On irregular singularities of algebraic connections

Let E be an algebraic flat connection on a smooth complex algebraic variety X, let \overline{X} be a smooth compactification of X such that $D := \overline{X} \setminus X$ is a normal crossing divisor. Levelt-Turrittin theorem asserts that the pull-back of E to the formal neighbourhood of a codimension 1 point in D decomposes (after ramification) into elementary factors easy to work with.

This decomposition may not hold at some other points of D, but when it does, we say that E has good formal decomposition along D. A conjecture of Sabbah, recently proved by Kedlaya and Mochizuki independently, asserts the existence of a chain $p: Y \longrightarrow \overline{X}$ of blow-ups above D such that E has good formal decomposition along $p^{-1}(D)$.

In a sense, this result is to flat connections what Hironaka desingularization is to varieties, and has recently allowed ground-breaking progresses in our understanding of \mathcal{D} -modules. The goal of this course is to introduce the concepts at stake in the statement of Kedlaya-Mochizuki theorem, and to give an application to the existence of periods for arbitrary algebraic flat connections.

No prerequisite on \mathcal{D} -modules is necessary to follow this course.

J.-B. TEYSSIER, Hebrew University of Jerusalem, Einstein Institute. Israel.