Numerical tensor methods and their applications

I.V. Oseledets

7 May 2013

I.V. Oseledets Numerical tensor methods and their applications

4 lectures,

- 2 May, 08:00 10:00: Introduction: ideas, matrix results, history.
- 7 May, 08:00 10:00: Novel tensor formats (TT, HT, QTT).
- 8 May, 08:00 10:00: Advanced tensor methods (eigenproblems, linear systems).
- 14 May, 08:00 10:00: Advanced topics, recent results and open problems.

Brief recap of Lecture 1

Previous lecture:

Previous lecture:SVD and skeleton decompositions

Previous lecture:

- SVD and skeleton decompositions
- A tensor is a *d*-way array: $A(i_1, \ldots, i_d)$

Previous lecture:

- SVD and skeleton decompositions
- A tensor is a *d*-way array: $A(i_1, \ldots, i_d)$
- Key idea: separation of variables

Two classical formats:

- The canonical format
- The Tucker format

Canonical format

$$A(i_1,\ldots,i_d)=\sum_{\alpha=1}^r U_1(i_1,\alpha)\ldots U_d(i_d,\alpha)$$

- dnr parameters (low!)
- No robust algorithms
- Uniqueness, important as a data model

Tucker format

Tucker format

$$A(i_1,\ldots,i_d) = \sum_{\alpha_1,\ldots,\alpha_d} G(\alpha_1,\ldots,\alpha_d) U_1(i_1,\alpha_1) \ldots U_d(i_d,\alpha_d)$$

- $dnr + r^d$ parameters (high!)
- SVD-based algorithms
- No uniqueness

Can we find something inbetween? (Tucker and canonical)

The tensor format that has:

- No curse of dimensionality
- SVD-based algorithms

Plan of lecture 2

- History of novel formats
- The Tree-Tucker, Tensor Train, Hierarchical Tucker formats
- Their difference
- Concept of Tensor Networks
- Stability and quasioptimality
- Basic arithmetic (with illustration)
- Cross approximation formula (with illustrations)
- QTT-format (part 1)

In 2000-s there was a lot of work done on the canonical/Tucker formats in multilinear algebra:

- Beylkin и Mohlenkamp (2002), first to use as a format
- Hackbusch, Khoromskij, Tyrtyshnikov, Grasedyck

Beginning of 2009, two papers:

- I. V. Oseledets, E. E. Tyrtyshnikov,
- Breaking the curse of dimensionality, or how to use SVD in many dimensions
 - W. Hackbusch, S. Kühn, A new scheme for the tensor representation

Two hierarchical schemes:

TT (TT=Tree Tucker) и HT(Hierarchical Tucker)

It was almost immediately found, that Tree-Tucker can be rewritten in a much simpler algebraic way, called Tensor-Train.

- In March-April 2009 all the basic arithmetics was obtained for the TT-formats, with similar algorithms obtained for HT by different groups later on, but:
 - HT are typically more complex
 - There is no explicit advantage in practice

- June 2009 года: L. Grasedyck, Hierarchical singular value decomposition of tensors
- June 2009 года: О., Tyrtyshnikov, TT-cross approximation of multidimensional arrays - first skeleton decomposition formula in many dimensions.

- 2010, R. Schneider found that similar things were used in solid state physics (Matrix Product States), as a representation of certain states (but not as a mathematical instruments)
- White (1993), Ostlund и Rommer (1995), Vidal (2003).
- Approaches MCTDH/ML-MCTDH in quantum chemistry can be interperted as a HT-format.
- New mathematical tensor-based framework has emerged

The topic is very "hot" and is full of new challenges.

- Merging of linear algebra and many different areas
- Old and new applications
- Numerical experiments are far ahead of the theoretical results
- Limitations?

Idea: if for matrices everything is good, let us transform tensors into matrices!

By reshaping! $(i_1, \dots, i_d) = (\mathcal{I}, \mathcal{J}),$ $\mathcal{I} = (i_1, i_4), \quad \mathcal{J} = (i_2, i_3, i_5).$ $\mathbf{A} \to B(\mathcal{I}, \mathcal{J})$ - a matrix

Lemma 1

If A has canonical rank r then for any splitting $B = A(\mathcal{I}, \mathcal{J})$

$\operatorname{rank} B \leq r$

$B = UV^{\top}$, still exponentially many parameters!

Lemma 2

Let $B = UV^{\top}$ with full-rank U and VThen, $U = U(\mathcal{I}, \alpha)$, $V = V(\mathcal{J}, \alpha)$ can be considered as $d_1 + 1$ and $d_2 + 1$ tensors; then these tensors have canonical rank-r representations! The process can be then applied recursively: We had a 9 dimensional tensor of canonical rank r, splitted into 4 and 5 indices, then replaced it by 5 = 4 + 1and 6 = 5 + 1 dimensional tensors of canonical rank r. We can go on ...

Dimension tree

Theorem: The number of leafs (3-d tensors) is exactly (d-2)Complexity is $\mathcal{O}(dnr) + (d-2)r^3$.

We quickly realized, that the tree is in fact **not needed**, and up to the permutation of the dimensions,

Tensor train $A(i_1, \dots, i_d) = \sum_{\alpha_1, \dots, \alpha_{d-1}} G_1(i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \dots G_d(\alpha_{d-1}, i_d)$

Tensor train (2)

Tensor train

Tensor train (3)

Tensor train

$$A(i_1,\ldots,i_d)=G_1(i_1)G_2(i_2)\ldots G_d(i_d).$$

$$i_1$$
 α_1 i_2 α_2 i_3 α_3 i_4 α_4 i_5

The matrices $G_k(i_k)$ have sizes $r_{k-1} \times r_k$, $r_0 = r_d = 1$, the numbers r_k are called TT-ranks. The Hierachical Tucker format can be treated as sequential application of the Tucker decomposition:

- Compute the Tucker of an $n \times n \times n \times n \times n$ array, get the core $r \times r \times r \times r \times r \times r$
- Select pairs, reshape into a $r^2 \times r^2 \times r^2 \times r$ array
- Compute the Tucker decomposition (again), the factors will be r_{leaf} r_{leaf} r_{father} - the same 3d-tensors
- Do it recursively

The process is described by a binary tree

All these formats can be interpreted as tensor networks. Canonical format Tucker format Linear Tensor Network (LTN) - TT-format Tree Tensor Network - HT/format What about more complex networks?

Multidimensional grids (PEPS-states) They are not closed!

- J. M. Landsburg, Y. Qi, K. Ye, On the geometry of tensor network states, arxiv.org/pdf/1105.4449.pdf
 - The multidimensional states can be useful, but we will face all the hazards of the canonical format (again)!

The tensor is said to be in the TT-format, if $A(i_1, \ldots, i_d) = G_1(i_1)G_2(i_2) \ldots G_d(i_d),$ where $G_k(i_k)$ is a $r_{k-1} \times r_k$ matrix, $r_0 = r_d = 1$ r_k are called TT-ranks $G_k(i_k)$ (which are in fact $r_{k-1} \times n_k \times r_k$) are called cores

- A has canonical rank $r o r_k \leq r$
- TT-ranks are matrix ranks, TT-SVD
- All basic arithmetic, linear in *d*, polynomial in *r*
- Fast TENSOR ROUNDING
- TT-cross method, exact interpolation formula
- Q(Quantics, Quantized)-TT decomposition binarization (or tensorization) of vectors, matrices

TT-ranks are matrix ranks

Define unfoldings: $A_k = A(i_1 \dots i_k; i_{k+1} \dots i_d), \ n^k \times n^{d-k}$ matrix

Define unfoldings:

$$A_k = A(i_1 \dots i_k; i_{k+1} \dots i_d), n^k \times n^{d-k}$$
 matrix
Theorem: there exists a TT-decomposition with
TT-ranks

 $r_k = \operatorname{rank} A_k$

The proof is constructive and gives the TT-SVD algorithm!

TT-ranks are matrix ranks

No exact ranks in practice - stability estimate!

Theorem (Approximation theorem)

If
$$A_k = R_k + E_k$$
, $||E_k|| = \varepsilon_k$

$$\|\mathbf{A}-\mathbf{TT}\|_{F}\leq \sqrt{\sum_{k=1}^{d-1}arepsilon_{k}^{2}}.$$

TT-SVD

Suppose, we want to approximate: $A(i_1,\ldots,i_d) \approx G_1(i_1)G_2(i_2)G_3(i_3)G_4(i_4)$ **1** A_1 is an $n_1 \times (n_2 n_3 n_4)$ reshape of **A**. 2 $U_1, S_1, V_1 = \text{SVD}(A_1), U_1 \text{ is } n_1 \times r_1 - \text{ first core}$ **3** $A_2 = S_1 V_1^*$, A_2 is $r_1 \times (n_2 n_3 n_4)$. **Reshape it** into a $(r_1n_2) \times (n_3n_4)$ matrix Ompute its SVD: $U_2, S_2, V_2 = \mathrm{SVD}(A_2)$ U_2 is $(r_1 n_2) \times r_2$ — second core, V_2 is $r_2 \times (n_3 n_4)$ **5** $A_3 = S_2 V_2^*$, Compute its SVD: $U_3S_3V_3 = \text{SVD}(A_3), U_3 \text{ is } (r_2n_3) \times r_3, V_3 \text{ is}$ $r_3 \times n_4$

Fast and trivial linear algebra

Addition, Hadamard product, scalar product, convolution All scale linear in *d*

Fast and trivial linear algebra

$$C(i_1,\ldots,i_d)=A(i_1,\ldots,i_d)B(i_1,\ldots,i_d)$$

$$C_k(i_k) = A_k(i_k) \otimes B_k(i_k),$$

ranks are multiplied

${\bf A}$ is in the TT-format with suboptimal ranks. How to reapproximate?

ϵ -rounding can be done in $\mathcal{O}(\textit{dnr}^3)$ operations

Everything comes from matrices: $A = UV^{\top}, U \in \mathbb{R}^{n \times R} V \in \mathbb{R}^{m \times R},$

Everything comes from matrices:

$$A = UV^{ op}, \ U \in \mathbb{R}^{n imes R} \ V \in \mathbb{R}^{m imes R},$$

Rounding

$$U = Q_u R_u, V = Q_v R_v$$

$$S = R_u R_v^{\top} \text{ (is } R \times R), r = \operatorname{rank} S,$$

$$S = \widehat{U} \wedge \widehat{V}^{\top} + E, ||E|| \le \varepsilon$$

$$A = (Q_u \widehat{U}) \wedge (Q_v \widehat{V})^{\top} - \operatorname{SVD}.$$

Complexity: $\mathcal{O}((n^k + n^{d-k})R_k^2 + R_k^3)$

Everything comes from matrices:

$$\mathsf{A} = \mathsf{U}\mathsf{V}^ op, \ \mathsf{U} \in \mathbb{R}^{n imes R} \ \mathsf{V} \in \mathbb{R}^{m imes R},$$

Tensor: Unfolding $A_k = A(i_1i_2...i_k; i_{k+1}...i_d) = U_kV_k^\top$ $U_k \in \mathbb{R}^{n^k \times R_k} V \in \mathbb{R}^{n^{d-k} \times R_k}$, QR is not computable in full format

QR of U_k , V_k can be computed in TT-format in $\mathcal{O}(dnr^3)$ operations!

How it works

$$U_k(i_1, i_2, \dots, i_k; \alpha_k) = \sum_{\alpha_1, \dots, \alpha_{k-1}} G_1(i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \dots G_k(\alpha_{k-1}, i_k, \alpha_k)$$

First orthogonalize G_1 : $G_1(i_1, \alpha_1) = Q_1(i_1, \beta_1) R(\beta_1, \alpha_1)$

How it works

$$U_{k}(i_{1}, i_{2}, \dots, i_{k}; \alpha_{k}) = \sum_{\beta_{1}, \dots, \alpha_{k-1}} \frac{Q_{1}(i_{1}, \beta_{1}) G_{2}'(\beta_{1}, i_{2}, \alpha_{2}) \dots G_{k}(\alpha_{k-1}, i_{k}, \alpha_{k})}{\text{Then orthogonalize } G_{2}'(\beta_{1}i_{2}; \alpha_{2}):}$$
$$G_{2}'(\beta_{1}i_{2}; \alpha_{2}) = Q_{2}(\beta_{1}, i_{2}, \beta_{2})R(\beta_{2}, \alpha_{2})$$
$$U_{k}(i_{1}, i_{2}, \dots, i_{k}; \alpha_{k}) = \sum_{\beta_{1}, \beta_{2}, \dots, \alpha_{k-1}} Q_{1}(i_{1}, \beta_{1}) Q_{2}(\beta_{1}, i_{2}, \beta_{2}) \dots G_{k}(\alpha_{k-1}, i_{k}, \alpha_{k})$$

How it works

In the end we have $U_{k}(i_{1}, i_{2}, \dots, i_{k}; \alpha_{k}) = \sum_{\beta_{1}, \beta_{2} \dots, \beta_{k-1}} \frac{Q_{1}(i_{1}, \beta_{1})Q_{2}(\beta_{1}, i_{2}, \beta_{2}) \dots Q_{k}(\beta_{k-1}, i_{k}, \beta_{k})R(\beta_{k}, \alpha_{k})}{\text{And that is the QR-decomposition.}}$

Cross approximation in d-dimensions

What if the tensor is given as a "black box"?

What if the tensor is given as a "black box"?

O., Tyrtyshnikov, 2010: TT-cross approximation of multidimensional arrays You can exactly interpolate rank-r tensor on $\mathcal{O}(dnr^2)$ elements

Making everything a tensor: the QTT

The idea was simple: make everything a tensor (we have software, we have to use it!)

Making everything a tensor: the QTT

Let f(x) be a univariate function (say, $f(x) = \sin x$). Let v be a vector of values on a uniform grid with 2^d points.

Transform v into a $2 \times 2 \times \ldots \times 2$ d-dimensional tensor.

Compute TT-decomposition of it! And this is the QTT-format Computing the integral $\int_0^\infty \frac{\sin x}{dx} = \frac{\pi}{2}$ Using the rectangular rule.

Lecture 3

- QTT-format (part 2), application to numerical integration
- QTT-Fourier transform and its relation to tensor networks
- QTT-convolution, explicit representation of Laplace-like tensors
- DMRG/AMEN techniques
- Solution of linear systems in the TT-format
- Solution of eigenvalue problems in the TT-format