Numerical tensor methods and their applications

I.V. Oseledets

7 May 2013

All lectures

4 lectures,

- 2 May, 08:00-10:00: Introduction: ideas, matrix results, history.
- 7 May, 08:00-10:00: Novel tensor formats (TT, HT, QTT).
- 8 May, 08:00-10:00: Advanced tensor methods (eigenproblems, linear systems).
- 14 May, 08:00-10:00: Advanced topics, recent results and open problems.

Brief recap of Lecture 1

Previous lecture:

Brief recap of Lecture 1

Previous lecture:

- SVD and skeleton decompositions

Brief recap of Lecture 1

Previous lecture:

- SVD and skeleton decompositions
- A tensor is a d-way array: $A\left(i_{1}, \ldots, i_{d}\right)$

Brief recap of Lecture 1

Previous lecture:

- SVD and skeleton decompositions
- A tensor is a d-way array: $A\left(i_{1}, \ldots, i_{d}\right)$
- Key idea: separation of variables

Two classical formats

Two classical formats:

- The canonical format
- The Tucker format

The canonical format

Canonical format

$$
A\left(i_{1}, \ldots, i_{d}\right)=\sum_{\alpha=1}^{r} U_{1}\left(i_{1}, \alpha\right) \ldots U_{d}\left(i_{d}, \alpha\right)
$$

- dnr parameters (low!)
- No robust algorithms
- Uniqueness, important as a data model

Tucker format

Tucker format

$$
\begin{gathered}
A\left(i_{1}, \ldots, i_{d}\right)= \\
\sum_{\alpha_{1}, \ldots, \alpha_{d}} G\left(\alpha_{1}, \ldots, \alpha_{d}\right) U_{1}\left(i_{1}, \alpha_{1}\right) \ldots U_{d}\left(i_{d}, \alpha_{d}\right)
\end{gathered}
$$

- $d n r+r^{d}$ parameters (high!)
- SVD-based algorithms
- No uniqueness

Main question

Can we find something inbetween? (Tucker and canonical)

The tensor format that has:

- No curse of dimensionality
- SVD-based algorithms

Plan of lecture 2

- History of novel formats
- The Tree-Tucker, Tensor Train, Hierarchical Tucker formats
- Their difference
- Concept of Tensor Networks
- Stability and quasioptimality
- Basic arithmetic (with illustration)
- Cross approximation formula (with illustrations)
- QTT-format (part 1)

History(0)

In 2000-s there was a lot of work done on the canonical/Tucker formats in multilinear algebra:

- Beylkin и Mohlenkamp (2002), first to use as a format
- Hackbusch, Khoromskij, Tyrtyshnikov, Grasedyck

History

Beginning of 2009, two papers:

- I. V. Oseledets, E. E. Tyrtyshnikov,

Breaking the curse of dimensionality, or how to use SVD in many dimensions

- W. Hackbusch, S. Kühn, A new scheme for the tensor representation

Two hierarchical schemes:
TT (TT=Tree Tucker) и HT(Hierarchical Tucker)

History

It was almost immediately found, that Tree-Tucker can be rewritten in a much simpler algebraic way, called Tensor-Train.

History

- In March-April 2009 all the basic arithmetics was obtained for the TT-formats, with similar algorithms obtained for HT by different groups later on, but:
- HT are typically more complex
- There is no explicit advantage in practice

History

- June 2009 года: L. Grasedyck, Hierarchical singular value decomposition of tensors
- June 2009 года: О., Tyrtyshnikov, TT-cross approximation of multidimensional arrays - first skeleton decomposition formula in many dimensions.

History

- 2010, R. Schneider found that similar things were used in solid state physics (Matrix Product States), as a representation of certain states (but not as a mathematical instruments)
- White (1993), Ostlund n Rommer (1995), Vidal (2003).
- Approaches MCTDH/ML-MCTDH in quantum chemistry can be interperted as a HT -format.
- New mathematical tensor-based framework has emerged

History

The topic is very "hot" and is full of new challenges.

- Merging of linear algebra and many different areas
- Old and new applications
- Numerical experiments are far ahead of the theoretical results
- Limitations?

Tensors and matrices

Idea: if for matrices everything is good, let us transform tensors into matrices!

Tensors and matrices

$$
\begin{gathered}
\text { By reshaping! } \\
\left(i_{1}, \ldots, i_{d}\right)=(\mathcal{I}, \mathcal{J}), \\
\mathcal{I}=\left(i_{1}, i_{4}\right), \quad \mathcal{J}=\left(i_{2}, i_{3}, i_{5}\right) . \\
\mathbf{A} \rightarrow B(\mathcal{I}, \mathcal{J}) \text { - a matrix }
\end{gathered}
$$

First lemma

Lemma 1

If \mathbf{A} has canonical rank r then for any splitting $B=A(\mathcal{I}, \mathcal{J})$

rank $B \leq r$

Second lemma

$B=U V^{\top}$, still exponentially many parameters!

Lemma 2

Let $B=U V^{\top}$ with full-rank U and V
Then, $U=U(\mathcal{I}, \alpha), V=V(\mathcal{J}, \alpha)$ can be considered as $d_{1}+1$ and $d_{2}+1$ tensors; then these tensors have canonical rank- representations!

Dimension tree

The process can be then applied recursively: We had a 9 dimensional tensor of canonical rank r, splitted into 4 and 5 indices, then replaced it by $5=4+1$ and $6=5+1$ dimensional tensors of canonical rank r. We can go on ...

Dimension tree

Dimension tree

Theorem: The number of leafs (3-d tensors) is exactly $(d-2)$
Complexity is $\mathcal{O}(d n r)+(d-2) r^{3}$.

Equivalence to the tensor train(1)

We quickly realized, that the tree is in fact not needed, and up to the permutation of the dimensions,

> Tensor train
> $A\left(i_{1}, \ldots, i_{d}\right)=$
> $\sum_{\alpha_{1}, \ldots, \alpha_{d-1}} G_{1}\left(i_{1}, \alpha_{1}\right) G_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \ldots G_{d}\left(\alpha_{d-1}, i_{d}\right)$

Tensor train (2)

Tensor train

$A\left(i_{1}, \ldots, i_{d}\right)=$
$\sum_{\alpha_{1}, \ldots, \alpha_{d-1}} G_{1}\left(i_{1}, \alpha_{1}\right) G_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \ldots G_{d}\left(\alpha_{d-1}, i_{d}\right)$

$$
i_{1} \alpha_{1}-\alpha_{1} \alpha_{1} i_{2} \alpha_{2}-\alpha_{2} \alpha_{2} i_{3} \alpha_{3}-\alpha_{3}-\alpha_{3} i_{4}
$$

Tensor train (3)

Tensor train

$$
A\left(i_{1}, \ldots, i_{d}\right)=G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) \ldots G_{d}\left(i_{d}\right) .
$$

The matrices $G_{k}\left(i_{k}\right)$ have sizes $r_{k-1} \times r_{k}$, $r_{0}=r_{d}=1$, the numbers r_{k} are called TT-ranks.

HT format

The Hierachical Tucker format can be treated as sequential application of the Tucker decomposition:

- Compute the Tucker of an $n \times n \times n \times n \times n$ array, get the core $r \times r \times r \times r \times r$
- Select pairs, reshape into a $r^{2} \times r^{2} \times r^{2} \times r$ array
- Compute the Tucker decomposition (again), the factors will be $r_{\text {leaf }} r_{\text {leaf }} r_{\text {father }}$ - the same 3d-tensors
- Do it recursively

The process is described by a binary tree

Tensor network concept

All these formats can be interpreted as tensor networks:

Canonical format

Tucker format

Linear Tensor Network (LTN) - TT-format
Tree Tensor Network - HT/format
What about more complex networks?

Tensor network concept (2)

Multidimensional grids (PEPS-states)

They are not closed!
J. M. Landsburg, Y. Qi, K. Ye, On the geometry of tensor network states, arxiv.org/pdf/1105.4449.pdf

- The multidimensional states can be useful, but we will face all the hazards of the canonical format (again)!

Definition

The tensor is said to be in the TT-format, if

$$
A\left(i_{1}, \ldots, i_{d}\right)=G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) \ldots G_{d}\left(i_{d}\right)
$$

where $G_{k}\left(i_{k}\right)$ is a $r_{k-1} \times r_{k}$ matrix, $r_{0}=r_{d}=1$ r_{k} are called TT-ranks
$G_{k}\left(i_{k}\right)$ (which are in fact $r_{k-1} \times n_{k} \times r_{k}$) are called cores

TT in a nutshell

- A has canonical rank $r \rightarrow r_{k} \leq r$
- TT-ranks are matrix ranks, TT-SVD
- All basic arithmetic, linear in d, polynomial in r
- Fast TENSOR ROUNDING
- TT-cross method, exact interpolation formula
- Q(Quantics, Quantized)-TT decomposition binarization (or tensorization) of vectors, matrices

TT-ranks are matrix ranks

Define unfoldings:

$A_{k}=A\left(i_{1} \ldots i_{k} ; i_{k+1} \ldots i_{d}\right), n^{k} \times n^{d-k}$ matrix

TT-ranks are matrix ranks

Define unfoldings:
 $A_{k}=A\left(i_{1} \ldots i_{k} ; i_{k+1} \ldots i_{d}\right), n^{k} \times n^{d-k}$ matrix
 Theorem: there exists a TT-decomposition with TT-ranks

$$
r_{k}=\operatorname{rank} A_{k}
$$

TT-ranks are matrix ranks

The proof is constructive and gives the TT-SVD algorithm!

TT-ranks are matrix ranks

No exact ranks in practice - stability estimate!
Theorem (Approximation theorem)

$$
\text { If } A_{k}=R_{k}+E_{k},\left\|E_{k}\right\|=\varepsilon_{k}
$$

$$
\|\mathbf{A}-\mathbf{T T}\|_{F} \leq \sqrt{\sum_{k=1}^{d-1} \varepsilon_{k}^{2}}
$$

Suppose, we want to approximate:

$$
A\left(i_{1}, \ldots, i_{d}\right) \approx G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) G_{3}\left(i_{3}\right) G_{4}\left(i_{4}\right)
$$

(1) A_{1} is an $n_{1} \times\left(n_{2} n_{3} n_{4}\right)$ reshape of \mathbf{A}.
(2) $U_{1}, S_{1}, V_{1}=\operatorname{SVD}\left(A_{1}\right), U_{1}$ is $n_{1} \times r_{1}$ - first core
(3) $A_{2}=S_{1} V_{1}^{*}, A_{2}$ is $r_{1} \times\left(n_{2} n_{3} n_{4}\right)$.

Reshape it into a $\left(r_{1} n_{2}\right) \times\left(n_{3} n_{4}\right)$ matrix
(9) Compute its SVD:
$U_{2}, S_{2}, V_{2}=\operatorname{SVD}\left(A_{2}\right)$,
U_{2} is $\left(r_{1} n_{2}\right) \times r_{2}$ - second core, V_{2} is $r_{2} \times\left(n_{3} n_{4}\right)$
(6) $A_{3}=S_{2} V_{2}^{*}$,
(c) Compute its SVD:
$U_{3} S_{3} V_{3}=\operatorname{SVD}\left(A_{3}\right), U_{3}$ is $\left(r_{2} n_{3}\right) \times r_{3}, V_{3}$ is
$r_{3} \times n_{4}$

Fast and trivial linear algebra

Addition, Hadamard product, scalar product, convolution
All scale linear in d

Fast and trivial linear algebra

$$
\begin{gathered}
C\left(i_{1}, \ldots, i_{d}\right)=A\left(i_{1}, \ldots, i_{d}\right) B\left(i_{1}, \ldots, i_{d}\right) \\
C_{k}\left(i_{k}\right)=A_{k}\left(i_{k}\right) \otimes B_{k}\left(i_{k}\right) \\
\text { ranks are multiplied }
\end{gathered}
$$

Tensor rounding

\mathbf{A} is in the TT-format with suboptimal ranks. How to reapproximate?

Tensor rounding

\mathcal{E}-rounding can be done in $\mathcal{O}\left(d n r^{3}\right)$ operations

Tensor rounding (detailed)

Everything comes from matrices:

$$
A=U V^{\top}, U \in \mathbb{R}^{n \times R} V \in \mathbb{R}^{m \times R}
$$

Tensor rounding (detailed)

Everything comes from matrices:

$$
A=U V^{\top}, U \in \mathbb{R}^{n \times R} V \in \mathbb{R}^{m \times R}
$$

Rounding

$U=Q_{u} R_{u}, V=Q_{v} R_{v}$
$S=R_{u} R_{v}^{\top}($ is $R \times R), r=\operatorname{rank} S$,
$S=\widehat{U} \wedge \widehat{V}^{\top}+E,\|E\| \leq \varepsilon$
$A=\left(Q_{u} \widehat{U}\right) \wedge\left(Q_{v} \widehat{V}\right)^{\top}-S V D$.
Complexity: $\mathcal{O}\left(\left(n^{k}+n^{d-k}\right) R_{k}^{2}+R_{k}^{3}\right)$.

Tensor rounding (detailed)

Everything comes from matrices:

$$
A=U V^{\top}, U \in \mathbb{R}^{n \times R} V \in \mathbb{R}^{m \times R}
$$

Tensor:
Unfolding $A_{k}=A\left(i_{1} i_{2} \ldots i_{k} ; i_{k+1} \ldots i_{d}\right)=U_{k} V_{k}^{\top}$ $U_{k} \in \mathbb{R}^{n^{k} \times R_{k}} V \in \mathbb{R}^{n^{d-k} \times R_{k}}$,
$Q R$ is not computable in full format

Tensor rounding (detailed)

QR of U_{k}, V_{k} can be computed in TT-format in $\mathcal{O}\left(d n r^{3}\right)$ operations!

How it works

How it works

$$
\begin{gathered}
U_{k}\left(i_{1}, i_{2}, \ldots, i_{k} ; \alpha_{k}\right)= \\
\sum_{\alpha_{1}, \ldots, \alpha_{k-1}} G_{1}\left(i_{1}, \alpha_{1}\right) G_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \ldots G_{k}\left(\alpha_{k-1}, i_{k}, \alpha_{k}\right) \\
\text { First orthogonalize } G_{1}: G_{1}\left(i_{1}, \alpha_{1}\right)=Q_{1}\left(i_{1}, \beta_{1}\right) R\left(\beta_{1}, \alpha_{1}\right)
\end{gathered}
$$

How it works

How it works

$$
\begin{gathered}
U_{k}\left(i_{1}, i_{2}, \ldots, i_{k} ; \alpha_{k}\right)= \\
\sum_{\beta_{1}, \ldots, \alpha_{k-1}} Q_{1}\left(i_{1}, \beta_{1}\right) G_{2}^{\prime}\left(\beta_{1}, i_{2}, \alpha_{2}\right) \ldots G_{k}\left(\alpha_{k-1}, i_{k}, \alpha_{k}\right) \\
\text { Then orthogonalize } G_{2}^{\prime}\left(\beta_{1} i_{2} ; \alpha_{2}\right): \\
G_{2}^{\prime}\left(\beta_{1} i_{2} ; \alpha_{2}\right)=Q_{2}\left(\beta_{1}, i_{2}, \beta_{2}\right) R\left(\beta_{2}, \alpha_{2}\right) \\
U_{k}\left(i_{1}, i_{2}, \ldots, i_{k} ; \alpha_{k}\right)= \\
\sum_{\beta_{1}, \beta_{2} \ldots, \alpha_{k-1}} Q_{1}\left(i_{1}, \beta_{1}\right) Q_{2}\left(\beta_{1}, i_{2}, \beta_{2}\right) \ldots G_{k}\left(\alpha_{k-1}, i_{k}, \alpha_{k}\right)
\end{gathered}
$$

How it works

How it works

In the end we have

$$
U_{k}\left(i_{1}, i_{2}, \ldots, i_{k} ; \alpha_{k}\right)=
$$

$$
\sum_{\beta_{1}, \beta_{2} \ldots, \beta_{k-1}} Q_{1}\left(i_{1}, \beta_{1}\right) Q_{2}\left(\beta_{1}, i_{2}, \beta_{2}\right) \ldots Q_{k}\left(\beta_{k-1}, i_{k}, \beta_{k}\right) R\left(\beta_{k}, \alpha_{k}\right)
$$

And that is the QR-decomposition.

Cross approximation in d-dimensions

What if the tensor is given as a "black box"?

Cross approximation in d-dimensions

What if the tensor is given as a "black box"?
O., Tyrtyshnikov, 2010:

TT-cross approximation of multidimensional arrays You can exactly interpolate rank- r tensor on $\mathcal{O}\left(d n r^{2}\right)$ elements

Making everything a tensor: the QTT

The idea was simple: make everything a tensor (we have software, we have to use it!)

Making everything a tensor: the QTT

Let $f(x)$ be a univariate function (say, $f(x)=\sin x$).
Let v be a vector of values on a uniform grid with 2^{d} points.

Transform v into a $2 \times 2 \times \ldots \times 2 d$-dimensional tensor.

Compute TT-decomposition of it!
And this is the QTT-format

Putting it all together:

Computing the integral

$$
\int_{0}^{\infty} \frac{\sin x}{d x}=\frac{\pi}{2}
$$

Using the rectangular rule.

Lecture 3

- QTT-format (part 2), application to numerical integration
- QTT-Fourier transform and its relation to tensor networks
- QTT-convolution, explicit representation of Laplace-like tensors
- DMRG/AMEN techniques
- Solution of linear systems in the TT-format
- Solution of eigenvalue problems in the TT-format

