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All lectures

4 lectures,
2 May, 08:00 - 10:00: Introduction: ideas,
matrix results, history.
7 May, 08:00 - 10:00: Novel tensor formats (TT,
HT, QTT).
8 May, 08:00 - 10:00: Advanced tensor methods
(eigenproblems, linear systems).
14 May, 08:00 - 10:00: Advanced topics, recent
results and open problems.
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Brief recap of Lecture 1

Previous lecture:

SVD and skeleton decompositions
A tensor is a d -way array: A(i1, . . . , id)
Key idea: separation of variables
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Two classical formats

Two classical formats:
The canonical format
The Tucker format
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The canonical format

Canonical format

A(i1, . . . , id) =
∑r

α=1 U1(i1, α) . . .Ud(id , α)

dnr parameters (low!)
No robust algorithms
Uniqueness, important as a data model
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Tucker format

Tucker format

A(i1, . . . , id) =∑
α1,...,αd

G (α1, . . . , αd)U1(i1, α1) . . .Ud(id , αd)

dnr + r d parameters (high!)
SVD-based algorithms
No uniqueness
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Main question

Can we find something inbetween? (Tucker and
canonical)

The tensor format that has:
No curse of dimensionality
SVD-based algorithms
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Plan of lecture 2

History of novel formats
The Tree-Tucker, Tensor Train, Hierarchical
Tucker formats
Their difference
Concept of Tensor Networks
Stability and quasioptimality
Basic arithmetic (with illustration)
Cross approximation formula (with illustrations)
QTT-format (part 1)
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History(0)

In 2000-s there was a lot of work done on the
canonical/Tucker formats in multilinear algebra:

Beylkin и Mohlenkamp (2002), first to use as a
format
Hackbusch, Khoromskij, Tyrtyshnikov,
Grasedyck
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History

Beginning of 2009, two papers:

I. V. Oseledets, E. E. Tyrtyshnikov,

Breaking the curse of dimensionality, or how to use
SVD in many dimensions

W. Hackbusch, S. Kühn, A new scheme for the
tensor representation

Two hierarchical schemes:
TT (TT=Tree Tucker) и HT(Hierarchical Tucker)
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History

It was almost immediately found, that Tree-Tucker
can be rewritten in a much simpler algebraic way,

called Tensor-Train.

I.V. Oseledets Numerical tensor methods and their applications



History

In March-April 2009 all the basic arithmetics
was obtained for the TT-formats, with similar
algorithms obtained for HT by different groups
later on, but:

HT are typically more complex
There is no explicit advantage in practice
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History

June 2009 года: L. Grasedyck, Hierarchical
singular value decomposition of tensors
June 2009 года: O., Tyrtyshnikov, TT-cross
approximation of multidimensional arrays - first
skeleton decomposition formula in many
dimensions.
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History

2010, R. Schneider found that similar things
were used in solid state physics (Matrix Product
States), as a representation of certain states
(but not as a mathematical instruments)
White (1993), Ostlund и Rommer (1995), Vidal
(2003).
Approaches MCTDH/ML-MCTDH in quantum
chemistry can be interperted as a HT-format.
New mathematical tensor-based framework has
emerged
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History

The topic is very “hot” and is full of new challenges.
Merging of linear algebra and many different
areas
Old and new applications
Numerical experiments are far ahead of the
theoretical results
Limitations?
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Tensors and matrices

Idea: if for matrices everything is good, let us
transform tensors into matrices!
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Tensors and matrices

By reshaping!

(i1, . . . , id) = (I,J ),
I = (i1, i4), J = (i2, i3, i5).

A → B(I,J ) - a matrix
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First lemma

Lemma 1

If A has canonical rank r then for any splitting
B = A(I,J )

rankB ≤ r

I.V. Oseledets Numerical tensor methods and their applications



Second lemma

B = UV>, still exponentially many parameters!

Lemma 2

Let B = UV> with full-rank U and V
Then, U = U(I, α), V = V (J , α) can be
considered as d1 + 1 and d2 + 1 tensors; then these
tensors have canonical rank-r representations!
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Dimension tree

The process can be then applied recursively: We had
a 9 dimensional tensor of canonical rank r , splitted
into 4 and 5 indices, then replaced it by 5 = 4+ 1
and 6 = 5+ 1 dimensional tensors of canonical rank

r . We can go on . . .
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Dimension tree
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Dimension tree

Theorem: The number of leafs (3-d tensors) is
exactly (d − 2)

Complexity is O(dnr) + (d − 2)r 3.
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Equivalence to the tensor train(1)

We quickly realized, that the tree is in fact not
needed, and up to the permutation of the

dimensions,

Tensor train
A(i1, . . . , id) =∑

α1,...,αd−1
G1(i1, α1)G2(α1, i2, α2) . . .Gd(αd−1, id)
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Tensor train (2)

Tensor train
A(i1, . . . , id) =∑

α1,...,αd−1
G1(i1, α1)G2(α1, i2, α2) . . .Gd(αd−1, id)

i1α1 α1 α1i2α2 α2 α2i3α3 α3 α3i4
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Tensor train (3)

Tensor train
A(i1, . . . , id) = G1(i1)G2(i2) . . .Gd(id).

i1 α1 i2 α2 i3 α3 i4 α4 i5

The matrices Gk(ik) have sizes rk−1 × rk ,
r0 = rd = 1, the numbers rk are called TT-ranks.
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HT format

The Hierachical Tucker format can be treated as
sequential application of the Tucker decomposition:

Compute the Tucker of an n × n × n × n × n
array, get the core r × r × r × r × r

Select pairs, reshape into a r 2× r 2× r 2× r array
Compute the Tucker decomposition (again), the
factors will be rleaf rleaf rfather - the same
3d-tensors
Do it recursively

The process is described by a binary tree
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Tensor network concept

All these formats can be interpreted as tensor
networks:

Canonical format

Tucker format

Linear Tensor Network (LTN) - TT-format

Tree Tensor Network - HT/format

What about more complex networks?
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Tensor network concept (2)

Multidimensional grids (PEPS-states)

They are not closed!

J. M. Landsburg, Y. Qi, K. Ye, On the geometry of tensor
network states, arxiv.org/pdf/1105.4449.pdf

The multidimensional states can be useful, but
we will face all the hazards of the canonical
format (again)!
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Definition

The tensor is said to be in the TT-format, if

A(i1, . . . , id) = G1(i1)G2(i2) . . .Gd(id),

where Gk(ik) is a rk−1 × rk matrix, r0 = rd = 1
rk are called TT-ranks

Gk(ik) (which are in fact rk−1 × nk × rk) are called
cores
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TT in a nutshell

A has canonical rank r → rk ≤ r

TT-ranks are matrix ranks, TT-SVD
All basic arithmetic, linear in d , polynomial in r

Fast TENSOR ROUNDING
TT-cross method, exact interpolation formula
Q(Quantics, Quantized)-TT decomposition —
binarization (or tensorization) of vectors,
matrices
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TT-ranks are matrix ranks

Define unfoldings:
Ak = A(i1 . . . ik ; ik+1 . . . id), nk × nd−k matrix
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TT-ranks are matrix ranks

Define unfoldings:
Ak = A(i1 . . . ik ; ik+1 . . . id), nk × nd−k matrix
Theorem: there exists a TT-decomposition with

TT-ranks

rk = rankAk
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TT-ranks are matrix ranks

The proof is constructive and gives the TT-SVD
algorithm!
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TT-ranks are matrix ranks

No exact ranks in practice – stability estimate!

Theorem (Approximation theorem)

If Ak = Rk + Ek , ||Ek || = εk

||A−TT||F ≤

√√√√d−1∑
k=1

ε2
k .
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TT-SVD
Suppose, we want to approximate:

A(i1, . . . , id) ≈ G1(i1)G2(i2)G3(i3)G4(i4)
1 A1 is an n1 × (n2n3n4) reshape of A.
2 U1, S1,V1 = SVD(A1), U1 is n1× r1 — first core
3 A2 = S1V

∗
1 , A2 is r1 × (n2n3n4).

Reshape it into a (r1n2)× (n3n4) matrix
4 Compute its SVD:

U2, S2,V2 = SVD(A2),
U2 is (r1n2)× r2 — second core, V2 is r2× (n3n4)

5 A3 = S2V
∗
2 ,

6 Compute its SVD:
U3S3V3 = SVD(A3), U3 is (r2n3)× r3, V3 is
r3 × n4
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Fast and trivial linear algebra

Addition, Hadamard product, scalar product,
convolution

All scale linear in d
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Fast and trivial linear algebra

C (i1, . . . , id) = A(i1, . . . , id)B(i1, . . . , id)

Ck(ik) = Ak(ik)⊗ Bk(ik),

ranks are multiplied
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Tensor rounding

A is in the TT-format with suboptimal ranks.
How to reapproximate?
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Tensor rounding

ε-rounding can be done in O(dnr 3) operations
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Tensor rounding (detailed)

Everything comes from matrices:

A = UV>, U ∈ Rn×R V ∈ Rm×R ,
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Tensor rounding (detailed)

Everything comes from matrices:

A = UV>, U ∈ Rn×R V ∈ Rm×R ,

Rounding
U = QuRu,V = QvRv

S = RuR
>
v (is R × R), r = rank S ,

S = ÛΛV̂> + E , ||E || ≤ ε
A = (QuÛ)Λ(Qv V̂ )> — SVD.
Complexity: O((nk + nd−k)R2

k + R3
k ).
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Tensor rounding (detailed)

Everything comes from matrices:

A = UV>, U ∈ Rn×R V ∈ Rm×R ,

Tensor:
Unfolding Ak = A(i1i2 . . . ik ; ik+1 . . . id) = UkV

>
k

Uk ∈ Rnk×Rk V ∈ Rnd−k×Rk ,
QR is not computable in full format
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Tensor rounding (detailed)

QR of Uk ,Vk can be computed in TT-format in
O(dnr 3) operations!
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How it works

How it works

Uk(i1, i2, . . . , ik ;αk) =∑
α1,...,αk−1

G1(i1, α1)G2(α1, i2, α2) . . .Gk(αk−1, ik , αk)

First orthogonalize G1: G1(i1, α1) = Q1(i1, β1)R(β1, α1)

I.V. Oseledets Numerical tensor methods and their applications



How it works

How it works

Uk(i1, i2, . . . , ik ;αk) =∑
β1,...,αk−1

Q1(i1, β1)G
′
2(β1, i2, α2) . . .Gk(αk−1, ik , αk)

Then orthogonalize G ′
2(β1i2;α2):

G ′
2(β1i2;α2) = Q2(β1, i2, β2)R(β2, α2)

Uk(i1, i2, . . . , ik ;αk) =∑
β1,β2...,αk−1

Q1(i1, β1)Q2(β1, i2, β2) . . .Gk(αk−1, ik , αk)
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How it works

How it works

In the end we have
Uk(i1, i2, . . . , ik ;αk) =∑

β1,β2...,βk−1
Q1(i1, β1)Q2(β1, i2, β2) . . .Qk(βk−1, ik , βk)R(βk , αk)

And that is the QR-decomposition.
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Cross approximation in d-dimensions

What if the tensor is given as a “black box”?
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Cross approximation in d-dimensions

What if the tensor is given as a “black box”?

O., Tyrtyshnikov, 2010:
TT-cross approximation of multidimensional arrays

You can exactly interpolate rank-r tensor on O(dnr 2)
elements
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Making everything a tensor: the QTT

The idea was simple: make everything a tensor (we
have software, we have to use it!)
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Making everything a tensor: the QTT

Let f (x) be a univariate function (say, f (x) = sin x).

Let v be a vector of values on a uniform grid with 2d

points.

Transform v into a 2× 2× . . .× 2 d -dimensional
tensor.

Compute TT-decomposition of it!

And this is the QTT-format
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Putting it all together:

Computing the integral∫∞
0

sin x
dx = π

2

Using the rectangular rule.
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Lecture 3

QTT-format (part 2), application to numerical
integration
QTT-Fourier transform and its relation to tensor
networks
QTT-convolution, explicit representation of
Laplace-like tensors
DMRG/AMEN techniques
Solution of linear systems in the TT-format
Solution of eigenvalue problems in the
TT-format
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