
Numerical tensor methods and their

applications

I.V. Oseledets

2 May 2013

I.V. Oseledets Numerical tensor methods and their applications



What is this course is about

This course is mostly on numerical methods of linear
algebra in multilinear settings.
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What is this course is about

This course is mostly on numerical methods of linear
algebra in multilinear settings.

Goal: develop universal tools for working with
high-dimensional problems.
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All lectures

4 lectures,
2 May, 08:00 - 10:00: Introduction: ideas,
matrix results, history.
7 May, 08:00 - 10:00: Novel tensor formats (TT,
HT, QTT).
8 May, 08:00 - 10:00: Advanced tensor methods
(eigenproblems, linear systems).
14 May, 08:00 - 10:00: Advanced topics, recent
results and open problems.
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Lecture 1

Motivation
Matrix background
Canonical and Tucker formats
Historical overview
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Motivation

Main points
High-dimensional problems appear in diverse
applications
Standard methods do not scale well in many
dimensions
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Motivation

Solution of high-dimensional differential and integral
equations on fine grids

Typical cost: O(N3) ! O(N) or even O(log↵N).
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Motivation

Ab initio computations and computational material
design

Protein-ligand docking
(D. Zheltkov) Density functional

theory for large clusters
(V. Khoromskaia)
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Figure 7: Electron density of an Aluminium cluster with 666 atoms with an asymmetric

vacancy (top). The left bottom figure shows the orthogonal Tucker vectors v(1)1 , . . . , v(1)6 .
It is seen that the 5-th vector of the Tucker mode-1 side matrix “reveals” the shape
and location of the vacancy. The right bottom figure shows that the convergence of the
approximation error is not significantly a↵ected by the presence of a vacancy in the cluster.
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Motivation

Construction of reduced order models for
multiparametric/stochastic systems in engineering

Diffusion problem
ra(p)�u = f (p),
p = (p1, p2, p3, p4)
Approximate u using
only few snapshots.
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Motivation

Data mining and compression
Images Computational data

(temperature)
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Why tensors are important

The multivariate functions are related to the
multivariate arrays, or tensors:
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Why tensors are important

The multivariate functions are related to the
multivariate arrays, or tensors:

Take a function: f (x1, . . . , xd)

Take tensor-product grid
Get a tensor:

A(i1, . . . , id) = f (x1(i1), . . . , xd(id))
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Literature

T. Kolda and B. Bader, Tensor decompositions
and applications, SIREV (2009)
W. Hackbusch, Tensor spaces and numerical
tensor calculus, 2012
L. Grasedyck, D. Kressner, C. Tobler, A
literature survey of low-rank tensor
approximation techniques, 2013
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Software

Some software will be used:
Tensor Toolbox 2.5 (T. Kolda)
TT-Toolbox
(http://github.com/oseledets/TT-Toolbox)

There is also a Python version
(http://github.com/oseledets/ttpy) which has similar

functionality now.
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Where tensors come from

d -dimensional PDE: �u = f , u = u(x1, . . . , xd)

PDE with M parameters: A(p)u(p) = f (p),
u = u(x , p1, . . . , pM)

Data (images, video, hyperspectral images)
Latent variable models, joint probability
distributions
Factor models
Many others

I.V. Oseledets Numerical tensor methods and their applications



Definitions

A tensor is a d -dimensional array:
A(i1, . . . , id), 1  i

k

 n
k

Mathematically more correct definition:
Tensor is a polylinear form.
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Definitions

Tensors form a linear vector space.
The natural norm is the Frobenius norm:

||A|| =

s X

i1,...,id

|A(i1, . . . , id)|2
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Curse of dimensionality

Curse of dimensionality: Storage of a d -tensor with
mode sizes n requires nd elements.
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Basic questions

How to break the curse of dimensionality?
How to perform (multidimensional) sampling?
How to do everything efficiently and in a robust
way?
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Real-life problems

If you really need to compute something
high-dimensional

, there is usually a way:
Monte Carlo
Special basis sets (radial basis functions)
Best N-term approximations (wavelets, sparse
grids)

But we want algebraic techniques. . .
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Separation of variables

One of the few fruitful ideas is the idea of separation
of variables
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What is separation of variables

Separation rank 1:
f (x1, . . . , xd) = u1(x1)u2(x2) . . . ud(xd),

More general:
f (x1, . . . , xd) ⇡

P
r

↵=1 u1(x1,↵) . . . ud(xd ,↵).
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Analytical examples

How to compute separated representations?
Analytical expressions (B. N. Khoromskij and many

others):
f (x1, . . . , xd) =

1
x1+...+xd

based on the identity
1
x

=
R1

0 exp(-px)dp

r = log "-1 log �-1
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Numerical computation of separated

representations

We can try to compute the separated decomposition
numerically.

How do we do that?
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Canonical format

Tensors:
Canonical format:

A(i1, . . . , id) ⇡
P

r

↵=1 U1(i1,↵) . . .Ud

(i
d

,↵)

What happens in d = 2?
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Two-dimensional case

A(i1, i2) ⇡
P

r

↵=1 U1(i1,↵)U2(i2,↵)
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Two-dimensional case

A(i1, i2) ⇡
P

r

↵=1 U1(i1,↵)U2(i2,↵)

Matrix form: A ⇡ UV>,
Where U is n ⇥ r , V is m ⇥ r

Approximate rank-r approximation
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SVD: definition

The fabulous SVD (singular value decomposition):
Every matrix can be represented as a product

A = USV ⇤, where U , V are orthonormal, S is a
diagonal matrix with singular values �

i

� 0 on the
diagonal.
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SVD: complexity

Complexity of the SVD is O(n3) (too much to
compute O(nr) decomposition)
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SVD: complexity

Complexity of the SVD is O(n3) (too much to
compute O(nr) decomposition)

Are there faster algorithms?

I.V. Oseledets Numerical tensor methods and their applications



Skeleton decomposition

Yes: based on the skeleton decomposition

A ⇡ C bA-1R ,
C � r columns of A, R � r rows of A, bA �

submatrix on the intersection.
Ex.1: Prove it
Ex.2: Have you met skeleton dec. before?
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Maximum volume principle

What happens if the matrix is of approximate low
rank?

A ⇡ R + E , rankR = r , ||E ||
C

= "
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Maximum volume principle

Select the submatrix bA such that volume is maximal
(volume = absolute value of the determinant)

||A- C bA-1R ||  (r + 1)2"
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Proof

E. E. Tyrtyshnikov, S.A. Goreinov, On quasioptimality of
skeleton approximation of a matrix in the Chebyshev norm,

doi: 10.1134/S1064562411030355

A =

✓
A11 A12
A21 A22

◆
,

H = A- C bA-1R = A-

✓
A11
A21

◆
A-1

11
�
A11A21

�

Need: |h
ij

|  (r + 1)2�
r+1(A)
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Proof

Z =

✓
A11 v
u> a

ij

◆

Entry h
ij

can be found from:
✓

I 0
-u>A-1

11 1

◆
Z =

✓
A11 v
0 h

ij

◆

detZ = h
ij

detA11

Therefore,
|h-1

ij

| = ||Z-1||
C

,
|h

ij

|  (r + 1)�
r+1(Z )
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Proof

Finally,
�
r+1(Z ) = min

UZ ,Vz ||Z - U
Z

V>
Z

||2 
(r + 1)||Z - U

Z

V>
Z

||
C

 (r + 1)�
r+1(A)
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Maxvol algorithm(1)

Ok, then, how to find a good submatrix?
Crucial algorithm: Maxvol submatrix in a n ⇥ r

matrix.
Characteristic property: A is n ⇥ r ,

A bA-1 =

✓
I
Z

◆
, |Z |

ij

 1.
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Maxvol algorithm(2)

Problem: find maximal volume r ⇥ r submatrix in an
n ⇥ r matrix.
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Maxvol algorithm(2)

Problem: find maximal volume r ⇥ r submatrix in an
n ⇥ r matrix.

Maxvol algorithm:
Take some rows, put them in the first r .
Compute B = A bA-1

B =

✓
I
Z

◆

Suppose maximal element in Z is in position
(i , j).
Swap i -th row with j-th row.
Stop if maximal element is less than (1 + �).
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Maxvol algorithm(2)

Problem: find maximal volume r ⇥ r submatrix in an
n ⇥ r matrix.

For an n ⇥m matrix:
Find maximal volume in rows, then find maximal

volume in columns
Ex. Implement an algorithm that searches for a

maxvol submatrix.
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Maxvol algorithm (demo)

Let us see how maxvol works. . .
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Cross approximation

A typical scheme we use is the cross approximation
approach, which uses minimal information from

the matrix.
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Cross approximation

1 k = 0, Select j0, U0 = 0,V0 = 0.
2 Compute j

k

-th column of the remainder
A
k

= A- U
k

V>
k

.
3 Find maximal element i

k

in it, compute i
k

-th
row, compute maximal element j

k+1 6= j
k

.
4 Compute the next cross: u

k

= A
k

e
jk ,

v
k

= A>
k

e
ik , uk = u

k

/A
k

(i
k

, j
k

),
U
k

= [U
k-1, uk ],Vk

= [V
k-1, vk ].

5 If ||u
k

v>
k

is small, stop, else go to 1.
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Randomized techniques

Randomized techniques for low-rank approximation
became popular recently.

Sublinear randomized algorithms for skeleton
decompositions, Jiawei Chiu and Laurent Demanet,

http://arxiv.org/abs/1110.4193v2

Theorem

Let A = USV> and U and V are µ-coherent, i.e.
||U ||

C

 p
µ
n

Then, with high probability, one has to sample
l = µr log n columns and rows uniformly, to get a
O(�

r+1) bound.
I.V. Oseledets Numerical tensor methods and their applications
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What is the best cross algorithm?

I strongly believe, that the “best” cross algorithm is
still to be found

And it is very important in higher dimensions!
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Going to higher dimensions

How to generalize the idea of separation of variables
to higher dimensions?

SVD is good
Best approximation exists
Interpolation via skeleton

I.V. Oseledets Numerical tensor methods and their applications



Canonical format (2)

A(i1, . . . , id) ⇡
P

r

↵=1 U1(i1,↵) . . .Ud

(i
d

,↵)

r is called (approximate) canonical rank, U
k

�
canonical factors.
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Canonical format(3)

Good things about the canonical format:
Low number of parameters dnr
Uniqueness results (Kruskal theorem)
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Canonical format(3)

Let A be a 3-tensor with (U ,V ,W ) canonical
decomposition of rank R ,

, and k(U) + k(V ) + k(W ) � 2R + 3, then the
decomposition is unique.

k(X ) � Kruskal rank (spark in compressed sensing),
Def: k(X ) + 1 is the minimal number of linearly

dependent columns in X .
Proof is highly nontrivial (Est time: ˜1.5 lectures!)
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Canonical format (4)

Bad things about the canonical format:
Best approximation may not exist
Canonical rank is NP-complete (matrix rank is
. . . )
No good algorithm
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Bad example (1)

f (x1, . . . , xd) = x1 + x2 + . . . x
d

,
Canonical rank d (no proof is known), can be
approximated with rank-2 with any accuracy!
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Bad example (2)

Canonical rank may depend on the field (matrix rank
can not!)

f (x1, . . . , xd) = sin(x1 + . . .+ x
d

)

Complex field: 2
Real field: d (Ex.: prove it)
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Alternating least squares

The main algorithm for the computation of the
canonical decomposition is the Alternating Least

Squares (ALS) algorithm.

Easy to implement
Known for its very slow convergence (swaps)
Local convergence proven only recently
(Uschmajew, A.)
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Alternating least squares

Treat approximation as an optimization problem:
||A- (U ,V ,W )||

F

! min
Three steps:

1 Fix V , W , update U (linear least squares)
2 Fix U ,W , update V
3 Fix U , V , update W .

Exercise: write down comp. formula and implement
them.
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Example from the complexity theory

There are cases, where the canonical format comes
from a model:

Matrix multiplication:
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Example from the complexity theory

There are cases, where the canonical format comes
from a model:

Matrix multiplication:

C = AB , c = f (a, b), c
i

=
P

ij

E
ijk

a
j

b
k

If the canonical rank of E is r , computation of C
requires r multiplications

2 ⇥ 2 : 4 ⇥ 4 ⇥ 4 tensor, rank 7 (Strassen)
3 ⇥ 3 : 9 ⇥ 9 ⇥ 9 tensor, rank is unknown
19  r  23.
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Example from the complexity theory

There are cases, where the canonical format comes
from a model:

Matrix multiplication:

C = AB , c = f (a, b), c
i

=
P

ij

E
ijk

a
j

b
k

If the canonical rank of E is r , computation of C
requires r multiplications

2 ⇥ 2 : 4 ⇥ 4 ⇥ 4 tensor, rank 7 (Strassen)
3 ⇥ 3 : 9 ⇥ 9 ⇥ 9 tensor, rank is unknown
19  r  23.

It is fascinating.
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What about sampling?

Can we generalize skeleton decomposition?
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What about sampling?

Can we generalize skeleton decomposition?

No
Try it yourself: a simple generalization of a “cross”.
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Another attempt: Tucker

Another attempt to avoid was the Tucker format
(Tucker 1966, Lathauwer, 2000+)

A(i , j , k) ⇡P
↵�� G (↵,�,�)U1(i ,↵)V (j ,↵)W (k ,↵)
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Tucker and SVD

You can compute Tucker by means of the SVD:
Compute unfoldings: A1,A2,A3

Compute left SVD factors: A
i

⇡ U
i

�
i

Compute the core: G = A⇥1 U
>
1 ⇥2 U

>
2 ⇥3 U

>
3 .
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Tucker and the cross

You can generalize skeleton to Tucker (O.,
Savostyanov, Tyrtyshnikov, 2008)

Compute good columns in A
i

, find core by
interpolation.
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Problem with the Tucker format

Q: What is the main problem with the Tucker
format?
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Problem with the Tucker format

Q: What is the main problem with the Tucker
format?

A: Curse of dimensionality
The core takes r d elements!
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Summary

What we have?
Canonical format: low number of parameters, no
algorithms
Tucker format: SVD-based algorithms, the curse
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Main algebraic question

Can we find something inbetween?
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Lecture 2

The Tree-Tucker, Tensor Train, Hierarchical
Tucker formats
Their difference
Concept of Tensor Networks
Stability and quasioptimality
Basic arithmetic (with illustration)
Cross approximation formula (with illustrations)
QTT-format (part 1)
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Lecture 3

QTT-format (part 2), application to numerical
integration
QTT-Fourier transform and its relation to tensor
networks
QTT-convolution, explicit representation of
Laplace-like tensors
DMRG/AMEN techniques
Solution of linear systems in the TT-format
Solution of eigenvalue problems in the
TT-format
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Lecture 4

Advanced topics: New applications, recent results
and open problems

Solution of non-stationary problems
Global optimization via the TT-cross
Latent variable models (finance and natural
language processing)
Approximation results in quantum information
theory (Hastings area law)
Open problems
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