Numerical tensor methods and their applications

I.V. Oseledets

8 May 2013

I.V. Oseledets Numerical tensor methods and their applications

4 lectures,

- 2 May, 08:00 10:00: Introduction: ideas, matrix results, history.
- 7 May, 08:00 10:00: Novel tensor formats (TT, HT, QTT).
- 8 May, 08:00 10:00: Advanced tensor methods (eigenproblems, linear systems).
- 14 May, 08:00 10:00: Advanced topics, recent results and open problems.

- Tensor Train format
- Arithmetics
- Rounding
- QTT-format (idea of tensorization)
- Cross approximation

Plan of lecture 2

- QTT-format: explicit representations of functions
- QTT-format: explicit representation of operators
- Classification theory
- QTT-Fourier transform
- QTT-convolution
- Linear systems
- Eigenvalue problems

QTT-format (publications-first)

- S. V. Dolgov, B. N. Khoromskij, and D. V. Savostyanov. Superfast Fourier transform using QTT approximation. J. Fourier Anal. Appl., 18(5):915–953, 2012.
- [2] V. Kazeev, B. N. Khoromskij, and E. E. Tyrtyshnikov. Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity. Technical Report 36, MPI MIS, Leipzig, 2011.
- [3] V. A. Kazeev and B. N. Khoromskij. Low-rank explicit QTT representation of the Laplace operator and its inverse. *SIAM J. Matrix Anal. Appl.*, 33(3):742–758, 2012.
- B. N. Khoromskij. O(d log n)-Quantics approximation of N-d tensors in high-dimensional numerical modeling. Constr. Appr., 34(2):257-280, 2011.
- [5] I. V. Oseledets. Approximation of 2^d × 2^d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl., 31(4):2130–2145, 2010.

We have a vector v of values of a function f on a uniform grid with 2^d points:

$$v(i) = f(x_i), \quad x_i = a + ih, \quad h = (b - a)/(n - 1).$$

We have a vector v of values of a function f on a uniform grid with 2^d points: $v(i) = f(x_i), \quad x_i = a + ih, \quad h = (b - a)/(n - 1).$ Reshaping into a tensor: $i \rightarrow (i_0, i_1, \ldots, i_{d-1}).$ $i = i_1 + 2i_2 + 4i_3 + \ldots + 2^{d-1}i_d$ $V(i_1,\ldots,i_d) = v(i).$

Finally, we have: $V(i_1,\ldots,i_d) = f(t_1+\ldots+t_d), \quad t_k = \frac{a}{d} + 2^k i_k h$

Exponential function

$$f(x) = \exp \lambda x,$$

Then $f(t_1 + \ldots + t_d) = \exp(\lambda t_1) \ldots \exp(\lambda t_d)$, it has
rank 1!

Linear function

f(x) = x $f(t_1 + \ldots + t_d) = t_1 + \ldots + t_d$

$t_1 + t_2 + t_3 + t_4 =$

$$t_1 + t_2 + t_3 + t_4 = \begin{pmatrix} t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t_2 + t_3 + t_4 \end{pmatrix}$$

$$\begin{aligned} t_1 + t_2 + t_3 + t_4 &= \begin{pmatrix} t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t_2 + t_3 + t_4 \end{pmatrix} = \\ &= \begin{pmatrix} t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ t_2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t_3 + t_4 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} t_1 + t_2 + t_3 + t_4 &= \begin{pmatrix} t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t_2 + t_3 + t_4 \end{pmatrix} = \\ &= \begin{pmatrix} t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ t_2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t_3 + t_4 \end{pmatrix} = \\ &= \begin{pmatrix} t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ t_2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ t_3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t_4 \end{pmatrix} \end{aligned}$$

Similar representation can be obtained for a sine function: $f(x) = \sin \lambda x$

$$f(t_1 + \ldots + t_d) = \sin(t_1 + \ldots + t_d) =$$

$$= (\sin t_1 \quad \cos t_1) \begin{pmatrix} \sin t_2 & -\cos t_2 \\ \cos t_2 & \sin t_2 \end{pmatrix} \cdots \begin{pmatrix} \sin t_{d-1} & -\cos t_{d-1} \\ \cos t_{d-1} & \sin t_{d-1} \end{pmatrix} \begin{pmatrix} \cos x_d \\ \sin x_d \end{pmatrix}$$
The rank is still 2!

General result

Theorem

Let f be such that (O. Const. Approx., 2013)

$$f(x+y) = \sum_{\alpha=1}^{r} u_{\alpha}(x) v_{\alpha}(y)$$

then the QTT-ranks are bounded by r

Interesting example: rational functions

TT-format for matrices

What about matrices?

What about matrices?

Solution - a vector x associated with a d-tensor $X(i_1,\ldots,i_d)$

Linear operators, acting on such tensors, can be indexed as

 $A(i_1, \ldots, i_d; j_1, \ldots, j_d).$ Terminology: *d*-level matrix

Two-level matrix: illustration

Even in 2d it is interesting: A, B are $n \times n$, Kronecker product

$$C = A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & a_{13}B & a_{14}B \\ a_{21}B & a_{22}B & a_{23}B & a_{24}B \\ a_{31}B & a_{32}B & a_{33}B & a_{34}B \\ a_{41}B & a_{42}B & a_{43}B & a_{44}B \end{pmatrix}$$

Two-level matrix: illustration

In the index form: $C = A \otimes B$ $C(i_1, i_2; j_1 j_2) = A(i_1, j_1)B(i_2, j_2)$

Two-level matrix: illustration

In the index form: $C = A \otimes B$ $C(i_1, i_2; j_1 j_2) = A(i_1, j_1)B(i_2, j_2)$ Exactly rank-1 decomposition under permutation

Let A be a d-level matrix: $A(i_1, \ldots, i_d; j_1, \ldots, j_d)$ (say, d-dimensional Laplace operator)

Let A be a d-level matrix: $A(i_1, \ldots, i_d; j_1, \ldots, j_d)$ (say, d-dimensional Laplace operator) No low TT-ranks if considered as a 2d-array!

Right way: permute indices

$$B(i_1j_1; i_2j_2; \dots i_dj_d) = A(i_1, \dots, i_d; j_1, \dots, j_d)$$

$$A(i_1, \dots, i_d; j_1, \dots, j_d) =$$

$$A_1(i_1, j_1)A_2(i_2, j_2) \dots A_d(i_d, j_d)$$

$\begin{aligned} A(i_1, \dots, i_d; j_1, \dots j_d) &= A_1(i_1, j_1) \dots A_d(i_d, j_d) \\ X(j_1, \dots, j_d) &= X_1(j_1) \dots X_d(j_d) \\ Y(I) &= \sum_J A(I, J) X(J) \\ \end{aligned}$ Exercise: Find a formula

Matrices in the QTT-format:

$$a_{ij} = \frac{1}{i-j+0.5}, \quad i,j = 1, \dots, 2^d.$$

Let us see what are the ranks. (Demo)

Consider an operator $-\frac{d^2}{dx^2}$ with Dirichlet boundary conditions, discretized using the simplest finite-difference scheme. (Illustration for n = 4) $\Delta = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$

(Demo)

V. Kazeev: QTT-ranks of the Laplace operator are bounded by 3

We will need a special matrix-by-matrix product:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \bowtie \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \\ = \begin{bmatrix} A_{11} \otimes B_{11} + A_{12} \otimes B_{21} & A_{11} \otimes B_{12} + A_{12} \otimes B_{22} \\ A_{21} \otimes B_{11} + A_{22} \otimes B_{21} & A_{21} \otimes B_{12} + A_{22} \otimes B_{22} \end{bmatrix}$$

Doing Kronecker product for the blocks!

Basic QTT-blocks

$$\begin{split} I &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\ I_2 &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \qquad I_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \\ E &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad F = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \\ K &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad L = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \end{split}$$

QTT representation of 1D-Laplace

$$\Delta_{DD}^{(d)} = \begin{bmatrix} I & J' & J \end{bmatrix} \bowtie \begin{bmatrix} I & J' & J \\ & J & \\ & & J' \end{bmatrix}^{\bowtie (d-2)} \bowtie \begin{bmatrix} 2I - J - J' \\ & -J \\ & -J' \end{bmatrix}$$

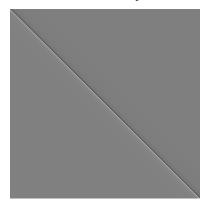
QTT representation in the Toolbox

In the TT-Toolbox, it is defined via the function $tt_qlaplace_dd$

QTT can be applied to matrices: $A(i,j) \rightarrow A(i_1, \dots, i_d, j_1, \dots, j_d) \rightarrow A(i_1, j_1, i_2, j_2, \dots, i_d, j_d)$

Wavelets and tensor trains

Smooth function and/or special function: 512×512 "Hilbert image": $a_{ij} = 1.0/(i - j + 0.5)$

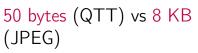


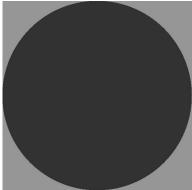
540 bytes (QTT) vs 8 KB (JPEG)

I.V. Oseledets Numerical tensor methods and their applications

Wavelets and tensor trains

QTT compression of simple images Good: Triangle BAD: Circle





70 KB (QTT) vs 8 KB (JPEG)

I.V. Oseledets

Numerical tensor methods and their applications

Wavelets and tensor trains

Wavelet tensor train: One step of TT-SVD is equivalent to:

$$U^{\top}A = \begin{pmatrix} v_{11} & v_{12} & \dots \\ v_{21} & v_{22} & \dots \\ v_{31} & v_{32} & \dots \\ v_{41} & v_{42} & \dots \end{pmatrix}$$

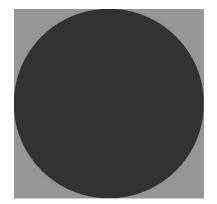
Wavelet: First (dominant) rows compress further, others are sparse QTT: Leave only rows of large norms (large singular values)

Problems with a circle

That is why it is bad: $r \sim n, \rightarrow mem = \mathcal{O}(n^2)$

Leaving sparse singular vectors — a novel digital data compression technique (to be combined with others)! Wavelet decomposition with adaptive number of moments!

Image compression



New: 50 bytes (WTT) vs 8 KB (JPEG)

I.V. Oseledets Numerical tensor methods and their applications

Image compression

latex Lena

7 KB(WTT), PSNR 32.45

12 KB (WTT), PSNR 35.62

19 KB (WTT), PSNR 38.79

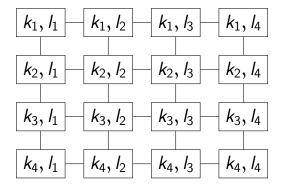
Consider now an important operation: the Fourier transform (FFT) Example of a matrix with large QTT-ranks! (We can test) y = Fx, $F = w^{kl}$, $w = \exp \frac{2\pi i}{n}$ Question: Given x in the QTT-format, can we compute y?

FFT matrix and tensor networks

Let us do quantization again: $k = k_1 + 2k_2 + \ldots + 2^{d-1}k_d$ $l = l_1 + 2l_2 + \ldots + 2^{d-1}l_d$ $w^{kl} = \prod_{pq} G_{pq}(k_p, l_q)$ $G_{pq}(k_p, l_q) = w^{2^{p-1}k_p2^{q-1}l_q}$

Rank-1 two-dimensional tensor network!

FFT matrix and tensor networks(2)



FFT of a vector

$$\sum_{l_1,\dots,l_d} \left(\prod_{pq} G_{pq}(k_p, l_q) \right) x_1(l_1) \dots x_d(l_d)$$

It can be rewritten as a Hadamard product of d
rank-2 tensors!
Hint: l_k takes only two values
Complexity: $\mathcal{O}(d^2r^3\log n)$

The convolution operation is defined as $c_i = \sum_j a_{i-j}b_j.$ How to do it in the QTT-format?

Convolution

Idea:

Write convolution as

$$c_i = \sum_{jk} E_{ijk} a_k b_j$$

 $E_{ijk} = \delta_{k-i+j}.$

Write down the tensor *E*: $E_{ijk} = E(i_1, \dots, i_d, j_1, \dots, j_d, k_1, \dots, k_{d+1}).$ Permute dimensions: $(i_1, j_1, k_1, i_2, j_2, k_2, \dots).$

Find an explicit representation

Summary of the results (Hackbusch and Kazeev, Khoromskij, Tyrtyshnikov)

- Toeplitz matrix generated by QTT-vectors of rank *r* has rank 2*r*
- Convolution of two vectors of rank r has rank 2r
- Multidimensional Toeplitz matrices have the same rank bound, but two QTT-matvecs required

Solving eigenvalue problems and linear systems

Now, let us go to more advanced problems:
Ax = λx
Ax = f, with x = X(i₁, ..., i_k) f - F(i_k, ..., i_k)

ith
$$x = X(j_1, \dots, j_d), \quad t = F(i_1, \dots, i_d)$$

 $A(i_1, \dots, i_d; j_1, \dots, j_d)$

- Path 1: Do iterative methods with truncation (Krylov, preconditioning, multigrid, etc.)
- Path 2: Use the information about the structure of the solution

Using the information about the solution

How to use the information about the solution?

Using the information about the solution

How to use the information about the solution? Formulate as an optimization problem!

Formulation as an optimization problem

$$Ax = \lambda x$$
, $A = A^*$,

We can minimize the Rayleigh quotient:

$$\frac{(Ax,x)}{(x,x)} \to \min,$$

Minimize not over the whole space,

but over the set of structured tensors!

- Nonconvex optimization problem
- Have to guess the ranks

The idea of alternating iterations is simple:

- Fix all except $X_k(i_k)$.
- The local problem reduces to the linear eigenvalue problem
- Guess the rank!

Here comes the wonderful idea of DMRG (Density Matrix Renormalization Group, S. White, 1993) Generalization of the Wilson renormalization group (=ALS)

Optimize not over one core, but over a pair of cores, X_k and X_{k+1} !

$$X(i_1, i_2, i_3, i_4) = X_1(i_1)X_2(i_2)X_3(i_3)X_4(i_4) = = W_{12}(i_1, i_2)X_3(i_3)X_4(i_4).$$

- Solve for W_{12}
- Split back by the SVD: $W_{12}(i_1, i_2) = X_1(i_1)X_2(i_2).$

The rank is determined adaptively!

The DMRG method creates modes of size n².
Very good for spin systems (n = 2 or n = 4)
Very good for the QTT (n = 2).

- Holtz, S., Rohwedder, T., Schneider, R., The alternating linear scheme for tensor optimization in the tensor train format (idea)
- S.V. Dolgov, I.V. Oseledets, Solution of linear systems and matrix inversion in the TT-format (working code)

- S.V. Dolgov, I.V. Oseledets Solution of linear systems and matrix inversion in the TT-format
 - SVD-based truncation: L₂-norm approximation of x, but the equation can be differential
 - How to avoid local minima
 - Fast solution of local systems
 - Appplication to matrix inversion

What if the mode size is large? Basically, the question is now how to increase the *k*-th rank. Answer: Using (projected) residuals of the Krylov methods!

The *k*-th ALS-step: The *x* is in the special linear subspace: $x = (U \otimes I \otimes V)\phi$,

Analogously to the rounding procedure U and V are structured-orthogonal matrix and ϕ is $r_{k-1}n_kr_k$.

The local problem is then $\widehat{U}^{\top}A\widehat{U}\phi = \widehat{U}f.$

Can enrich the basis with the (low-rank) approximation of the two-block residual

- S.V. Dolgov and D.V. Savostyanov, 2013:
- Alternating minimal energy methods for linear systems in higher dimensions. Part I/II
- For more details: convergence estimates, algorithmic details and so on.

Still A LOT to be done on algorithms...

Solving linear systems and eigenvalue problems

(Demo)

Solving the high-dimensional Poisson equation in the QTT-format:

$$\Delta u = f$$
.

- Solving block eigenvalue problems (minimizing block Rayleigh quotient)
- Solving nonstationary problems $\frac{dy}{dt} = Ay$, how to rewrite as a minimization problem

The plan for the next (and the last!)Applications, new results, open problems