Numerical tensor methods and their applications

I.V. Oseledets

14 May 2013

I.V. Oseledets Numerical tensor methods and their applications

4 lectures,

- 2 May, 08:00 10:00: Introduction: ideas, matrix results, history.
- 7 May, 08:00 10:00: Novel tensor formats (TT, HT, QTT).
- 8 May, 08:00 10:00: Advanced tensor methods (eigenproblems, linear systems).
- 14 May, 08:00 10:00: Advanced topics, recent results and open problems.

Brief recap of Lecture 3

- QTT-format: explicit representations of functions
- QTT-format: explicit representation of operators
- QTT theorem
- QTT-Fourier transform as a tensor network
- QTT-convolution
- Linear systems
- Eigenvalue problems

- Dynamical low-rank approximation
- Solving non-stationary problems
- Solving multiparametric problems
- Applications to multiparametric problems

Non-stationary problems

Basic setting:

$$\frac{dy}{dt} = F(y, t), \quad y(0) = y_0$$
$$y \to Y(i_1, \dots, i_d)$$

Of the main application is the computation of **vibrational spectra**

Application: spectra

Problem setting:

$$\frac{d\psi}{dt}=iH\psi,\quad \psi(0)=\psi_0.$$

•
$$\psi = \psi(q_1, \dots, q_f)$$
 — wavefunction
• $H = -\frac{1}{2}\Delta + V(q_1, \dots, q_f)$.

•
$$H \equiv -\frac{1}{2}\Delta + V(q_1, \dots, q_f)$$

•
$$\Delta = \sum_{i=1}^{r} \frac{\partial^2}{\partial q_i^2}$$
.

• q_1, \ldots, q_f — degrees of freedom

Initial setting is the Scrödinger equation

- Fix the positions of the nuclei get the energy $V(R_1, \ldots, R_N)$
- Find the minima, expand V again the minima into Taylor series.
- (optional): Find normal coordinates, f = 3N - 6 (*N* is the number of atoms)

$$\frac{d\psi}{dt}=i(-\frac{1}{2}\Delta+V)\psi,\quad\psi(0)=\psi_0.$$

Discretize on a grid. Laplace has TT-ranks equal to 2 and QTT-ranks bounded by 4.

Main equation

What about V?

Theorem (Rank estimate)

For the polynomial of form

$$V(q_1, \dots, q_f) = \sum_{i_1, \dots, i_s=1}^f a(i_1, \dots, i_s) \prod_{k=1}^s q_{i_k},$$
$$\operatorname{rank}_{TT}(V) = C_0 f^{[\frac{s}{2}]} + o(f^{[\frac{s}{2}]}).$$

$$\frac{d\psi}{dt}=i(-\frac{1}{2}\Delta+V)\psi,\quad\psi(0)=\psi_0.$$

Discretize on a grid. Laplace has TT-ranks equal to 2 and QTT-ranks bounded by 4. It is easy to put $H = -\frac{1}{2}\Delta + V$ into the TT-format. But how it is connected to the computation of spectra? We want to compute: $H\psi=\lambda\psi$, But what we do:

- Take some ψ_0
- 2 Solve $\frac{dpsi}{dt} = H\psi$, $\psi(0) = \psi_0$.
- Sompute $a(t) = (\psi(t), \psi(0))$
- Find FFT of a(t).

Eigenvalues via spectra

$$\begin{split} \psi(t) &= \exp(iHt)\psi_0\\ \psi_0 &= \sum_{k=0}^{\infty} c_k \varphi_k,\\ H\varphi_k &= \lambda_k \varphi_k,\\ a(t) &= \sum_{k=0}^{\infty} |c_k|^2 \exp(i\lambda_k t)\\ \end{split}$$
 Thus, the FFT of a(t) gives pikes at λ_k (try that!) Why should you do that? How to select initial condition?
$$\begin{split} \psi_0 &= \sum_{k=0}^{\infty} c_k \varphi_k, \\ c_k \text{ should not decay fast!} \\ \text{Example: harmonic oscillator,} \\ \text{Typically } \psi_0 &= \prod_{k=1}^{f} \exp(-\alpha_k (q_k^{(0y)} - q_k)^2). \end{split}$$

$$\frac{d\psi}{dt}=i(-\frac{1}{2}\Delta+V)\psi,\quad\psi(0)=\psi_0.$$

It is a hyperbolic problem (\approx square root of the wave equation)

The ranks grow with $t \to \infty$ (can become chaotic, boundary reflections, etc.) No chance? The idea of the dynamical approximation: replace $\psi(t)$ by its low-parametric representation $\widehat{\psi}(t)$ and hope that a(t) has the same statistics How to find $\psi(t)$? The idea of the dynamical approximation: replace $\psi(t)$ by its low-parametric representation $\widehat{\psi}(t)$ and hope that a(t) has the same statistics

How to find $\psi(t)$? We need an optimization principle

The answer: Dirac-Frenkel variational principle!

S Holtz, T Rohwedder, R Schneider - Numerische Mathematik, On manifolds of tensors of fixed TT-rank

The set of tensors with bounded TT-ranks forms a manifold

$$TT_r$$
, $r = (r_1, ..., r_{d-1})$

We can define a tangent space $\mathcal{M}(\mathrm{TT}_{\mathbf{r}})$ at a point X Do it only in 2D (C. Lubich) $A = I I S V^{\top}$ $\delta A = \delta U S V^{\top} + U \delta S V^{\top} + U S \delta V^{\top}$ Projector onto the tangent space: $P_X(\delta A) = \delta A - (I - UU^{\top})\delta A(I - VV^{\top})$

Tangent space(2)

Why should we care about the tangent space? Because of the variational principle

Dirac-Frenkel

Given A(t), the dynamical (low-rank) approximation is defined as X(t)

$$\left(\frac{dA}{dt}-\frac{dX}{dt},\delta X\right)=0,\quad\delta X\in\mathcal{T}_X(\mathcal{M})$$

The velocity is in the tangent space!

Dynamical low-rank appr. of matrices

The equations for U, S, V:

$$\begin{aligned} \frac{dU}{dt}(t) &= (I - U(t)U(t)^{\top})\frac{dA}{dt}(t)V(t)S(t)^{-1}\\ \frac{dV}{dt}(t) &= (I - V(t)V(t)^{\top})\frac{dA}{dt}(t)^{\top}U(t)S(t)^{-\top}\\ \frac{dS}{dt}(t) &= U(t)^{\top}\frac{dA}{dt}(t)V(t). \end{aligned}$$

Dynamical low-rank appr. of matrices

 $\frac{dX}{dt} = P_X(\frac{dA}{dt})$

MCTDH (H.-D. Meyer) MultiConfigurational Time-dependent Hartree Method

Uses dynamical low-rank approximation in the Tucker format!

Equations for the factors, equations for the core How to integrate them well?

Problems with dynamical low-rank integration

The main problem of the dynamical equations is the inversion of S

But the equation for X does not have this problem!

$$P_X(Z) = Z - (I - UU^{\top})Z(I - VV^{\top})$$

C. Lubich, O., Projector-splitting integrator for the dynamical low-rank approximation of matrices

Splitting

$$P(Y)Z = ZP_{\mathcal{R}(Y^{\top})} + P_{\mathcal{R}(Y)}Z - P_{\mathcal{R}(Y)}Z$$

Algorithm:
• K-step: $\frac{d(US)}{dt} = \frac{dA}{dt}V$
• QR: $K_1 = U_1\widehat{S}_1$
• L-step: $\frac{d(VS^{\top})}{dt} = \frac{dA}{dt}^{\top}U$
• QR: $L_1 = U_1\widetilde{S}_1$
• S-step: $\frac{dS}{dt} = -U^{\top}\frac{dA}{dt}V$ (backward in time!)

Splitting

$$P(Y)Z = ZP_{\mathcal{R}(Y^{\top})} + P_{\mathcal{R}(Y)}Z - P_{\mathcal{R}(Y)}Z$$

Algorithm:
• K-step: $\frac{d(US)}{dt} = \frac{dA}{dt}V$
• QR: $K_1 = U_1\widehat{S}_1$
• L-step: $\frac{d(VS^{\top})}{dt} = \frac{dA}{dt}^{\top}U$
• QR: $L_1 = U_1\widetilde{S}_1$
• S-step: $\frac{dS}{dt} = -U^{\top}\frac{dA}{dt}V$ (backward in time!)
First order explicit scheme, KLS

Splitting

The K-S-L ordering is much better Experiments on rank-10 matrix A with noise ε .

Numerical tensor methods and their applications

Theorem (Exactness)

Suppose that A(t) has rank at most r for all t. With the initial value $Y_0 = A(t_0)$, the splitting algorithm is then exact: $Y_1 = A(t_1)$. From this fact we can prove overapproximation result

Multidimensional case

- The extension to HT/TT format is (almost done)
- The extension to $\frac{dy}{dt} = Ay$ is done
- The integrator can be readily applied to optimization problems (project the gradient/Newton step)
- Implemented in ttpy package (http://github.com/oseledets/ttpy)
- The CECAM workshop: C. Lubich, B. Vandereycken, R. Schneider, I. Oseledets talks

Comparison with MCTDH

 $V(q_1, \ldots, q_f) = \frac{1}{2} \sum_{k=1}^f q_k^2 + \lambda \sum_{k=1}^{f-1} \left(q_k^2 q_{k+1} - \frac{1}{3} q_k^3 \right).$ http://www.pci.uni-heidelberg.de/cms/mctdh.html

There are other important techniques for non-stationary problems

V. Kazeev, O. Reichmann, Ch. Schwab Discontinious Galerkin in time:

Leads to shifted linear systems

$$(A - \lambda_i I)u_i = f$$

- DMRG/AMEN solvers, estimates
- Non-symmetric problems (can be harsh)

Time as a dimension: O., S. Dolgov, B. Khoromskij

Time as a dimension:

O., S. Dolgov, B. Khoromskij

Consider an Euler scheme:

$$y_{k+1} = (I - \tau A)y_k = Sy_k$$

Write as big linear system with $N \times T$ unknowns:

$$(I \otimes Z - S \otimes I)Y = f$$

Take $T = 2^d$.
Apply DMRG/AMEN!

Several open questions

- How to adapt the rank
- "Stable" low-rank parametrization (*U*, *S*, *V* is bad)!
- Estimates for the projected methods

One of the most interesting applications — solution of multiparametric problems

$$A(p)u(p) = f(p)$$

$$A(p) : \mathbb{R}^{N} \to \mathbb{R}^{N}$$

$$p = (p_{1}, \dots, p_{M})$$

After discretization, we are left with a huge linear system

$$\mathbb{A}u=f,$$

where *u* is $N \times P \times \ldots \times P$ – a tensor!

After discretization, we are left with a huge linear system

$$\mathbb{A}u=f,$$

where *u* is $N \times P \times \ldots \times P$ — a tensor!

Tensor-structured linear system

After discretization, we are left with a huge linear system

$$\mathbb{A}u=f,$$

where
$$u$$
 is $N \times P \times \ldots \times P$ — a tensor!
 $A = A_0 + A_1 p_1 + A_2 p_2 + \ldots + A_M p_M$
 $\mathbb{A} = I + I \otimes D \otimes I + \ldots$ — rank M .

Tensor-structured linear system

Matrix format, no CP requirements

$\mathbb{A} \approx A_1(i_1, j_1) A_2(i_2, j_2) \dots A_d(i_d, j_d).$

What about multiparametric problems? Can not apply DMRG/AMEN directly One mode (first one) is large

Idea is to combine with model reduction techniques (POD, Global POD)

Idea is to combine with model reduction techniques (POD, Global POD) u = UzThen $A(p)u(p) = f(p) \to U^{\top}A(p)Uz(p) = f(p)$ (Galerkin projection). This system is much smaller, and can be solved by dmrg solve We do not know the basis in advance

Maxvol-ALS iteration:

- Know the U basis -> solve the reduced problem for z(p).
- Find maximal volume *p**
- Compute new snapshots at these points
- Cycle until convergence

Suppose the separation rank between x and p is r: $u(x,p) \approx \sum_{\alpha=1}^{r} U(x,\alpha)Z(\alpha,p)$ The solution can be recovered from values in r physical points!

Diffusion equation

4-parameter problem Precision: $\sim 10^{-5}$ Grid: 256 × 256 S. Galerkin: $\sim \times 100$ larger system S. Collocation: ~ 1000 more solvers DMRG + QTT: ~ 100 solves

- What class of problems is tractable
- Compare with other techniques (DEIM, sparse grids)
- Efficient numerical implementations are still lacking

Problem of global optimization

It is natural to apply to the problems of global optimization

Protein-ligand

Protein-ligand

D. Zheltkov Drug design, 9-variable function Many local minima, singularities

D. Zheltkov Drug design, 9-variable function Many local minima, singularities Need global minimum.

$f(x_1, \ldots, x_d) \rightarrow \min$ Use cross approximation:

 $f(x_1, \ldots, x_d) o \min$ Use cross approximation: Use magic transform: $\widehat{f} = \operatorname{arcctg} f$

	Min	Max	Average				
Fun calls	18804158	26272810	$2.39 * 10^7$				
Min value	-65.1472	-52.7327	-62.9526				
Mean val dev., Å	0.666	2.656	0.954				
Mean val dev., Å	0.064	2.758	0.474				
(All points -10^9)							

np	8	16	32	64	128
Time, c	4834.6	2497.2	1288.1	657.93	336.12
Speedup	7.85	15.2	29.4	57.6	113

Open questions:

- Theoretical justification (we have in two dimensions)
- Testing and applications

A very interesting application: latent variable models

A very interesting application: latent variable models Observed variables S_1, \ldots, S_N (stock prices) There are latent variables.

A very interesting application: latent variable models Observed variables S_1, \ldots, S_N (stock prices) There are latent variables $p(x_1, x_2) = \sum_{\alpha=1}^{r} p_1(x_1, h) w(h) p_2(x_2, h)$ You can use tensors! (Ishteva, Le Song, Georgia Tech.)

- Test the effectiveness of latent tree detection techniques (Ishteva et. al work is based on a greedy algorithm, MPS people have another approach)
- Approximation of tensors with approximate entries, only through matrix-by-vector products

Hastings area law

- An area law for one dimensional quantum systems, M. B. Hastings
- An improved 1D area law for frustration-free systems, Itai Arad, Zeph Landau, Umesh Vazirani

Area law

If H is $H = \sum_{i=1}^{N} H_i$, H_i is 2-local interaction, and H has a spectral gap ε . Then, the ground-state wavefunction can be approximated in the TT (MPS) format. Entropy bound:

$$S_{1D} \leq \mathcal{O}(1)X^3 \log^8 X, \quad X = \frac{J \log d}{\varepsilon}, \quad ||H_i|| \leq J$$

The proof is linear algebra! $H = \sum_{i} Q_{i}, \quad P_{i} = I - Q_{i} - \text{projectors.}$ Need to estimate the TT-ranks

Idea of the proof

Idea: Find an operator K:

- $K\psi = \psi$ for a ground-state
- $||K\psi_{\perp}|| \leq \Delta ||\psi_{\perp}||$
- $o \operatorname{rank}(K\psi) \leq D\operatorname{rank}(\psi)$

•
$$D\Delta \leq \frac{1}{2}$$

Then, we can take any rank-1 function apply K and truncate to rank-1.

The overlap will decrease until
$$\sqrt{\frac{1}{2D}}$$
.

Idea of the proof

Constucting the operators:

$$\Pi_{even} = P_2 P_4 \dots, \quad \Pi_{odd} = P_1 P_3 \dots$$

 $A = \prod_{even} \prod_{odd}$ is an approximation to the ground-state projection.

•
$$D_0 = d^2$$

•
$$\Delta_0 \approx 1 - c \varepsilon$$
.

•
$$\widehat{A} = \widehat{\Pi}_m \Pi_{even} \Pi_{odd}$$

• $\widehat{\Pi}_m = C_m(N)^q$, $N = \sum_{i=1}^m (I - P_i)$, C_m are Chebyshev polynomials

- Novel tensor formats
- High-dimensional applications (nonstandard ones!)
- Relation to Quantum Information
- A lot of open problems
- Software

• How to select variables such as they separate?