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All lectures

4 lectures,
2 May, 08:00 - 10:00: Introduction: ideas,
matrix results, history.
7 May, 08:00 - 10:00: Novel tensor formats (TT,
HT, QTT).
8 May, 08:00 - 10:00: Advanced tensor methods
(eigenproblems, linear systems).
14 May, 08:00 - 10:00: Advanced topics, recent
results and open problems.
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Brief recap of Lecture 3

QTT-format: explicit representations of
functions
QTT-format: explicit representation of operators
QTT theorem
QTT-Fourier transform as a tensor network
QTT-convolution
Linear systems
Eigenvalue problems
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Plan of lecture 4

Dynamical low-rank approximation
Solving non-stationary problems
Solving multiparametric problems
Applications to multiparametric problems
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Non-stationary problems

Basic setting:

dy

dt
= F (y , t), y(0) = y0

y → Y (i1, . . . , id)
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Application: spectra

Of the main application is the computation of
vibrational spectra
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Application: spectra

Problem setting:

dψ

dt
= iHψ, ψ(0) = ψ0.

ψ = ψ(q1, . . . , qf ) — wavefunction
H = −1

2∆+ V (q1, . . . , qf ).

∆ =
∑f

i=1
∂2

∂q2
i
.

V — potential energy surface
q1, . . . , qf — degrees of freedom
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Application: spectra

Initial setting is the Scrödinger equation
1 Fix the positions of the nuclei — get the energy

V (R1, . . . ,RN)
2 Find the minima, expand V again the minima

into Taylor series.
3 (optional): Find normal coordinates,

f = 3N − 6 (N is the number of atoms)
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Main equation

dψ

dt
= i(−

1
2
∆+ V )ψ, ψ(0) = ψ0.

Discretize on a grid. Laplace has TT-ranks equal to 2
and QTT-ranks bounded by 4.
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Main equation

What about V ?

Theorem (Rank estimate)

For the polynomial of form

V (q1, . . . , qf ) =
f∑

i1,...,is=1

a(i1, . . . , is)
s∏

k=1

qik ,

rankTT (V ) = C0f
[ s2 ] + o(f [

s
2 ]).
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Main equation

dψ

dt
= i(−

1
2
∆+ V )ψ, ψ(0) = ψ0.

Discretize on a grid. Laplace has TT-ranks equal to 2
and QTT-ranks bounded by 4.

It is easy to put H = −1
2∆+ V into the TT-format.

But how it is connected to the computation of
spectra?
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Eigenvalues via spectra

We want to compute:

Hψ = λψ,

But what we do:
1 Take some ψ0
2 Solve dpsi

dt = Hψ, ψ(0) = ψ0.
3 Compute $a(t) = (ψ(t), ψ(0))
4 Find FFT of a(t).
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Eigenvalues via spectra

ψ(t) = exp(iHt)ψ0

ψ0 =
∑∞

k=0 ckφk ,
Hφk = λkφk ,

a(t) =
∑∞

k=0 |ck |
2 exp(iλkt)

Thus, the FFT of a(t) gives pikes at λk (try that!)

Why should you do that?
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Eigenvalues via spectra

How to select initial condition?

ψ0 =
∑∞

k=0 ckφk ,
ck should not decay fast!

Example: harmonic oscillator,

Typically ψ0 =
∏f

k=1 exp(−αk(q
(0y)
k − qk)

2).
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Problems and solutions

dψ

dt
= i(−

1
2
∆+ V )ψ, ψ(0) = ψ0.

It is a hyperbolic problem (≈ square root of the wave
equation)

The ranks grow with t → ∞ (can become chaotic,
boundary reflections, etc.)

No chance?
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Dynamical approximation

The idea of the dynamical approximation: replace
ψ(t) by its low-parametric representation ψ̂(t) and

hope that a(t) has the same statistics

How to find ψ(t)?
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Dynamical approximation

The idea of the dynamical approximation: replace
ψ(t) by its low-parametric representation ψ̂(t) and

hope that a(t) has the same statistics

How to find ψ(t)?
We need an optimization principle

The answer: Dirac-Frenkel variational principle!
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Manifold

S Holtz, T Rohwedder, R Schneider - Numerische Mathematik, On

manifolds of tensors of fixed TT-rank

The set of tensors with bounded TT-ranks forms a
manifold

TTr, r = (r1, . . . , rd−1)
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Tangent space

We can define a tangent spaceM(TTr) at a point
X

Do it only in 2D (C. Lubich)

A = USV>

δA = δUSV> + UδSV> + USδV>

Projector onto the tangent space:

PX (δA) = δA− (I − UU>)δA(I − VV>)
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Tangent space(2)

Why should we care about the tangent space?

Because of the variational principle

Dirac-Frenkel

Given A(t), the dynamical (low-rank) approximation
is defined as X (t)

(dAdt −
dX
dt , δX ) = 0, δX ∈ TX (M)

The velocity is in the tangent space!
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Dynamical low-rank appr. of matrices

The equations for U , S ,V :

dU

dt
(t) = (I − U(t)U(t)>)

dA

dt
(t)V (t)S(t)−1

dV

dt
(t) = (I − V (t)V (t)>)

dA

dt
(t)>U(t)S(t)−>

dS

dt
(t) = U(t)>

dA

dt
(t)V (t).

I.V. Oseledets Numerical tensor methods and their applications



Dynamical low-rank appr. of matrices

dX

dt
= PX (

dA

dt
)
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MCTDH

MCTDH (H.-D. Meyer)

MultiConfigurational Time-dependent Hartree
Method

Uses dynamical low-rank approximation in the Tucker
format!

Equations for the factors, equations for the core

How to integrate them well?
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Problems with dynamical low-rank
integration

The main problem of the dynamical equations is the
inversion of S

But the equation for X does not have this problem!

PX (Z ) = Z − (I − UU>)Z (I − VV>)
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KSL integrator

C. Lubich, O., Projector-splitting integrator for the dynamical low-rank

approximation of matrices
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Splitting

P(Y )Z = ZPR(Y>) + PR(Y )Z − PR(Y )Z
Algorithm:

K-step: d(US)
dt = dA

dt V

QR: K1 = U1Ŝ1

L-step: d(VS>)
dt = dA

dt

>
U

QR: L1 = U1S̃1
S-step: dS

dt = −U> dA
dt V (backward in time!)
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Splitting

P(Y )Z = ZPR(Y>) + PR(Y )Z − PR(Y )Z
Algorithm:

K-step: d(US)
dt = dA

dt V

QR: K1 = U1Ŝ1

L-step: d(VS>)
dt = dA

dt

>
U

QR: L1 = U1S̃1
S-step: dS

dt = −U> dA
dt V (backward in time!)

First order explicit scheme, KLS
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Splitting
The K-S-L ordering is much better

Experiments on rank-10 matrix A with noise ε.
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c) ε = 10−3, r = 20
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d) ε = 10−6, r = 20

Best approx.
Midpt. rule
KLS
KLS(symm)
KSL
KSL(symm)
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Theory

Theorem (Exactness)

Suppose that A(t) has rank at most r for all t. With
the initial value Y0 = A(t0), the splitting algorithm is
then exact: Y1 = A(t1).
From this fact we can prove overapproximation result
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Multidimensional case

The extension to HT/TT format is (almost
done)
The extension to dy

dt = Ay is done
The integrator can be readily applied to
optimization problems (project the
gradient/Newton step)
Implemented in ttpy package
(http://github.com/oseledets/ttpy)
The CECAM workshop: C. Lubich, B.
Vandereycken, R. Schneider, I. Oseledets talks
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Comparison with MCTDH

V (q1, . . . , qf ) =
1
2

∑f
k=1 q

2
k + λ

∑f−1
k=1

(
q2
kqk+1 −

1
3q

3
k

)
.

http://www.pci.uni-heidelberg.de/cms/mctdh.html
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Other techniques

There are other important techniques for
non-stationary problems
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DG

V. Kazeev, O. Reichmann, Ch. Schwab

Discontinious Galerkin in time:

Leads to shifted linear systems

(A− λi I )ui = f

DMRG/AMEN solvers, estimates
Non-symmetric problems (can be harsh)
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Block time scheme

Time as a dimension:

O., S. Dolgov, B. Khoromskij

I.V. Oseledets Numerical tensor methods and their applications



Block time scheme

Time as a dimension:

O., S. Dolgov, B. Khoromskij

Consider an Euler scheme:

yk+1 = (I − τA)yk = Syk

Write as big linear system with N × T unknowns:

(I ⊗ Z − S ⊗ I )Y = f

Take T = 2d .

Apply DMRG/AMEN!
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Open questions

Several open questions
How to adapt the rank
“Stable” low-rank parametrization (U , S ,V is
bad)!
Estimates for the projected methods
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Multiparametric problems

One of the most interesting applications — solution
of multiparametric problems

A(p)u(p) = f (p)
A(p) : RN → RN

p = (p1, . . . , pM)
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Multiparametric problems

After discretization, we are left with a huge linear
system

Au = f ,

where u is N × P × . . .× P — a tensor!
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Tensor-structured linear system

After discretization, we are left with a huge linear
system

Au = f ,

where u is N × P × . . .× P — a tensor!
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Tensor-structured linear system

After discretization, we are left with a huge linear
system

Au = f ,

where u is N × P × . . .× P — a tensor!
A = A0 + A1p1 + A2p2 + . . .AMpM
A = I + I ⊗ D ⊗ I + . . . — rank M .
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Tensor-structured linear system

Matrix format, no CP requirements

A ≈ A1(i1, j1)A2(i2, j2) . . .Ad(id , jd).

I.V. Oseledets Numerical tensor methods and their applications



How to solve multiparametric problems

What about multiparametric problems?
Can not apply DMRG/AMEN directly

One mode (first one) is large
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How to solve multiparametric problems

Idea is to combine with model reduction techniques
(POD, Global POD)
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How to solve multiparametric problems

Idea is to combine with model reduction techniques
(POD, Global POD)

u = Uz
Then:

A(p)u(p) = f (p) -> U>A(p)Uz(p) = f (p)
(Galerkin projection).

This system is much smaller, and can be solved by
dmrg_solve

We do not know the basis in advance!
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How to solve multiparametric problems

Maxvol-ALS iteration:

Know the U basis -> solve the reduced problem
for z(p).
Find maximal volume p∗

Compute new snapshots at these points
Cycle until convergence
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How to solve multiparametric problems

Suppose the separation rank between x and p is r :

u(x , p) ≈
∑r

α=1 U(x , α)Z (α, p)

The solution can be recovered from values in r
physical points!
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Diffusion equation

4-parameter problem
Precision: ∼ 10−5

Grid: 256× 256
S. Galerkin: ∼ ×100 larger
system
S. Collocation: ∼ 1000 more
solvers
DMRG + QTT: ∼ 100 solves Instead of 2562 × 1284 = 244

we have
around 50000 parameters.
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Open questions

What class of problems is tractable
Compare with other techniques (DEIM, sparse
grids)
Efficient numerical implementations are still
lacking
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Problem of global optimization

It is natural to apply to the problems of global
optimization
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Protein-ligand
Drug design:

Ligand
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Protein-ligand
Drug design:

Ligand
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Problem statement

D. Zheltkov

Drug design, 9-variable function

Many local minima, singularities
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Problem statement

D. Zheltkov

Drug design, 9-variable function

Many local minima, singularities

Need global minimum.
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Problem statement

f (x1, . . . , xd) → min

Use cross approximation:
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Problem statement

f (x1, . . . , xd) → min

Use cross approximation:

Use magic transform: f̂ = arcctg f
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Results

Min Max Average
Fun calls 18804158 26272810 2.39 ∗ 107
Min value -65.1472 -52.7327 -62.9526

Mean val dev., Å 0.666 2.656 0.954
Mean val dev., Å 0.064 2.758 0.474

(All points — 109)
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Results

np 8 16 32 64 128
Time, c 4834.6 2497.2 1288.1 657.93 336.12
Speedup 7.85 15.2 29.4 57.6 113
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Open questions

Open questions:
Theoretical justification (we have in two
dimensions)
Testing and applications
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Latent variable models

A very interesting application:

latent variable models
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Latent variable models

A very interesting application:

latent variable models
Observed variables S1, . . . , SN (stock prices)

There are latent variables.
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Latent variable models

A very interesting application:

latent variable models
Observed variables S1, . . . , SN (stock prices)

There are latent variables.
p(x1, x2) =

∑r
α=1 p1(x1, h)w(h)p2(x2, h)

You can use tensors! (Ishteva, Le Song, Georgia
Tech.)
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Latent variable models

Latent tree reconstruction

(M. Ishteva, Le Song)
!
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Open problems

Test the effectiveness of latent tree detection
techniques (Ishteva et. al work is based on a
greedy algorithm, MPS people have another
approach)
Approximation of tensors with approximate
entries, only through matrix-by-vector products
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Hastings area law

An area law for one dimensional quantum systems, M. B. Hastings

An improved 1D area law for frustration-free systems, Itai Arad,
Zeph Landau, Umesh Vazirani

Area law

If H is H =
∑

i=1Hi , Hi is 2-local interaction, and H
has a spectral gap ε. Then, the ground-state
wavefunction can be approximated in the TT (MPS)
format. Entropy bound:

S1D ≤ O(1)X 3 log8 X , X = J log d
ε
, ||Hi || ≤ J
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Idea of the proof

The proof is linear algebra!

H =
∑

i Qi , Pi = I − Qi — projectors.

Need to estimate the TT-ranks
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Idea of the proof

Idea: Find an operator K :
1 Kψ = ψ for a ground-state
2 ||Kψ⊥|| ≤ ∆||ψ⊥||
3 rank(Kψ) ≤ Drank(ψ)
4 D∆ ≤ 1

2
Then, we can take any rank-1 function apply K and

truncate to rank-1.

The overlap will decrease until
√

1
2D .
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Idea of the proof

Constucting the operators:

Πeven = P2P4 . . . , Πodd = P1P3 . . .

A = ΠevenΠodd is an approximation to the
ground-state projection.

D0 = d2

∆0 ≈ 1− cε.
Â = Π̂mΠevenΠodd

Π̂m = Cm(N)q, N =
∑m

i=1(I − Pi), Cm are
Chebyshev polynomials
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Summary of the course

Novel tensor formats
High-dimensional applications (nonstandard
ones!)
Relation to Quantum Information
A lot of open problems
Software
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Open question

How to select variables such as they separate?
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