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All lectures

4 lectures,
2 May, 08:00 - 10:00: Introduction: ideas,
matrix results, history.
7 May, 08:00 - 10:00: Novel tensor formats (TT,
HT, QTT).
8 May, 08:00 - 10:00: Advanced tensor methods
(eigenproblems, linear systems).
14 May, 08:00 - 10:00: Advanced topics, recent
results and open problems.
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Brief recap of Lecture 2

Tensor Train format
Arithmetics
Rounding
QTT-format (idea of tensorization)
Cross approximation
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Plan of lecture 2

QTT-format: explicit representations of
functions
QTT-format: explicit representation of operators
Classification theory
QTT-Fourier transform
QTT-convolution
Linear systems
Eigenvalue problems
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QTT-format (publications-first)
[1] S. V. Dolgov, B. N. Khoromskij, and D. V. Savostyanov. Superfast

Fourier transform using QTT approximation. J. Fourier Anal. Appl.,
18(5):915–953, 2012.

[2] V. Kazeev, B. N. Khoromskij, and E. E. Tyrtyshnikov. Multilevel
Toeplitz matrices generated by tensor-structured vectors and
convolution with logarithmic complexity. Technical Report 36, MPI
MIS, Leipzig, 2011.

[3] V. A. Kazeev and B. N. Khoromskij. Low-rank explicit QTT
representation of the Laplace operator and its inverse. SIAM J.
Matrix Anal. Appl., 33(3):742–758, 2012.

[4] B. N. Khoromskij. O(d log n)–Quantics approximation of N–d
tensors in high-dimensional numerical modeling. Constr. Appr.,
34(2):257–280, 2011.

[5] I. V. Oseledets. Approximation of 2d × 2d matrices using tensor
decomposition. SIAM J. Matrix Anal. Appl., 31(4):2130–2145, 2010.
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QTT-format

We have a vector v of values of a function f on a
uniform grid with 2d points:

v(i) = f (xi), xi = a + ih, h = (b − a)/(n − 1).
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QTT-format

We have a vector v of values of a function f on a
uniform grid with 2d points:

v(i) = f (xi), xi = a + ih, h = (b − a)/(n − 1).

Reshaping into a tensor:

i → (i0, i1, . . . , id−1).

i = i1 + 2i2 + 4i3 + . . .+ 2d−1id

V (i1, . . . , id) = v(i).
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QTT-format

Finally, we have:

V (i1, . . . , id) = f (t1 + . . .+ td), tk =
a
d + 2k ikh
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Exponential function

f (x) = exp λx ,

Then f (t1 + . . .+ td) = exp(λt1) . . . exp(λtd), it has
rank 1!

I.V. Oseledets Numerical tensor methods and their applications



Linear function

f (x) = x

f (t1 + . . .+ td) = t1 + . . .+ td
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Linear function(full steps)

t1 + t2 + t3 + t4 =

(
t1 1

)( 1
t2 + t3 + t4

)
=

=
(
t1 1

)(1 0
t2 1

)(
1

t3 + t4

)
=

=
(
t1 1

)(1 0
t2 1

)(
1 0
t3 1

)(
1
t4

)
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Sine function

Similar representation can be obtained for a sine
function:

f (x) = sin λx

f (t1 + . . .+ td) = sin(t1 + . . .+ td) =

=
(
sin t1 cos t1

)(sin t2 − cos t2
cos t2 sin t2

)
. . .

(
sin td−1 − cos td−1

cos td−1 sin td−1

)(
cos xd
sin xd

)
The rank is still 2!
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General result

Theorem

Let f be such that (O. Const. Approx., 2013)

f (x + y) =
r∑
α=1

uα(x)vα(y)

then the QTT-ranks are bounded by r

Interesting example: rational functions
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TT-format for matrices

What about matrices?
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TT-format for matrices

What about matrices?

Solution - a vector x associated with a d -tensor
X (i1, . . . , id)

Linear operators, acting on such tensors, can be
indexed as

A(i1, . . . , id ; j1, . . . , jd).

Terminology: d -level matrix
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Two-level matrix: illustration

Even in 2d it is interesting: A,B are n × n,
Kronecker product

C = A⊗ B =


a11B a12B a13B a14B
a21B a22B a23B a24B
a31B a32B a33B a34B
a41B a42B a43B a44B


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Two-level matrix: illustration

In the index form:

C = A⊗ B

C (i1, i2; j1j2) = A(i1, j1)B(i2, j2)
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Two-level matrix: illustration

In the index form:

C = A⊗ B

C (i1, i2; j1j2) = A(i1, j1)B(i2, j2)

Exactly rank-1 decomposition under permutation
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Back to d -dimensions

Let A be a d-level matrix: A(i1, . . . , id ; j1, . . . , jd)

(say, d -dimensional Laplace operator)
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Back to d -dimensions

Let A be a d-level matrix: A(i1, . . . , id ; j1, . . . , jd)

(say, d -dimensional Laplace operator)

No low TT-ranks if considered as a 2d -array!
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Back to d -dimensions

Right way: permute indices

B(i1j1; i2j2; . . . id jd) = A(i1, . . . , id ; j1, . . . , jd)

A(i1, . . . , id ; j1, . . . , jd) =
A1(i1, j1)A2(i2, j2) . . .Ad(id , jd)

I.V. Oseledets Numerical tensor methods and their applications



Matrix-by-vector product

A(i1, . . . , id ; j1, . . . jd) = A1(i1, j1) . . .Ad(id , jd)

X (j1, . . . , jd) = X1(j1) . . .Xd(jd)

Y (I ) =
∑

J A(I , J)X (J)

Exercise: Find a formula
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QTT-matrix

Matrices in the QTT-format:

aij =
1

i − j + 0.5
, i , j = 1, . . . , 2d .

Let us see what are the ranks. (Demo)
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Laplace operator

Consider an operator − d2

dx2 with Dirichlet boundary
conditions, discretized using the simplest

finite-difference scheme:

(Illustration for n = 4)

∆ =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


(Demo)
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Laplace operator

V. Kazeev: QTT-ranks of the Laplace operator are
bounded by 3
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Laplace operator: general results

We will need a special matrix-by-matrix product:[
A11 A12

A21 A22

]
1

[
B11 B12

B21 B22

]
=

=

[
A11 ⊗ B11 + A12 ⊗ B21 A11 ⊗ B12 + A12 ⊗ B22

A21 ⊗ B11 + A22 ⊗ B21 A21 ⊗ B12 + A22 ⊗ B22

]

Doing Kronecker product for the blocks!
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Basic QTT-blocks

I =

(
1 0
0 1

)
, J =

(
0 1
0 0

)
, P =

(
0 1
1 0

)
,

I2 =

(
0 0
0 1

)
, I1 =

(
1 0
0 0

)
,

E =

(
1 1
1 1

)
, F =

(
−1 1
1 −1

)
,

K =

(
−1 0
0 1

)
, L =

(
0 −1
1 0

)
,
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QTT representation of 1D-Laplace

∆
(d)
DD =

[
I J ′ J

]
1

I J ′ J

J

J ′


1(d−2)

1

2I − J − J ′

−J

−J ′


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QTT representation in the Toolbox

In the TT-Toolbox, it is defined via the function
tt_qlaplace_dd
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Wavelets and tensor trains

QTT can be applied to matrices:
A(i , j) → A(i1, . . . , id , j1, . . . , jd) →

A(i1, j1, i2, j2, . . . , id , jd)
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Wavelets and tensor trains

Smooth function and/or special function:
512× 512 “Hilbert image”: aij = 1.0/(i − j + 0.5)

540 bytes (QTT) vs 8 KB (JPEG)
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Wavelets and tensor trains

QTT compression of simple images
Good: Triangle

50 bytes (QTT) vs 8 KB
(JPEG)

BAD: Circle

70 KB (QTT) vs 8 KB
(JPEG)
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Wavelets and tensor trains

Wavelet tensor train:
One step of TT-SVD is equivalent to:

U>A =


v11 v12 . . .
v21 v22 . . .
v31 v32 . . .
v41 v42 . . .


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Problems with a circle

Wavelet: First (dominant) rows compress further,
others are sparse

QTT: Leave only rows of large norms (large singular
values)
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Problems with a circle

That is why it is bad:
r ∼ n,→ mem = O(n2)

I.V. Oseledets Numerical tensor methods and their applications



Idea with the circle

Leaving sparse singular vectors — a novel digital data
compression technique (to be combined with others)!

Wavelet decomposition with adaptive number of
moments!
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Image compression

New: 50 bytes (WTT) vs 8 KB (JPEG)
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Image compression

latex
Lena

7 KB(WTT), PSNR 32.45 12 KB (WTT), PSNR 35.62 19 KB (WTT), PSNR 38.79
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Fourier transform

Consider now an important operation: the Fourier
transform (FFT)

Example of a matrix with large QTT-ranks! (We can
test)

y = Fx , F = w kl , w = exp 2πi
n

Question: Given x in the QTT-format, can we
compute y?
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FFT matrix and tensor networks

Let us do quantization again:

k = k1 + 2k2 + . . .+ 2d−1kd

l = l1 + 2l2 + . . .+ 2d−1ld

w kl =
∏

pq Gpq(kp, lq)

Gpq(kp, lq) = w 2p−1kp2q−1lq

Rank-1 two-dimensional tensor network!
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FFT matrix and tensor networks(2)

k1, l1 k1, l2 k1, l3 k1, l4

k2, l1 k2, l2 k2, l3 k2, l4

k3, l1 k3, l2 k3, l3 k3, l4

k4, l1 k4, l2 k4, l3 k4, l4
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FFT of a vector

∑
l1,...,ld

(∏
pq Gpq(kp, lq)

)
x1(l1) . . . xd(ld)

It can be rewritten as a Hadamard product of d
rank-2 tensors!

Hint: lk takes only two values

Complexity: O(d2r 3 log n)
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Convolution

The convolution operation is defined as

ci =
∑

j ai−jbj .

How to do it in the QTT-format?
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Convolution

Idea:

Write convolution as

ci =
∑

jk Eijkakbj

Eijk = δk−i+j .

Write down the tensor E :

Eijk = E (i1, . . . , id , j1, . . . , jd , k1, . . . , kd+1).

Permute dimensions:

(i1, j1, k1, i2, j2, k2, . . .).

Find an explicit representation
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Convolution: results

Summary of the results (Hackbusch and Kazeev,
Khoromskij, Tyrtyshnikov)

Toeplitz matrix generated by QTT-vectors of
rank r has rank 2r
Convolution of two vectors of rank r has rank 2r
Multidimensional Toeplitz matrices have the
same rank bound, but two QTT-matvecs
required
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Solving eigenvalue problems and linear
systems

Now, let us go to more advanced problems:
Ax = λx

Ax = f ,
with x = X (j1, . . . , jd), f = F (i1, . . . , id),

A(i1, . . . , id ; j1, . . . , jd)
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Tensor-structured solvers

Path 1: Do iterative methods with truncation
(Krylov, preconditioning, multigrid, etc.)
Path 2: Use the information about the structure
of the solution

I.V. Oseledets Numerical tensor methods and their applications



Using the information about the solution

How to use the information about the solution?
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Using the information about the solution

How to use the information about the solution?

Formulate as an optimization problem!
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Formulation as an optimization problem

Ax = λx , A = A∗,

We can minimize the Rayleigh quotient:

(Ax , x)

(x , x)
→ min,

Minimize not over the whole space,

but over the set of structured tensors!
Nonconvex optimization problem
Have to guess the ranks
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Idea of alternating iterations

The idea of alternating iterations is simple:

Fix all except Xk(ik).
The local problem reduces to the linear
eigenvalue problem
Guess the rank!
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Idea of DMRG

Here comes the wonderful idea of DMRG (Density
Matrix Renormalization Group, S. White, 1993)

Generalization of the Wilson renormalization group
(=ALS)

Optimize not over one core, but over a pair of cores,
Xk and Xk+1 !

I.V. Oseledets Numerical tensor methods and their applications



Idea of DMRG

X (i1, i2, i3, i4) = X1(i1)X2(i2)X3(i3)X4(i4) =

= W12(i1, i2)X3(i3)X4(i4).

Solve for W12

Split back by the SVD:
W12(i1, i2) = X1(i1)X2(i2).

The rank is determined adaptively!
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DMRG and QTT

The DMRG method creates modes of size n2.
Very good for spin systems (n = 2 or n = 4)
Very good for the QTT (n = 2).
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DMRG and QTT: papers

Holtz, S., Rohwedder, T., Schneider, R., The
alternating linear scheme for tensor optimization
in the tensor train format (idea)
S.V. Dolgov, I.V. Oseledets, Solution of linear
systems and matrix inversion in the TT-format
(working code)
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Difficulties in the DMRG

S.V. Dolgov, I.V. Oseledets Solution of linear systems
and matrix inversion in the TT-format

SVD-based truncation: L2-norm approximation
of x , but the equation can be differential
How to avoid local minima
Fast solution of local systems
Appplication to matrix inversion
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Large mode sizes

What if the mode size is large?

Basically, the question is now how to increase the
k-th rank.

Answer: Using (projected) residuals of the Krylov
methods!
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Large mode sizes

The k-th ALS-step: The x is in the special linear
subspace: x = (U ⊗ I ⊗ V )φ,

Analogously to the rounding procedure U and V are
structured-orthogonal matrix and φ is rk−1nkrk .

The local problem is then

Û>AÛφ = Ûf .

Can enrich the basis with the (low-rank)
approximation of the two-block residual

I.V. Oseledets Numerical tensor methods and their applications



AMEN: further details

S.V. Dolgov and D.V. Savostyanov, 2013:
Alternating minimal energy methods for linear
systems in higher dimensions. Part I/II

For more details: convergence estimates, algorithmic
details and so on.

Still A LOT to be done on algorithms. . .
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Solving linear systems and eigenvalue
problems

(Demo)

Solving the high-dimensional Poisson equation in the
QTT-format:

∆u = f .
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Other important problems

Solving block eigenvalue problems (minimizing
block Rayleigh quotient)
Solving nonstationary problems dy

dt = Ay , how to
rewrite as a minimization problem
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Next lecture

The plan for the next (and the last!)
Applications, new results, open problems
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