# Random Mappings 

Roger J-B Wets

Mathematics, University of California, Davis

May 2012, ETH-Zürich

Lecture \#3
$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?

$$
\begin{gathered}
E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad \text { "approximated" by } G^{\nu}(x)=0 \\
\xi^{1}, \ldots, \xi^{\nu} \text { sample, } G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)
\end{gathered}
$$

$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$

An appendix: more about solution bounds
$\min \mathbb{E}\{f(\boldsymbol{\xi}, x)\}, x \in C, \quad \mathbb{E}\{f(\boldsymbol{\xi}, x)\}=E f(x)=\int_{\Xi} f(\xi, x) P(d \xi)$ $\xi^{1}, \ldots \xi^{\nu}$ sample $P^{\nu}$ (random) empirical measure approx.: $\min \mathbb{E}^{\nu}\{f(\boldsymbol{\xi}, x)\}=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\xi^{l}, x\right), x \in C$

## ع-Solutions Estimates

$f, g: E \rightarrow \overline{\mathbb{R}}$ lsc, convex $\& \operatorname{argmin} f \cap \bar{\rho} \mathbb{B} \neq \emptyset \neq \operatorname{argmin} g \cap \bar{\rho} \mathbb{B}$ $\min f \geq-\bar{\rho}, \quad \min g \geq-\bar{\rho}$
with $\rho>\bar{\rho}, \varepsilon>0, \quad \bar{\eta}=\hat{d}_{\rho}(f, g)$ :

$$
\begin{aligned}
\hat{d}_{\rho}(\varepsilon-\operatorname{argmin} f, \varepsilon-\operatorname{argmin} g) & \leq \bar{\eta}\left(1+\frac{2 \rho}{\bar{\eta}+\varepsilon / 2}\right) \\
& \leq\left(1+4 \rho \varepsilon^{-1}\right) \hat{l}_{\rho}(f, g)
\end{aligned}
$$

# Epi-distance alternative 

$\check{d}_{\lambda, \rho}(f, g)$
same topology: $T_{a w}$

Moreau epi-sums ~sum of epigraphs

$$
(f \# g)(x)=\inf _{u}\{f(u)+g(u-x)\}, \quad e_{\lambda} f(x) \text { with } g=\frac{1}{2 \lambda}|\cdot|^{2}
$$



## Alternative epi-distance

$f, g$ majorizing $-\alpha_{1}|\cdot|^{p}-\alpha_{0}$

1. $\forall \lambda \geq 0, \check{d}_{\lambda, \rho}(f, g) \leq \beta(\lambda, \rho) \hat{d}_{\gamma(\lambda, \rho)}(f, g)$
2. $\hat{d l}_{\rho}\left(f_{\lambda}, g_{\lambda}\right) \leq \check{d}_{\lambda, \rho}(f, g)$
$\hat{d}_{\rho}(f, g) \leq \check{d}_{\lambda, 9 \rho}(f, g)+\kappa\left(\lambda, \alpha_{1}, \alpha_{0}, p\right)$
"Quantitative" LLN-a.s.
$E$ separable Banach space, $f$ random lsc function, $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{\nu}\right\}_{\nu \in \mathbb{N}}$ iid
3. $\{f(\xi, \cdot), \xi \in \Xi\}$ separable subspace (lsc-fcns $\left.(E), \tau_{a w}\right)$
4. $P$-a.s., $\forall \theta>0, \rho \geq 0, \nu$ :

$$
\check{d}_{\theta, \lambda}\left(\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\overline{\boldsymbol{\xi}}^{l}, \cdot\right), \frac{1}{\nu} \sum_{l=1}^{\nu} f_{\lambda}\left(\boldsymbol{\xi}^{l}, \cdot\right)\right) \leq \varepsilon_{\theta, \rho}(\lambda)
$$

with $\varepsilon_{\theta, \rho}(\lambda) \rightarrow 0$ as $\lambda \searrow 0$
3. $\forall \theta>0, \rho \geq 0, \check{d}_{\theta, \rho}\left(E f_{\lambda}, E f\right) \searrow 0$ as $\lambda \searrow 0$.

Then,

$$
d l\left(E^{\nu} f, E f\right) \rightarrow 0 \quad P^{\infty}-a . s
$$

#  "Quantitative" LLN-a.s. 

$E$ separable Banach space, $f$ random lsc function, $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{\nu}\right\}_{\nu \in \mathbb{N}}$ iid 1. $\{f(\xi, \cdot), \xi \in \Xi\}$ separable subspace (lsc-fcns $\left.(E), \tau_{a w}\right)$
2. P-a.s., $\forall \theta>0, \rho \geq 0, \nu$ :
$\check{d}_{\theta, \lambda}\left(\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\boldsymbol{\xi}^{l}, \cdot\right), \frac{1}{\nu} \sum_{l=1}^{\nu} f_{\lambda}\left(\boldsymbol{\xi}^{l}, \cdot\right)\right) \leq \varepsilon_{\theta, \rho}(\lambda)$
with $\varepsilon_{\theta, \rho}(\lambda) \rightarrow 0$ as $\lambda \searrow 0$
3. $\forall \theta>0, \rho \geq 0, \check{d}_{\theta, \rho}\left(E f_{\lambda}, E f\right) \searrow 0$ as $\lambda \searrow 0$.

Then,

$$
d l\left(E^{\nu} f, E f\right) \rightarrow 0 \quad P^{\infty}-a . s .
$$

$x \mapsto f(\xi, x)$ convex $\Longrightarrow$ conditions $2 \& 3$.

#  "Quantitative" LLN-a.s. 

$E$ separable Banach space, $f$ random lsc function, $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{\nu}\right\}_{\nu \in \mathbb{N}}$ iid 1. $\{f(\xi, \cdot), \xi \in \Xi\}$ separable subspace (lsc-fcns $\left.(E), \tau_{a w}\right)$
2. P-a.s., $\forall \theta>0, \rho \geq 0, \nu$ :
$\check{d}_{\theta, \lambda}\left(\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\boldsymbol{\xi}^{l}, \cdot\right), \frac{1}{\nu} \sum_{l=1}^{\nu} f_{\lambda}\left(\boldsymbol{\xi}^{l}, \cdot\right)\right) \leq \varepsilon_{\theta, \rho}(\lambda)$
with $\varepsilon_{\theta, \rho}(\lambda) \rightarrow 0$ as $\lambda \searrow 0$
3. $\forall \theta>0, \rho \geq 0, \check{d}_{\theta, \rho}\left(E f_{\lambda}, E f\right) \searrow 0$ as $\lambda \searrow 0$.

Then,

$$
d l\left(E^{\nu} f, E f\right) \rightarrow 0 \quad P^{\infty}-a . s .
$$

$x$
3
3
0
0 $x \mapsto f(\xi, x)$ convex $\Longrightarrow$ conditions $2 \& 3$. $\hat{d}_{\rho}\left(\varepsilon-\operatorname{argmin} E^{\nu} f, \varepsilon-\operatorname{argmin} E f\right) \leq\left(1+4 \rho \varepsilon^{-1}\right) \hat{d}_{\rho}\left(E^{\nu} f, E f\right)$

#  "Quantitative" LLN-a.s. 

$E$ separable Banach space, $f$ random lsc function, $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{\nu}\right\}_{\nu \in \mathbb{N}}$ iid 1. $\{f(\xi, \cdot), \xi \in \Xi\}$ separable subspace (lsc-fcns $\left.(E), \tau_{a w}\right)$
2. P-a.s., $\forall \theta>0, \rho \geq 0, \nu$ :
$\check{d}_{\theta, \lambda}\left(\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\overline{\boldsymbol{\xi}^{l}}, \cdot\right), \frac{1}{\nu} \sum_{l=1}^{\nu} f_{\lambda}\left(\boldsymbol{\xi}^{l}, \cdot\right)\right) \leq \varepsilon_{\theta, \rho}(\lambda)$
with $\varepsilon_{\theta, \rho}(\lambda) \rightarrow 0$ as $\lambda \searrow 0$
3. $\forall \theta>0, \rho \geq 0, \check{d}_{\theta, \rho}\left(E f_{\lambda}, E f\right) \searrow 0$ as $\lambda \searrow 0$.

Then,

$$
d l\left(E^{\nu} f, E f\right) \rightarrow 0 \quad P^{\infty}-a . s .
$$

$x$
3
3
3
0 $x \mapsto f(\xi, x)$ convex $\Longrightarrow$ conditions $2 \& 3$. $\hat{d}_{\rho}\left(\varepsilon-\operatorname{argmin} E^{\nu} f, \varepsilon-\operatorname{argmin} E f\right) \leq\left(1+4 \rho \varepsilon^{-1}\right) \hat{d}_{\rho}\left(E^{\nu} f, E f\right)$ $E$ reflexive, $E^{\nu} \underset{s, w}{ } E f \Longrightarrow d l\left(E^{\nu} f, E f\right) \rightarrow 0$ a.s.

## Approximating Mappings


$E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0$ "approximated" by $G^{\nu}(x)=0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, $G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)$
$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$
$\min \mathbb{E}\{f(\boldsymbol{\xi}, x)\}, x \in C, \quad \mathbb{E}\{f(\boldsymbol{\xi}, x)\}=E f(x)=\int_{\Xi} f(\xi, x) P(d \xi)$ $\xi^{1}, \ldots \xi^{\nu}$ sample $P^{\nu}$ (random) empirical measure approx.: $\min \mathbb{E}^{\nu}\{f(\boldsymbol{\xi}, x)\}=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\xi^{l}, x\right), x \in C$

## Examples:

 $\min f=f_{0}+l_{C}$, optimality: $\left.0=\partial f(\bar{x})=S(x)^{\text {" }} \quad \sim 0=\nabla f(\bar{x})\right)$ generally, $\partial(f+g) \neq \partial f+\partial g$$\mathbb{C} . \mathbb{Q} .\left(\right.$ Constraint Qualification): $-N_{C}(\bar{x}) \cap \partial^{\infty} f_{0}(\bar{x})=\{0\}$
$v \in \partial^{\infty} f_{0}(\bar{x})=$ horizon subgradient if

$$
\exists \mathrm{x}^{v} \rightarrow \bar{x} \text { with } f\left(x^{v}\right) \rightarrow f(\bar{x}), v^{v} \in \hat{\partial} f\left(x^{v}\right), \lambda_{v} \searrow 0 \& \lambda_{v} v^{v} \rightarrow v
$$

with $\mathbb{C} . \mathbb{Q} . \quad \bar{x}$ locally optimal $\Rightarrow \partial f_{0}(\bar{x})+N_{C}(\bar{x})=S(\bar{x}) \ni 0$

$$
f \text { convex }(\Rightarrow \text { regular }), \partial f_{0}(\bar{x})+N_{C}(\bar{x}) \ni 0
$$

$\Rightarrow$ globally optimal (without $\mathbb{C} . \mathbb{Q}$ )
When $f_{0}, C$ are convex: $-\partial f_{0}(\bar{x}) \in N_{C}(\bar{x})$, a functional variational inequality
$(E, d)$ Polish, in paricular $E=\mathbb{R}^{n}$
(cl-sets $(E), d l)$ complete metric space; Polish if $E=\mathbb{R}^{n}$ $d l\left(C^{\nu}, C\right) \rightarrow 0 \Longleftrightarrow C^{\nu} \rightarrow C$
osc-mappings $=$ closed graph (osc-maps $(S), d l)$ complete, metric space;
Polish if dom $\subset \mathbb{R}^{n}$, rge $\subset \mathbb{R}^{m}$
Convergence:

$$
S^{\nu} \xrightarrow{g} S \text { if } d l\left(\operatorname{gph} S^{\nu}, \operatorname{gph} S\right) \rightarrow 0 \Longrightarrow\left(S^{\nu}\right)^{-1}(0) \Rightarrow_{v} S^{-} 1(0)
$$

$G: E \rightarrow \mathbb{R}^{d}, \quad G^{-1}(0)$ soln's of $G(x)=0$, approximations?
$E G(x)=\mathbb{E}\{G(\boldsymbol{\xi}, x)\}=0 \quad$ "approximated" by $G^{\nu}(x)=0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, $G^{\nu}(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right)$
$G: \Xi \times D \rightrightarrows E$, set-valued $G(\xi, x) \subset E$, inclusion $\mathbb{E}\{G(\boldsymbol{\xi}, x)\} \ni 0$ $\xi^{1}, \ldots, \xi^{\nu}$ sample, approximation $\frac{1}{\nu} \sum_{l=1}^{\nu} G\left(\xi^{l}, x\right) \ni 0$
$\min \mathbb{E}\{f(\boldsymbol{\xi}, x)\}, x \in C, \quad \mathbb{E}\{f(\boldsymbol{\xi}, x)\}=E f(x)=\int_{\Xi} f(\xi, x) P(d \xi)$ $\xi^{1}, \ldots \xi^{\nu}$ sample $P^{\nu}$ (random) empirical measure approx.: $\min \mathbb{E}^{\nu}\{f(\boldsymbol{\xi}, x)\}=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\xi^{l}, x\right), x \in C$
a.s convergence: $P\left\{\xi \mid d l\left(C^{\nu}(\xi), C(\xi)\right) \rightarrow 0\right\}=0$
$\Rightarrow$ in probability: $\forall \varepsilon>0, P\left\{\xi \mid d\left(C^{\nu}(\xi), C(\xi)\right)>\varepsilon\right\} \rightarrow 0$
$\Rightarrow$ in distribution $T:$ cpct-sets $(E) \rightarrow[0,1], T(\emptyset)=0$, (a) $T\left(K^{\nu}\right) \searrow T(K)$ for $\left.K^{\nu}\right) \searrow K$, (b) 'rectangle cond'n' $P^{\nu} \xrightarrow{\mathcal{D}} P \Longleftrightarrow T^{\nu} \rightarrow T$ on cpct-sets $\left(\mathbb{R}^{n}\right)$
or, even, on finite union of closed rational balls.

# Random Sets: Expectation 

## Random set: Expectation

$E C=\mathbb{E}\{C(\xi)\}=\left\{\int_{\underline{\Xi}} s(\xi) P(d \xi) \| s(\cdot) P\right.$-summable selection $\}$
..not necessarily closed even when $C$ is closed-valued

Convexity:


## Random set: Expectation

$E C=\mathbb{E}\{C(\boldsymbol{\xi})\}=\left\{\int_{\Xi} s(\xi) P(d \xi) \| s(\bullet) P\right.$-summable selection $\}$
..not necessarily closed even when $C$ is closed-valued

Convexity:
$C P$-atom convex $\Rightarrow E C$ is convex (certainly when $P$ is atomless).


#  Bounded random set 



Expectation:


Sunday, May 27, 2012

Expectation: Unbounded r. sets



- measure $P$ atomless, then $E C=\mathbb{E}\{C(\boldsymbol{\xi})\}$ is convex (Richter, Lyapounov,...)
- $P$ is $P$-atom convex $\Longrightarrow E C$ is convex; [an atom contains no (measurable) subset of positive probability]
- $C$ a random set, $\emptyset \neq E C=\mathbb{E}\{C(\boldsymbol{\xi})\}$ contains no line, then

$$
\operatorname{con} E C=\mathbb{E}\{\operatorname{con} X(\boldsymbol{\xi})\}
$$

this essentially requires that $C(\xi) \subset$ a pointed cone

- in general, the expectation of a (closed-valued) random set is not closed
- if $|C|=\mathbb{E}\{\sup [|s(\xi)| \mid s(\xi) \in C(\xi)]\}<\infty$ then $E C$ is closed;
$C$ is then integrably bounded.

Strong law of large numbers
for random sets (Artstein-Hart)
$C: \Xi \rightrightarrows E$ measurable, $\left\{\xi^{v}, v \in \mathbb{N}\right\}$ iid $\Xi$-valued random variables $C\left(\xi^{v}\right)$ iid random sets (i.e. induced $P^{v}$ independent and identical)

$$
E C=\mathbb{E}\{C(\cdot)\}=\left\{\int_{\Xi} s(\xi) P(d \xi) \mid s: P \text {-summable } C(\xi) \text {-selection }\right\}
$$

independence $\Rightarrow$ all (measurable) selections are independent
$\left\{C\left(\xi^{v}\right): \Xi \rightrightarrows \mathbb{R}^{m} v \in \mathbb{N}\right\}$ iid with $E C \neq \varnothing$. Then, with

$$
C^{v}\left(\xi^{\infty}\right)=v^{-1}\left(\sum_{k=1}^{v} C\left(\xi^{k}\right)\right) \rightarrow \bar{C}=\mathrm{cl} \operatorname{con} E C \quad P^{\infty} \text {-a.s. }
$$

$\operatorname{Lo}_{v} C^{\nu}\left(\xi^{\infty}\right) \subset \bar{C} \Leftrightarrow \limsup \sigma_{v} \sigma_{C^{\nu}} \leq \sigma_{\bar{C}} \quad$ support functions $\mathrm{Li}_{v} C^{\nu}\left(\xi^{\infty}\right) \supset \bar{C}$ relies on LLN for (vector-valued) selections

## Random mappings

$S: \Xi \times E \rightrightarrows \mathbb{R}^{m}, E \subset \mathbb{R}^{n}$
$A \otimes \mathcal{B}^{n}$-jointly measurable: $S^{-1}(O) \in \mathcal{A} \otimes \mathcal{B}^{n}, O$ open
$\Rightarrow \forall x: \xi \mapsto S(\xi, x)$ a random set
random closed set when $S$ is closed-valued
$E S: E \rightrightarrows \mathbb{R}^{m}$ with $E S(x)=\mathbb{E}\{S(\xi, x)\}$ expected mapping $E S$ convex-valued when $\xi \mapsto S(\xi, \cdot) P$-atom convex Law of Large Numbers for random sets applies pointwise
stochastic variational problem: $\bar{S}(x)=\mathbb{E}\{S(\xi, x)\} \ni 0$
$S: \Xi \times \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ random set-valued mapping
$\xi$ random vector with values $\xi \in \Xi \subset \mathbb{R}^{N}$
solution (a 'stationary point') $\bar{x} \in \bar{S}^{-1}(0)$

sample $\vec{\xi}=\left(\xi^{1}, \ldots, \xi^{v}\right)$ of $\boldsymbol{\xi}$
$\frac{1}{v}\left(\sum_{k=1}^{v} S\left(\xi^{k}, x\right)\right)=S^{\nu}(\stackrel{\rightharpoonup}{\xi}, x) \ni 0$, approximating system?

$$
\text { i.e., }\left(S^{v}\right)^{-1}(0) \Rightarrow_{v} \bar{S}^{-1}(0) \text { a.s. ??? }
$$


$S: \Xi \times D \rightrightarrows E$, set-valued $S(\xi, x) \subset E$, inclusion $\mathbb{E}\{S(\boldsymbol{\xi}, x)\} \ni 0$ iid-sample $\vec{\xi}^{\nu}=\xi^{1}, \ldots, \xi^{\nu}$ and $x \mapsto S(\xi, x)$ osc SAA-mapping $S^{\nu}: \Xi^{\infty} \times D \rightrightarrows E$, random osc mappings $S^{\nu}(\xi, x)=\frac{1}{\nu} \sum_{k=1}^{\nu} S\left(\xi^{k}, x\right) \gtrsim S^{\nu}\left(\vec{\xi}^{\nu}, x\right), \forall \xi \in \Xi^{\infty}$
$S: \Xi \times D \rightrightarrows E$, set-valued $S(\xi, x) \subset E$, inclusion $\mathbb{E}\{S(\boldsymbol{\xi}, x)\} \ni 0$
iid-sample $\vec{\xi}^{\nu}=\xi^{1}, \ldots, \xi^{\nu}$ and $x \mapsto S(\xi, x)$ osc
SAA-mapping $S^{\nu}: \Xi^{\infty} \times D \rightrightarrows E$, random osc mappings

$$
S^{\nu}(\xi, x)=\frac{1}{\nu} \sum_{k=1}^{\nu} S\left(\xi^{k}, x\right) \gtrsim S^{\nu}\left(\vec{\xi}^{\nu}, x\right), \forall \xi \in \Xi^{\infty}
$$

$\forall x \in D, S(\cdot, x)$, closed random set, let $\bar{S}=\operatorname{cl} \operatorname{con} E S, \quad E S(x)=\mathbb{E}\{S(x, \boldsymbol{\xi})\}$
Artstein-Hart LLN applies: $S^{\nu} \xrightarrow{p} \bar{S}$ a.s. when $E=\mathbb{R}^{m}$
but $\xrightarrow{p} \nRightarrow\left(S^{\nu}\right)^{-1}(0) \rightrightarrows \bar{S}^{-1}(0)$. Needed $S^{\nu} \xrightarrow{g} \bar{S}$
$S: \Xi \times D \rightrightarrows E$, set-valued $S(\xi, x) \subset E$, inclusion $\mathbb{E}\{S(\boldsymbol{\xi}, x)\} \ni 0$ iid-sample $\vec{\xi}^{\nu}=\xi^{1}, \ldots, \xi^{\nu}$ and $x \mapsto S(\xi, x)$ osc
SAA-mapping $S^{\nu}: \Xi^{\infty} \times D \rightrightarrows E$, random osc mappings

$$
S^{\nu}(\xi, x)=\frac{1}{\nu} \sum_{k=1}^{\nu} S\left(\xi^{k}, x\right) \gtrsim S^{\nu}\left(\vec{\xi}^{\nu}, x\right), \forall \xi \in \Xi^{\infty}
$$

$\forall x \in D, S(\cdot, x)$, closed random set, let $\bar{S}=\mathrm{cl} \operatorname{con} E S, \quad E S(x)=\mathbb{E}\{S(x, \boldsymbol{\xi})\}$
Artstein-Hart LLN applies: $S^{\nu} \xrightarrow{p} \bar{S}$ a.s. when $E=\mathbb{R}^{m}$
but $\xrightarrow{p} \nRightarrow\left(S^{\nu}\right)^{-1}(0) \rightrightarrows \bar{S}^{-1}(0)$. Needed $S^{\nu} \xrightarrow{g} \bar{S}$
recall: $\bar{S}(x)=\mathrm{cl} E S(x)$ when $P$-atom convex, $E S(x)$ closed if $\xi \mapsto S(\xi, x)$ is integrably bounded and compact if $\operatorname{rge} S(\cdot, x)$ is bounded.

## Consistent approximations?

$S^{\nu}(\boldsymbol{\xi}, \cdot) \rightarrow_{p} \bar{S} \quad P^{\infty}$-a.s. $\Rightarrow ? \quad S^{\nu}(\boldsymbol{\xi}, \cdot)^{-1}(0) \Rightarrow_{v} \bar{S}^{-1}(0)$
sometimes!
graphical rather than pointwise convergence is required $S^{v}(\xi, \cdot) \underset{\mathrm{gph}}{\rightarrow} \bar{S} P^{\infty}$-a.s. is needed
relationship between graphical and pointwise convergence?


## Some Examples

Network flow equilibrium with stochastic demand and link capacities Economic equilibrium in a stochastic environment
$\boldsymbol{\xi}=\left(\xi^{1}, \xi^{2}, \ldots\right), G^{v}(\cdot, x) \sigma-\left(\xi^{1}, \ldots \xi^{v}\right)$ measurable
$-G^{v}(\xi, x) \in N_{C}(x), \quad C$ compact, convex
$N_{C(x)}+G^{\nu}(\xi, x)=S^{\nu}(x) \ni 0, \quad S^{\nu}$ closed set-valued mapping $G^{\nu}(\xi, \cdot) \rightarrow{ }^{?} G(\xi, \cdot)$
$x^{v}(\xi)$ solution of $-G^{v}(\xi, x) \in N_{C}(x)$ for sample $\xi \approx \vec{\xi}^{v}$ does $x^{\nu}(\xi) \rightarrow$ a solution of $-G(\xi, x) \in N_{C}(x)$ ? a.s.

what if $C$ depends on $(\xi, v)$ : sequence of random sets $C^{v}(\xi)$ ?

agent's problem: $\mathrm{a} \in \mathcal{A},|\mathcal{A}|$ finite, possibly "large"
$\bar{x}_{a} \in \arg \max u_{a}\left(x_{a}\right)$ so that $\left\langle p, x_{a}\right\rangle \leq\left\langle p, e_{a}\right\rangle, x_{a} \in X_{a}$
$e_{a}$ : endowment of agent a, $e_{a} \in \operatorname{int} X_{a}$
$u_{a}$ : utility of agent $a$, concave, usc
$u_{a}: X_{a} \rightarrow \mathbb{R}, \quad X_{a} \subset \mathbb{R}^{n}$ (survival set) convex
market clearing: $s(p)=\sum_{a \in \mathcal{A}}\left(e_{a}-\bar{x}_{a}\right)$ excess supply equilibirum price: $\quad \bar{p} \in \Delta$ such that $s(\bar{p}) \geq 0, \quad \Delta$ unit simplex

##  Walras: a Variational Inequality

$$
\begin{aligned}
& c_{a}=\arg \max _{x} u_{a}(x) \text { so that }\langle p, x\rangle \leq\langle p, e\rangle, x \in C_{a} \\
& \sum_{a}\left(e_{a}-c_{a}\right)=s(p) \geq 0 . \\
& N_{D}(\bar{z})=\{v \mid\langle v, z-\bar{z}\rangle \leq 0, \forall z \in D\} \\
& G\left(p,\left(x_{a}\right),\left(\lambda_{a}\right)\right)=\left[\sum_{a}\left(e_{a}-x_{a}\right) ;\left(\lambda_{a} p-\nabla u_{a}\left(x_{a}\right)\right) ;\left\langle p, e_{a}-x_{a}\right\rangle\right] \\
& \\
& D=\Delta \times\left(\prod_{a} C_{a}\right) \times\left(\prod_{a} \mathbb{R}_{+}\right) \\
& -G\left(\bar{p},\left(\bar{x}_{a}\right),\left(\bar{\lambda}_{a}\right)\right) \in N_{D}\left(\bar{p},\left(\bar{x}_{a}\right),\left(\bar{\lambda}_{a}\right)\right) \\
& D \text { unbounded } \rightarrow \hat{D} \text { bounded }
\end{aligned}
$$

$$
\left(c_{a}^{1}, y_{a}, c_{a, \xi}^{2}\right)=\arg \max _{x^{1}, y \in \mathbb{R}^{L}, x_{\cdot}^{2} \in \mathcal{M}} u_{a}^{1}\left(x^{1}\right)+\mathbb{E}^{a}\left\{u_{a}^{2}\left(\boldsymbol{\xi}, x^{2}(\boldsymbol{\xi})\right)\right\}
$$

$$
\text { such that }\left\langle p^{1}, x_{a}^{1}+T_{a}^{1} y\right\rangle \leq\left\langle p^{1}, e_{a}^{1}\right\rangle
$$

$$
\begin{gathered}
\left\langle p_{\xi}^{2}, x_{a, \xi}^{2}\right\rangle \leq\left\langle p_{\xi}^{2}, e_{a, \xi}^{2}+T_{a, \xi}^{2} y\right\rangle, \forall \xi \in \Xi \\
x_{a}^{1} \in X_{a}^{1}, \quad x_{a, \xi}^{2} \in X_{a, \xi}^{2}, \quad \forall \xi \in \Xi
\end{gathered}
$$

$\mathbb{E}^{a}\{\bullet\}$ expecttion with respect to $a$-beliefs, $\Xi$ finite support 2-stage stochastic programs with recourse solution procedures \& approximation theory "well-estblished" $T_{a}^{1}, T_{a, \xi}^{2}$ : input-output matrices (production, investments) $e_{a}^{1} \in \operatorname{int} X_{a}^{1}, e_{a, \xi}^{2} \in \operatorname{int} X_{a, \xi}^{2}$ for all $\xi$

## Market Clearing ~Equilibrium

excess supply: agent- $a$ : $\left(c_{a}^{1}, y_{a}^{1},\left\{c_{a, \xi}^{2}\right\}_{\xi \in \Xi}\right)$
$\sum_{a \in \mathcal{A}}\left(e_{a}^{1}-\left(c_{a}^{1}+T_{a}^{1} y_{a}\right)\right)=s^{1}\left(p^{1},\left\{p_{\xi}^{2}\right\}_{\xi \in \Xi}\right) \geq 0$
$\forall \xi, \sum_{a \in \mathcal{A}}\left(\left(e_{a, \xi}^{2}+T_{a, \xi}^{2}\right)-c_{a, \xi}^{2}\right)=s_{\xi}^{2}\left(p^{1},\left\{p_{\xi}^{2}\right\}_{\xi \in \Xi}\right) \geq 0$

Variational inequality: $-G\left(p,\left(x_{a}\right),\left(\lambda_{a}\right)\right) \in N_{D}\left(p,\left(x_{a}\right),\left(\lambda_{a}\right)\right)$,
$p=\left(p^{1},\left\{p_{\xi}^{2}\right\}_{\xi \in \Xi}\right), x=\left(x^{1},\left\{x_{\xi}^{2}\right\}_{\xi \in \Xi}\right), \lambda=\left(\lambda^{1},\left\{\lambda_{\xi}^{2}\right\}_{\xi \in \Xi}\right)$

$$
\left.S(\xi,(p, x, \lambda))=G(\xi,(x, p, \lambda))+N_{D(\xi)}(p, x, \lambda)\right),
$$

$$
\mathbb{E}\{S(\xi,(p, x, \lambda))\} \ni 0
$$

## a.s. Congergence of SAA-mappings

# Graphical vs Pointwise convergence 

$S, S^{\nu}: X \rightrightarrows \mathbb{R}^{m}$. Then, $\mathrm{S}^{\nu} \underset{\text { point }}{\rightarrow} S$ and $\mathrm{S}^{\nu} \underset{\text { gph }}{\rightarrow} S$ (at $x$ )
$\Leftrightarrow\left\{C^{v}, v \in \mathbb{N}\right\}$ are equi-osc (asymptotically) (at $x$ )
$\sim$ Arzela-Ascoli Theorem for set-valued mappings
$S$ random mapping, $P^{\infty}$-a.s., $S^{\nu}(\xi, \cdot) \underset{\text { point }}{\rightarrow} \operatorname{clcon} E S=\bar{S}$

$S: D \rightrightarrows \mathbb{R}^{m}$ continuous at $\bar{x}$ if $\lim _{x^{\nu} \rightarrow \bar{x}} d l\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0$

$$
\begin{gathered}
d l\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 \Longleftrightarrow d l_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 \\
\quad \Longleftrightarrow \hat{d}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 . \forall \rho>\bar{\rho} \geq 0
\end{gathered}
$$


$S: D \rightrightarrows \mathbb{R}^{m}$ continuous at $\bar{x}$ if $\lim _{x^{\nu} \rightarrow \bar{x}} d l\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0$

$$
\begin{gathered}
d l\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 \Longleftrightarrow d l_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 \\
\Longleftrightarrow \hat{d}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 . \forall \rho>\bar{\rho} \geq 0
\end{gathered}
$$

$$
\hat{d}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right)=\max \left[\mathbb{e}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right), \mathbb{e}_{\rho}\left(S(\bar{x}), S\left(x^{\nu}\right)\right)\right]
$$

$S: D \rightrightarrows \mathbb{R}^{m}$ continuous at $\bar{x}$ if $\lim _{x^{\nu} \rightarrow \bar{x}} d l\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0$

$$
\begin{gathered}
d l\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 \Longleftrightarrow d l_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 \\
\Longleftrightarrow \hat{d}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0 . \forall \rho>\bar{\rho} \geq 0
\end{gathered}
$$

$$
\hat{d}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right)=\max \left[\mathbb{E}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right), \mathbb{e}_{\rho}\left(S(\bar{x}), S\left(x^{\nu}\right)\right)\right]
$$

$S$ is osc (outer semicontinuous) at $\bar{x}$ if $\mathbb{e}_{\rho}\left(S\left(x^{\nu}\right), S(\bar{x})\right) \rightarrow 0$ as $x^{\nu} \rightarrow \bar{x}$ $S$ is isc (inner semicontinuous) at $\bar{x}$ if $\mathbb{e}_{\rho}\left(S(\bar{x}), S\left(x^{\nu}\right)\right) \rightarrow 0$ as $x^{\nu} \rightarrow \bar{x}$

#  Equi-osc mappings 

$S: D \rightrightarrows \mathbb{R}^{m}, D \subset \mathbb{R}^{n}$ is osc if gph $S$ is closed osc at $\bar{x}$ : given any $\rho>0, \epsilon>0$

$$
\exists V \in N(\bar{x}): \mathbb{E}_{\rho}(S(x), S(\bar{x}))<\varepsilon, \forall x \in V
$$

$\left\{S^{\nu}: D \rightrightarrows \mathbb{R}^{m}\right\}$ are equi-osc at $\bar{x}$ given any $\rho>0, \epsilon>0$

$$
\exists V \in N(\bar{x}): \mathbb{e}_{\rho}\left(S^{\nu}(x), S^{\nu}(\bar{x})\right)<\varepsilon, \forall x \in V
$$

$V=V(\rho, \epsilon)$ doesn't depend on $v$.

$S: \Xi \times X \rightrightarrows \mathbb{R}^{m}$ random mapping, $(\Xi, A, P)$
$P^{\infty}$-a.s.: $S^{\nu}(\boldsymbol{\xi}, \cdot) \underset{\text { gph }}{\rightarrow}$ at $\bar{x} \Leftrightarrow$ SAA-mappings $\left\{S^{\nu}(\boldsymbol{\xi}, \cdot)\right\}$ equi-osc at $\bar{x}$ $\Rightarrow$ sol'ns of $S^{\nu}(\xi, \cdot) \ni 0 \Rightarrow{ }_{v}$ sol'ns of $\bar{S}(\cdot) \ni 0$
Sufficient condition: $P^{\infty}$-a.s.
$S(\boldsymbol{\xi}, \cdot)$ stably osc $\&$ steady under averaging $\Rightarrow\left\{S^{\nu}(\boldsymbol{\xi}, \cdot)\right\}$ equi-osc

$S: \Xi \times X \rightrightarrows \mathbb{R}^{m}$ random mapping, $(\Xi, A, P)$
$P^{\infty}$-a.s.: $S^{\nu}(\boldsymbol{\xi}, \cdot) \underset{\text { gph }}{\rightarrow} \bar{S}$ at $\bar{x} \Leftrightarrow$ SAA-mappings $\left\{S^{\nu}(\boldsymbol{\xi}, \cdot)\right\}$ equi-osc at $\bar{x}$ $\Rightarrow$ sol'ns of $S^{\nu}(\xi, \cdot) \ni 0 \Rightarrow{ }_{v}$ sol'ns of $\bar{S}(\cdot) \ni 0$
Sufficient condition: $P^{\infty}$-a.s.
$S(\boldsymbol{\xi}, \cdot)$ stably osc $\&$ steady under averaging $\Rightarrow\left\{S^{\nu}(\xi, \cdot)\right\}$ equi-osc

Law of large Numbers for Random Mappings
$S$ random osc mapping: $\Xi \times \mathbb{R}^{n} \quad \stackrel{\mathbb{R}^{m}}{\rightrightarrows}$
stably osc \& steady under averaging
$\xi^{1}, \xi^{2}, \ldots$, iid random variables (values in $\Xi$ ), distribution $P$
Then, $v^{-1} \sum_{k=1}^{v} S\left(\xi^{k}, \cdot\right) \rightarrow_{\mathrm{gph}} \bar{S}=\operatorname{clcon} E\left\{S\left(\xi^{0}, \cdot\right)\right\} P^{\infty}$-a.s.

Stably osc mapping

$S$ stably osc near $\bar{x}$ if $P$-a.s.,

$$
\begin{aligned}
& \forall \rho>0, \varepsilon>0, \exists W \in N(\bar{x}) \& \eta \mathbb{B}(\eta>0): \\
& \mathbb{E}_{\rho}\left(S\left(\xi, x^{\prime}\right), S(\xi, x)\right)<\varepsilon, \forall x^{\prime} \in x+\eta \mathbb{B}, x \in W
\end{aligned}
$$

Steady under averaging



Steady under averaging


Steady under averaging

$u \in S^{v}\left(\vec{\xi}^{v}, x\right) \cap \rho \mathbb{B} \Rightarrow \exists \hat{\rho} \geq \rho, u^{k} \in S\left(\xi^{k}, x\right) \cap \hat{\rho} \mathbb{B}$ such that

$$
u=v^{-1}\left(u^{1}+\cdots+u^{v}\right) ; S^{v}\left(\overrightarrow{\xi^{v}}, x\right) \cap \rho \mathbb{B} \subset \frac{1}{v}\left[\sum_{k=1}^{v} S\left(\xi^{k}, x\right) \cap \hat{\rho} \mathbb{B}\right]
$$


rge $S \subset B$ bounded $\Rightarrow$ steady under averaging
$S$ cone-valued and rge $S \subset$ pointed cone $K$. Then,
$\bar{S}=E S$ and $\Rightarrow$ steady under averaging.
$S, R$ steady under averaging $\Rightarrow$ so is $S+R$
$R(\xi, x)=R(x) \Rightarrow R$ steady under averaging
rge $S$ bounded $+R$ constant $\Rightarrow$ steady under averaging
$G(\xi, x)+N_{C}(x) \Rightarrow$ steady under averaging (V.I.)
provided $G: \Xi \times X \rightarrow \mathbb{R}^{n}$ is bounded
$S, R$ stably osc $\Rightarrow S+R$ stably osc although $D^{1}, D^{2}$ osc $\nRightarrow D^{1}+D^{2}$ osc
$\mathbb{B}$ closed, convex $\quad x \mapsto N_{\mathbb{B}}(x)$ osc but not stably osc $\left(x^{\nu} \in \operatorname{int} \mathbb{B} \rightarrow \bar{x} \in\right.$ bdry $\left.\mathbb{B}\right)$
$E G(x)=\mathbb{E}\{G(\xi, x)\} \in R(x)$
(V.I.: $S=N_{C}$, applied to option pricing, ...)
$G^{v}\left(\overrightarrow{\xi^{v}}, \cdot\right)=v^{-1} \sum_{k=1}^{v} G\left(\xi^{k}, x\right)$. Assume $G^{v}(\vec{\xi}, \cdot), E G \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$,
$\bar{x}$ strongly regular solution [Robinson] of $E G(x) \in R(x)$,
$\exists V \in N(\bar{x}), \rho>0$ such that $\forall z \in \rho \mathbb{B}$ :

$$
z+E G(\bar{x})+\nabla E G(\bar{x})(x-\bar{x}) \in S(x)
$$

has a unique solution $\bar{x}(z) \in V$, Lipschitz continuous on $\rho \mathbb{B}$, and

$$
\left\|G^{v}(\vec{\xi}, \cdot)-E G\right\| \rightarrow 0 P \text {-a.s. Then, for } v \text { sufficiently large }
$$

on a neighborhood of $\bar{x}, G^{v}(\vec{\xi}, \cdot) \in R(x)$ has a unique solution

$$
\left.\bar{x}(\vec{\xi})^{v}\right) \rightarrow \bar{x} \quad P \text {-a.s. }
$$



## Ciao!

