν}
$D_{k}^{\nu}=\bigcup_{j \leq k} s_{j}^{\nu} d l$-converge uniformly to C^{ν} as $k \rightarrow \infty$ since each $s_{k}^{\nu}=\lim _{l \rightarrow \infty} s_{k l}^{\nu}$ uniformly, $s_{k l}^{\nu}$ simple random variables $\Delta_{k l}^{\nu}=\bigcup_{j \leq k} s_{j l}^{\nu}$ is a simple random set, $C(\xi)=\operatorname{Lm}_{\nu} \operatorname{Lm}_{k} \operatorname{Lm}_{l} \Delta_{k l}^{\nu}(\xi)$
$\Delta_{k l}^{\nu} \xrightarrow{u} D_{k}^{\nu} \xrightarrow{u} C^{\nu}$ allows diagonalization to find $\Delta_{k^{\nu} l^{\nu}}^{\nu} \rightarrow C$.

Sierpiński-Lyapunov Theorems

(Ξ, \mathcal{A}) a measure space

Sierpiński (1922). Suppose P is an atomless probability measure. Given $A_{0}, A_{1} \in \mathcal{A}$ with $0 \leq P\left(A_{0}\right) \leq P\left(A_{1}\right) \leq 1$, then
$\forall \lambda \in[0,1], \exists A_{\lambda} \in \mathcal{A}$ such that $P\left(A_{\lambda}\right)=(1-\lambda) P\left(A_{0}\right)+\lambda P\left(A_{1}\right)$. In particular, it implies $\forall \lambda \in[0,1], \exists A \in \mathcal{A}$ such that $P(A)=\lambda$; choose $A_{0}=\emptyset$ and $A_{1}=\Xi$.

Lyapunov (1940) $\mu: \mathcal{A} \rightarrow \mathbb{R}^{n}$ atomless, σ-additive measure. For $A \in \mathcal{A}$, define rge $\mu(A)=\{\mu(B) \mid B \subset A \cap \mathcal{A}\}$. Then, rge $\mu(\Xi) \subset \mathbb{R}^{n}$ is convex and if μ is also bounded, it's compact.

Expectation: simple random set

$C: \Xi \rightrightarrows \mathbb{R}^{n}$ a simple random set, i.e., rge $C=\left\{z^{k} \in \mathbb{R}^{n}|k \in K,|K|\right.$ finite $\}$ Given $\bar{r}, \bar{s} \in E C=\mathbb{E}\{C(\boldsymbol{\xi})\} \quad \Longrightarrow$
\exists simple selections $r, s: \Xi \rightarrow \mathbb{R}^{n}$ with $\mathbb{E}\{r(\boldsymbol{\xi})\}=\bar{r}, \mathbb{E}\{s(\boldsymbol{\xi})\}=\bar{s}$.
Let $\lambda \in[0,1]$. Define $v: \Xi \rightarrow \mathbb{R}^{n}$ as follows:

1. partition Ξ into subsets $A_{=}$and \mathcal{A}_{\neq}
2. $A_{=}=\{\xi \in \Xi \mid r(\xi)=s(\xi)\} \in \mathcal{A}$
3. $A=\left\{\xi \in \Xi \mid r(\xi)=z_{k}, s(\xi)=z_{l}, k \neq l\right\} \in \mathcal{A}_{\neq}$, a finite collection
4. split each $A \in \mathcal{A}_{\neq}, P\left(A_{r}\right)=\lambda P(A) \& A_{s}=A \backslash A_{r}$ (Sierpiński)

$$
\text { set } v(\xi)= \begin{cases}r(\xi) & \text { on } \bigcup_{A \in \mathcal{A}_{\neq}} A_{r} \cup A_{=} \\ s(\xi) & \text { on } \bigcup_{A \in \mathcal{A}_{\neq}} A_{s}\end{cases}
$$

then $\bar{v}=\mathbb{E}\{v(\xi)\}=\lambda \bar{r}+(1-\lambda) \bar{s} \quad \Longrightarrow \quad E C$ convex.
Clearly $E C$ is bounded and it's easy to show it's also closed \Longrightarrow compact.

Expectation of random set

$C: \Xi \rightrightarrows \mathbb{R}^{n}$ a closed random set
$\Longrightarrow C=P$-a.s. limit of simple random sets, say $C^{\nu} \overrightarrow{a . s .}$. C with $C^{\nu} \nearrow$ w.l.o.g
$E C^{\nu}=\mathbb{E}\left\{C^{\nu}(\boldsymbol{\xi})\right\} \nearrow$ are convex, compact \Rightarrow $E C=\mathbb{E}\{C(\boldsymbol{\xi})\}=\bigcup_{\nu} E C^{\nu}$
$\Longrightarrow E C$ convex
$\Longrightarrow E C$ closed if C is integrably bounded
\Longrightarrow compact if rge C is bounded

