
Linear & Combinatorial
Optimization

401-3901-00

Rico Zenklusen

Fall term 2022

This script has profited enormously from the input and help of many people. In particular,
I would like to thank Simon Bruggmann, Tom Häring, Martin Nägele, Elias Wirth, and Ivan
Sergeev for their help with this script in various ways. Moreover, I am grateful to all students
who provided very valuable feedback on a wide variety of aspects, which significantly increased
the quality of this script.

Rico Zenklusen

Contents

1 Linear Programming and Polyhedra 1
1.1 Introduction to linear programming . 1

1.1.1 Different types of LPs and goal of LP algorithms 2
1.1.2 Example applications . 4

1.2 Polyhedra and basic convex geometry . 14
1.2.1 Basic notions . 14
1.2.2 Representation of polyhedra . 25
1.2.3 Convex separation theorems . 32

1.3 Simplex Method . 34
1.3.1 Geometric idea . 34
1.3.2 From canonical to standard form . 36
1.3.3 Equivalent linear systems . 39
1.3.4 Exchange step/pivoting . 44
1.3.5 Short tableau . 45
1.3.6 Exchange step in short tableau . 46
1.3.7 Simplex Method: phase II . 49
1.3.8 Cycling and Bland’s rule . 61
1.3.9 Simplex Method: phase I . 65

1.4 Linear duality . 71
1.4.1 Motivation: finding bounds on optimal value 71
1.4.2 Dual of a linear program . 72
1.4.3 Weak and strong linear duality . 73
1.4.4 Dual interpretation of simplex tableau 75
1.4.5 Complementary slackness . 81

2 Brief Introduction to Computational Complexity 83

3 Basics on Graphs 89
3.1 Some motivational examples . 89
3.2 Basic terminology and notation . 93
3.3 Data structures for graphs . 101
3.4 Breadth-first search (BFS): shortest paths and more 104

4 Flows and Cuts 111
4.1 Basic notions and relations . 111
4.2 Ford-Fulkerson’s algorithm and max-flow min-cut theorem 115
4.3 Integrality of s-t flows . 119

iv Rico Zenklusen Contents

4.4 Applications of s-t flows . 120
4.4.1 Arc-connectivity . 120
4.4.2 Maximum cardinality matchings in undirected graphs 123
4.4.3 Multiple sources and sinks with limited supply and demand 127
4.4.4 Roster planning . 129
4.4.5 Optimal project selection . 130
4.4.6 Open pit mining . 132
4.4.7 Image segmentation . 132
4.4.8 Theoretical winning possibilities in sports competitions 134

4.5 Polynomial-time augmentation algorithms . 136
4.5.1 Capacity scaling algorithm . 136
4.5.2 Edmonds-Karp algorithm . 138

5 Polyhedral Approaches in Combinatorial Optimization 153
5.1 Polyhedral descriptions of combinatorial optimization problems 154
5.2 Meta-recipe for finding inequality-descriptions 155

5.2.1 Example: bipartite vertex cover . 156
5.3 Total unimodularity . 157

5.3.1 Definition and basic observations . 158
5.3.2 Integrality of polyhedra with TU constraint matrices 159
5.3.3 The characterization of Ghouila-Houri 160

5.4 Bipartite matching polytope . 163
5.4.1 Integrality through TU-ness . 164
5.4.2 Integrality by disproving existence of fractional extreme points 165
5.4.3 Some implications coming from the inequality description of PM . . . 167

5.5 Polyhedral description of shortest s-t paths 168
5.6 Spanning trees and r-arborescences . 170

5.6.1 Spanning tree polytope . 170
5.6.2 The r-arborescence polytope . 170

5.7 Non-bipartite matchings . 172
5.7.1 Perfect matching polytope . 172
5.7.2 Matching polytope . 174

5.8 Combinatorial uncrossing . 176
5.8.1 Integrality of spanning tree polytope 176
5.8.2 Integrality of dominant of r-arborescence polytope 180
5.8.3 Upper bound on edge number of minimally k-edge-connected graphs . 183

6 Ellipsoid Method 187
6.1 Separation problem . 187
6.2 Optimization results based on Ellipsoid Method 188
6.3 Example applications . 188
6.4 Ellipsoid for full-dimensional {0, 1}-polytopes 189

6.4.1 Description of Ellipsoid Method . 190
6.4.2 Getting a bound on the number of iterations 192

Contents Rico Zenklusen v

6.4.3 From the unit ball to the general case 197
6.4.4 From checking feasibility to optimization over {0, 1}-polytopes 199

6.5 Comments on the non-full-dimensional case 203

7 Equivalence Between Optimization and Separation 205

8 Integer Programming 209
8.1 Introduction to integer programming . 209
8.2 Branch & bound . 212
8.3 Branch & cut . 215

8.3.1 Generating a Chvátal-Gomory cut through the simplex tableau 216

1 Linear Programming and Polyhedra

1.1 Introduction to linear programming

Linear programming captures one of the most canonical and influential constrained optimiza-
tion problems. More precisely, it asks to maximize or minimize a linear objective under linear
inequality and equality constraints. Below is a concrete example of a linear programming prob-
lem:

max 6x1 + 5x2 + 5.5x3
subject to 10x1 − x2 − 2.5x3 ≥ 11.5

−21x1 + x2 − 6x3 ≥ −104
4.25x1 + 2.75x2 − x3 ≤ 24

x2 ≥ 0
10x1 − x2 + 35x3 ≥ 49
x1 + 2x3 = 12 ,

where the variables x1, x2, x3 all take real values. Such a problem is often called a linear pro-
gram or simply LP. As highlighted in the above example, the objective depends linearly on the
variables, and each constraints imposes either a lower bound, an upper bound, or an equality
condition on a linear form of the variables. Finally, in a linear program one can either ask to
maximize or minimize the objective. Hence, formally, a general linear program is of the follow-
ing form:

max /min c⊤x
Ax ≤ e
Bx ≥ f
Cx = g ,

(general LP)

where A, B, and C are real matrices, and c, e, f , and g are real column vectors of the appropriate
dimensions.

Linear programs can be reformulated in various equivalent forms. When talking about struc-
tural results or algorithms, it is often convenient to fix one particular form of writing a linear
program, like the canonical form, which looks as follows:

max c⊤x
Ax ≤ b
x ≥ 0 ,

(LP in canonical form)

where, if n ∈ Z≥0 is the number of variables and m ∈ Z≥0 the number of constraints, we have
c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and the variables x take values in Rn. Indeed, any linear program
can be transformed into canonical form as follows:

(i) Any constraint of type a⊤x ≥ β can be rewritten as (−a)⊤x ≤ −β.

2 Rico Zenklusen 1 Linear Programming and Polyhedra

(ii) Any constraint of type a⊤x = β can be replaced by a pair of equivalent constraints a⊤x ≤
β and (−a)⊤x ≤ −β.

(iii) Any variable xi that is not bound by a non-negativity constraint xi ≥ 0 can be replaced as
follows. Introduce two new variables x+i and x−i with non-negativity constraints x+i ≥ 0
and x−i ≥ 0, and replace all occurrences of xi by x+i − x−i .

(iv) If the problem is a minimization problem, then replace the objective min c⊤x by max−c⊤x.
This will flip the sign of all solution values. However, maximizers of the new problem are
minimizers of the original problem and vice versa.

Notice that linear programming can also be equivalently described as the task to maximize
a linear function over a polyhedron, which is the intersection of finitely many half-spaces in
finite-dimensional Euclidean space.

1.1.1 Different types of LPs and goal of LP algorithms

Linear programs are often divided into the following three types, depending on their optimal
value:

LP with finite optimum An LP with a finite optimal value. The optimum is either attained at
a unique point or the LP may have multiple optimal solutions.

Unbounded LP An LP with feasible solutions of arbitrarily large value in case of a maxi-
mization problem, or of arbitrarily small value in case of a minimization problem.

Infeasible LP An LP without any feasible solutions. If it is a maximization problem, its opti-
mal value is often set to −∞ by convention, and to∞ for minimization problems.

In the three examples below, we exemplify the above notions on LPs in 2 dimensions.

Example 1.1: LP with finite optimum

Below is an LP with a unique optimum, attained at the point (x1, x2) = (8, 6).

c

10

10

x2

x1

0

max 3x1 + 2x2

−x1 + x2 ≤ 4
x1 + 2x2 ≤ 20
x1 ≤ 8

x2 ≥ 2
x1 + x2 ≥ 4

Taking the same example as above with a different objective function that is perpendicular to
one of the sides of the polygon describing the feasible region, an LP with multiple optimal
solutions is obtained.

1.1 Introduction to linear programming Rico Zenklusen 3

c

10

10

x2

x1

0

max x1 + 2x2

−x1 + x2 ≤ 4
x1 + 2x2 ≤ 20
x1 ≤ 8

x2 ≥ 2
x1 + x2 ≥ 4

Example 1.2: Unbounded LP

c

10

10

0

x2

x1

max x1 + 2x2

x1 − 6x2 ≤ 0
x2 ≥ 1

x1 + x2 ≥ 4
2x1 − x2 ≥ 2
−2x1 + 3x2 ≤ 6

Example 1.3: Infeasible LP

c

10

10

0

x2

x1

max x1 + 2x2

−x1 + x2 ≥ 4
x1 + 2x2 ≤ 14
x1 ≥ 6

When talking about an algorithm that solves linear programs, we expect the algorithm to
provide answers to the following questions. First, the algorithm should detect the type of LP we
are dealing with, i.e., whether it is an LP with finite optimum, an unbounded LP, or an infeasible
one. Normally, in case of an LP with finite optimum, one does not require an LP algorithm to
distinguish between whether there is a unique optimal solution or multiple ones. Second, the
algorithm should return the following.

4 Rico Zenklusen 1 Linear Programming and Polyhedra

• If the LP has a finite optimum, the algorithm should return an optimal solution.
• If the LP is unbounded, the algorithm should return a half-line pointing in an improving

unbounded direction. More precisely, assuming that we want to maximize the objective c,
this consists of a feasible point y ∈ Rn and a non-zero vector v ∈ Rn such that

(i) y + λv is feasible for any λ ∈ R≥0, and
(ii) c⊤v > 0.

Hence, in the first problem of Example 1.1, an LP algorithm must return the unique optimal
solution (86), whereas in the second LP of the same example, any point on the segment connect-
ing (86) and (48) can be returned. For the unbounded LP shown in Example 1.2, an LP algorithm
needs to return a strictly improving half-line, for example (52) + λ · (31) for λ ∈ R≥0.

Whereas the above highlights minimal requirements that we expect LP algorithms to fulfill,
sometimes, additional information is desired, as for example:

• In case of an LP with finite optimum such that there is a corner of the feasible region at
which the optimum is attained, we may want that the LP algorithm returns an optimal
solution that is a corner of the feasible region.

• In case of an LP with finite optimum, we may want a certificate of optimality.
• In case of an infeasible LP, we may want to obtain a certificate of infeasibiliy.

Informally speaking, a certificate of optimality or infeasibility is a piece of information with
which one can check quickly that a certain solution is optimal or a certain LP is infeasible,
respectively. We formally provide such certificates later on. The Simplex Method, which is an
algorithm to solve linear programs, together with the concept of linear duality that we introduce
later, allows for obtaining the above-mentioned additional information.

1.1.2 Example applications

Before we talk about structural and algorithmic results related to linear programming, we present
some of its numerous, and sometimes surprising, applications.

Production planning

Linear programs, and variations and generalizations thereof, are often used in Operations Re-
search problems coming from industrial applications. In this example, we consider an extreme
simplification of such a real-world problem, to provide a glimpse of why linear programs can
be relevant in such contexts, and to introduce some terminology that is prevalent in Operations
Research when dealing with linear programs.

To this end, consider the following heavily simplified production planning example focusing
on a recycling facility that recycles a raw material into a purified final form, which we simply
call the recycled material. We are interested in determining the maximum number of tons of
recycled material that the facility can produce per day. There are two different types of raw
materials, type A and type B, both being recycled to the same final recycled material. These raw
materials have different types and levels of impurity.

At most 20 t of total raw material of both types together can be transported to the recycling
facility per day. For every ton of raw material of type A, 720 kg of recycled material can be

1.1 Introduction to linear programming Rico Zenklusen 5

produced, whereas for every ton of raw material of type B, 600 kg of recycled material can be
obtained. Moreover, if a mix of raw material A and B is used, then the total kg of recycled
material that can be produced behaves linearly with respect to the above values.

The recycling process can handle 16 t/d (tons per day) of raw material A, if only raw material
A is used, and 24 t/d of raw material B, if only raw material B is used. We assume that the
number of tons per day of a mix of raw materials A and B that can be processed behaves linearly
with respect to the above values, e.g., the recycling process can simultaneously handle 8 t/d of
raw material A and 12 t/d of raw material B.

The purity of the recycled material depends on the proportions of raw material A and B that
are being used. This is measured though an impurity coefficient which should be no more than
30 for the recycled material. Only using raw material A will lead to an impurity coefficient of 18
for the recycled material, and the obtained impurity coefficient when only using B is 38. A mix
of both raw materials leads to an impurity coefficient that behaves linearly with respect to the
above values, e.g., when using the same amount of raw material A and B, the recycled material
has impurity coefficient 28.

Finally, the recycling process leads to smoke emissions, and the recycling facility wants to
adhere to strict emission limits by not emitting more than 12 kg of smoke per day. For every ton
of raw material A that is used, 0.5 kg of smoke are emitted, and for every ton of raw material B
the smoke emission is 1 kg.

To determine the maximum number of tons of recycled material that the recycling facility can
produced per day subject to the above conditions, we set up a linear program.

Decision variables The key parameters to be determined are the total number of tons per
day that are used of raw material A and B, respectively. Because these are the parameters that
can be controlled in this decision problem, the following two variables, which correspond to
these “free” parameters, are called decision variables:

• x1 ∈ R≥0: amount of raw material A used per day (in t/d), and
• x2 ∈ R≥0: amount of raw material B used per day (in t/d).

Objective function The total number of tons of recycled material per day depends on the
number of tons of raw material A and B that are recycled daily. Because each ton of raw material
A and B lead to 0.72 t and 0.6 t of recycled material, respectively, and, as described, mixtures
behave linearly, the objective is to maximize the following linear form:

0.72 x1 + 0.6 x2︸ ︷︷ ︸
objective function

= z︸︷︷︸
value of the

objective function

.

Hence, in the two-dimensional (x1, x2)-space, the level curve for every fixed value of z is a line.

Constraints In addition to the non-negativity requirements, the variables are also constrained
by further conditions that can be of various types, like physical, economic, or legal conditions.

Smoke emission constraints. The maximum smoke emission must be no more than 12 kg/d.
We know that 0.5 kg of smoke are emitted per ton of raw material A and 1 kg of smoke per ton

6 Rico Zenklusen 1 Linear Programming and Polyhedra

of raw material B. When x1 tons of A and x2 tons of B are being used per day, we have

0.5 x1 + 1 x2

kilograms of smoke emitted per day. The following constraint makes sure that this value does
not exceed the emission limit of 12 kg/d:

0.5x1 + 1x2 ≤ 12 .
↑ ↑ ↑

coefficients of the “left-hand side (lhs)” “right-hand side (rhs)”

Transport capacities. The transport capacity of 20 t of total raw material per day is captures by
the following constraint:

x1 + x2 ≤ 20 .

Recycling performance. The facility can recycle 16 t/d of raw material A and 24 t/d of raw
material B. In other words, 1/16 d is needed to recycle one ton of A and 1/24 d to recycle one ton
of B. Because the processing of a mix of A and B behaves linearly, processing x1 tons of raw
material A and x2 tons of raw material B takes

1

16
x1 +

1

24
x2 days.

Thus we get the following inequality for the recycling performance constraint:

1

16
x1 +

1

24
x2 ≤ 1 .

Expressing the maximum recycling performance in time units per ton, we were able to link them
with the time constraints.

Purity constraint. We recall that the required impurity coefficient of the recycled material
must not exceed 30 and depends on the proportions of the raw materials used. Raw material A
alone leads to recycled material of impurity coefficient 18, whereas raw material B alone leads
to an impurity coefficient of 38. The proportion of raw material A used among all the used
raw material is x1

x1+x2
and, accordingly, the proportion of raw material B is x2

x1+x2
. The final

impurity coefficient is the weighted average of the impurity obtained when only using A or B,
respectively, which leads to the following purity constraint:

18 · x1
x1 + x2

+ 38 · x2
x1 + x2

≤ 30 .

Even though this constraint is not linear, it can be linearized by multiplying both sides by x1+x2.
This leads to the linear constraint

12x1 − 8x2 ≥ 0 ,

which ensures that the required purity level is achieved for the recycled material.

1.1 Introduction to linear programming Rico Zenklusen 7

Mathematical formulation Summarizing the above discussion, we obtain the following
linear program, which is a mathematical model of the described problem.

max 0.72x1 + 0.6x2
1
2x1 + x2 ≤ 12 (smoke emission)
x1 + x2 ≤ 20 (transport capacity)

1
16x1 + 1

24x2 ≤ 1 (recycling performance)
12x1 − 8x2 ≥ 0 (purity)

x1 ≥ 0 (non-negativity)
x2 ≥ 0 (non-negativity),

or, in matrix notation in canonical form, max c⊤x subject to Ax ≤ b and x ≥ 0, where

c =

(
24
20

)
, A =

1
2 1
1 1
1
16

1
24

−12 8

 , x =

(
x1
x2

)
, and b =

12
20
1
0

 .

Note that, to obtain canonical form, we multiplied the purity constraint by −1 to convert the
inequality type from “≥” into “≤”.

Graphical solution method As our example is modeled by two variables, every constraint
can be graphically represented in the (x1, x2)-space (see Figure 1.1). In order for a combination
of activities to be feasible, it has to satisfy all constraints simultaneously, including the non-
negativity constraints. We will call such points feasible solutions and the set of all feasible
solutions is called feasible region. In our example, the feasible region is the shaded area in
Figure 1.1.

If removing a constraint does not change the feasible region, then this constraint is called re-
dundant. Thus, removing redundant constraints does not change the problem. In our example,
the transport capacity constraint is redundant (see Figure 1.1). Whereas removing redundant
constraints may sometimes lead to a desirable simplification of the problem, finding and elimi-
nating them in large LPs may take considerable time, and is therefore often impractical. More-
over, when considering slight modifications of the entries of an LP—which is for example done
in sensitivity analysis—it may be that a redundant constraint becomes non-redundant. In any
case, the approaches we will study to solve LPs work irrespectively of the presence of redundant
constraints.

When superposing the level curves of the objective function with the feasible region, we
immediately obtain a graphical solution method. Moving the level curves in parallel with in-
creasing value as far as possible while still intersecting the feasible region, we can read off the
optimal value and solution from the graphical illustration (see Figure 1.2): z = 12.24 is the
maximum value of the objective function, which is achieved at the corner of the feasible region
that is named q in Figure 1.2 and which is given by the coordinates x1 = 12 and x2 = 6. Hence,
a combination of 12 tons of raw material A and 6 tons of raw material B per day maximizes the
total number of tons of recycled material under the constraints discussed above.

8 Rico Zenklusen 1 Linear Programming and Polyhedra

recycling performance
transport capacity

smoke

purity

10 20 30

10

20

30

x2

x1

0

Figure 1.1: Constraints of the recycling example.

ℓ1 regression

In statistics, regression analysis is used to estimate the relationships between different vari-
ables. In this section, we consider linear ℓ1 regression. Suppose we have a set of input points
x1, . . . , xk ∈ Rn, and for each input point xi we have a response variable yi ∈ R that we
observed. In linear regression, we consider a model where we assume that the response vari-
ables are an affine transformation of the input points plus some random error. This leads to the
question of finding an affine function f(x) := a⊤x + β, where a ∈ Rn and β ∈ R such that
f(x1), . . . , f(xk) is a good approximation of y1, . . . yk. To quantify how good the approxima-
tion is, ℓ1 regression uses the ℓ1 norm (contrary to the more common square error, which uses
the ℓ2 norm), leading to the following optimization problem

min

{
k∑

i=1

|yi − a⊤xi − β| : a ∈ Rn, β ∈ R

}
. (1.1)

Notice that because the response variables are scalars, the ℓ1 norm of the error yi − a⊤xi − β
is simply its absolute value. More generally, we could have response variables in a higher-
dimensional space Rm; the discussion here extends to this generalization in a straightforward
way.

1.1 Introduction to linear programming Rico Zenklusen 9

18

14.4

12.24

10.8

7.2

recycling performance
transport capacity

smoke

purity

max

q

10 20 30

10

20

30

6

12

x2

x1

0

Figure 1.2: Graphical solution method. The green dashed lines show level curves, which
are perpendicular to the direction in which we maximize. Among all level
curves touching the feasible region, the one corresponding to the largest objec-
tive value reveals the optimal value of the LP.

Problem (1.1) is not a linear program in its current form because the absolute value is not an
affine function. However, it can be converted into one by introducing, for i ∈ [k], a variable zi
that captures the ℓ1 error |yi − a⊤xi − β|:

min
k∑

i=1

zi

yi − a⊤xi − β ≤ zi ∀i ∈ [k]

−yi + a⊤xi + β ≤ zi ∀i ∈ [k]

a ∈ Rn

β ∈ R
z ∈ Rk .

(1.2)

Notice that the constraints imposed on the variables zi only require zi ≥ |yi−a⊤xi−β| and not
the ostensibly more natural zi = |yi−a⊤xi−β|. The reason is that requiring zi = |yi−a⊤xi−β|

10 Rico Zenklusen 1 Linear Programming and Polyhedra

would lead to a non-convex set of feasible solutions; however, linear programs always optimize
over a polyhedron, which is convex. Nevertheless, because we minimize the sum of the zi, the
fact that the zi will be at least as large as the absolute value is sufficient. They will automatically
satisfy zi = |yi − a⊤xi − β| in an optimal solution to the LP, because setting them to a larger
value would just lead to a strictly worse objective value. Hence, finding the optimal coefficients
in linear ℓ1 regression can be reduced to solving a linear program.

Figure 1.3 shows an example of linear ℓ1 regression with unidimensional input points, i.e.,
n = 1, applied to a small random data set.

2 4 6 8 10

2

4

6

8

10

y = 0.357 · x+ 3.057
R = 8.532

x

y

Figure 1.3: Example with 30 pairs (xi, yi) ∈ R2. The green line is the optimal linear ℓ1
regression computed by solving the corresponding linear program (1.2). The
sum of the vertical distances between the points and the line is the total error R
that got minimized.

Resource allocation

Resource allocation is one of the classical problem settings in Operations Research. The goal is
to distribute scarce resources among different activities, commonly with the objective of maxi-
mizing profit.

To exemplify this problem class, consider a fictitious Italian coffee-shop that wants to edge the
competition by brewing its own special coffee types. They are doing this by combining different
sorts of coffee beans into a single type. Moreover, they know how many beans of which sort
they need to produce one liter of a certain coffee type. Now they need to figure out how much
to produce of each coffee type (resource allocation) to maximize profit. Assume that they have
fixed amounts of coffee beans of each sort (scarce resource) to be used for the next brewing
cycle. Moreover, the coffee types need very different compositions of beans and each type gives
a different profit per liter. This is shown in Table 1.1, where we assume that there are four bean
sorts (Liberica, Excelsa, Arabica, and Robusta), and three coffee types (Prego, Barzo, Pronto).

1.1 Introduction to linear programming Rico Zenklusen 11

Bean sort Available amount Prego Barzo Pronto

Liberica 300 000 100 100 300
Excelsa 350 000 200 300 100
Arabica 250 000 100 100 250
Robusta 500 000 300 200 200

profit/liter - 10 10 20

Table 1.1: Beans needed per liter of each coffee type.

To approach this problem with linear programming, we first introduce a variable for each
coffee type, capturing the amount of coffee to be brewed of the corresponding type:

cj := production quantity of coffee type j (in liters) j ∈ {1, 2, 3} ,

where j = 1 corresponds to coffee type Prego, j = 2 to Barzo, and j = 3 to Pronto.
Now we introduce one constraint per bean type to ensure that the total number of beans needed

of each type is not exceeded by the production plan.

Liberica: 100c1 + 100c2 + 300c3 ≤ 300 000
Excelsa: 200c1 + 300c2 + 100c3 ≤ 350 000
Arabica: 100c1 + 100c2 + 250c3 ≤ 250 000
Robusta: 300c1 + 200c2 + 200c3 ≤ 500 000

Finally, we have non-negativity constraints:

cj ≥ 0 ∀j ∈ {1, 2, 3} .

The objective is to maximize the profit:

max 10c1 + 10c2 + 20c3 .

Hence, this completes the description of the problem in form of a linear program. Notice
that, to keep things as simple as possible, we assumed that unused beans do not have any value.
However, we could also assume that there is a salvage value per bean type for unused beans, and
this could still be modeled as a linear program.

Project scheduling

Consider a project comprising of a finite set of n tasks, where task i needs ti time for completion.
Additionally, some tasks depend on others and cannot be started before all the prerequisite tasks
are finished. Our goal is to minimize the makespan, i.e., the total time required to finish all
tasks and, thus, the whole project. Here we assume that any number of tasks can be processed
simultaneously without compromising performance or quality.

12 Rico Zenklusen 1 Linear Programming and Polyhedra

task 1
t1 = 4

task 2
t2 = 7

task 3
t3 = 5

task 4
t4 = 3

task 5
t5 = 10

task 6
t6 = 1

task 7
t7 = 6

task 8
t8 = 2

task 9
t9 = 1

Figure 1.4: Example project scheduling problem.

Figure 1.4 shows an example project with 9 tasks and the dependencies between the tasks.
For example, the arrow from task 3 to task 4 indicates that task 4 can only be started once task 3
has been completed.

We now show how this project scheduling question can be modeled by a linear program.
Assuming that work on the projects starts at time 0, denote by sv the starting time of task v.
Moreover, let z be a variable we introduce to denote the completion time of the whole project,
which is the completion time of the last task. We set up the following linear program.

min z
z ≥ sv + tv for every task v
sv ≥ su + tu for every dependency u of v
sv ≥ 0 for every task v
z ≥ 0

Let us check that solving (1.1.2) indeed yields an optimal task schedule (minimizing the
makespan). On the one hand, the optimal solution of the LP is a scheduling of the tasks satisfy-
ing the precedence constraints, so the optimal value is greater or equal to the minimal makespan.
On the other hand, every optimal schedule satisfies the constraints of the LP, hence it is a feasible
solution, and thus the optimal objective value is less or equal to the minimal makespan. There-
fore, the optimal solution of the LP is precisely the minimal makespan of the whole project.
Note that by backtracking from the end of the project and following tight constraints, one can
construct the “bottleneck” chain of tasks that determine the project completion time (see Fig-
ure 1.5). This reasoning leads to the following interesting property: The minimum makespan
is the same as the length of a longest path in the task graph, as shown in Figure 1.4, where the
length of a path is the sum of the processing times of the tasks on the path.

Shortest s-t path

The problem of finding a shortest path from one site to another frequently occurs in various
contexts, such as planning the quickest route from one physical location to another (from point
A to point B), finding the shortest chain of social connections between two people to test the six

1.1 Introduction to linear programming Rico Zenklusen 13

task 1
t1 = 4

task 2
t2 = 7

task 3
t3 = 5

task 4
t4 = 3

task 5
t5 = 10

task 6
t6 = 1

task 7
t7 = 6

task 8
t8 = 2

task 9
t9 = 1

Figure 1.5: The highlighted path shows a bottleneck chain of tasks. This is a longest path
in the above graph, where the length of the path is measured by summing up
the processing times of the tasks on the path. Hence, in the shown example, the
highlighted path has total length 22, which is the optimal makespan.

v1

v2

v3

v4

v5

v6

v7

v8

s

t

9

12

12

10

3

7

1
6

2
9

4

1

5

5

5

3

5

5

3

1

Figure 1.6: Example of finding a shortest s-t path.

degrees of separation hypothesis, or solving the Rubik’s Cube in the least number of moves. In
this section, we show that the shortest path problem can be reformulated in terms of an LP.

To formalize the setting of the shortest path problem, we are given a graph as shown in Fig-
ure 1.6, where a finite number of nodes is connected by arcs. Each arc a has a non-negative
length ℓ(a) ∈ R≥0 assigned to it; these are the numbers written next to the arcs in Figure 1.6.
Moreover, we have a designated start node s and end node t. The goal is to find a shortest way
to go from s to t, where we can only follow arcs from tail to head. (We formally introduce graph
theoretic notions and terminology later in this course.)

To reformulate the shortest s-t path problem as an LP, we introduce a non-negative variable
dv for each node v with which we want to capture the distance from s to v. In particular, the
distance from s to itself is zero, i.e., we can set ds = 0. Another example distance, for the
shown problem, is the distance from s to v5, which is 15, because the shortest path from s to v5
is s → v2 → v5 of length 15. Notice that the following is a valid constraint for the distances:
for any arc a from u to v, the distance from s to v is no greater than the distance from s to u plus

14 Rico Zenklusen 1 Linear Programming and Polyhedra

the length of the arc a. Indeed, to reach u from s, one option is to first visit v and then go from
v to u over the arc a. Due to this, we will impose the constraints

dv ≤ du + ℓ (a) for every arc a from u to v,

on the variables dv. In turns out that these constraints ensure that any dv is never strictly larger
then the distance from s to v. However, the discussed constraints allow for choosing distances
that are significantly shorter. For example, dv = 0 for every node v is a feasible solution.
Hence, our linear program will actually not minimize dt, but maximize it, which might sound
counter-intuitive at first sight. In summary, below is the LP formulation we are using.

max dt
ds = 0
dv ≤ du + ℓ (a) for every arc a from u to v
dv ≥ 0 for every node v

Let us justify why the optimal value of the above LP is indeed the shortest path distance from
s to t. First, for any path P , we can sum up all the constraints corresponding to arcs on the path
to obtain the inequality dt ≤ ds + ℓ(P) = ℓ(P). Thus the maximum value of dt we obtain
through the LP is not greater than the shortest path length. Moreover, by setting dv, for each
node v, to the actual distances from s to v, all of our constraints are fulfilled. Hence, dt is not
smaller than the shortest path length from s to t, implying that the optimal LP value is indeed
the distance from s to t.

Additionally, a shortest s-t path can be inferred from the optimal solution of the LP: starting
from t, on each step choose an arc to the current node for which the respective constraint is tight
and transition to the beginning of that arc. Figure 1.7 indicates in green next to each node v the
value dv. This is an optimal solution to the above LP. (Notice there are further optimal solutions;
for example one can exchange dv1 = 9 by dv1 = 8. In particular, this shows that there may be
vertices v ∈ V \ {s, t} for which, even in an optimal LP solution, dv is strictly smaller than the
s-v distance.)

1.2 Polyhedra and basic convex geometry

As discussed, linear programming is about maximizing or minimizing a linear (or affine) func-
tion over a polyhedron. Not surprisingly, the study of polyhedra is key in understanding and
solving linear programs. Moreover, as we will see later, polyhedra also play a central role in
Combinatorial Optimization.

1.2.1 Basic notions

We start with some basic notions and terminology.

Definition 1.4: Half-space & hyperplane

A half-space in Rn is a set of the form {x ∈ Rn : a⊤x ≤ β} for a ∈ Rn \{0} and β ∈ R.
Moreover, {x ∈ Rn : a⊤x = β} is called a hyperplane.

1.2 Polyhedra and basic convex geometry Rico Zenklusen 15

v1

v2

v3

v4

v5

v6

v7

v8

s

t

0

9

12

25

19

15

26

27

30

31

9

12

12

10

3

7

1
6

2
9

4

1

5

5

5

3

5

5

3

1

Figure 1.7: The green numbers show the dv-values of one optimal LP solution. A shortest
s-t path can be found by starting at t and backtracking along arcs that corre-
spond to tight LP constraints.

Definition 1.5: Polyhedron & polytope

A polyhedron P ⊆ Rn is a finite intersection of half-spaces. Moreover, a bounded
polyhedron is called a polytope.

An immediate consequence is that a polyhedron can be described by a finite set of linear
inequalities, which is generally known as an inequality description. In other words, for a poly-
hedron P ⊆ Rn, we can always write P = {x ∈ Rn : Ax ≤ b} for some A ∈ Rm×n and b ∈ Rm

with m ∈ Z≥0. Even though, as we already discussed in the context of linear programs, we can
always describe P in terms of less-than-or-equal inequalities, we allow an inequality description
of a polyhedron to have inequalities of both types and also equality constraints. Clearly, there
are many equivalent inequality descriptions for the same polyhedron.

Notice that polyhedra are convex sets.1 This follows immediately from the fact that half-
spaces are convex and the intersection of any family of convex sets is convex.

Definition 1.6: Redundancy

A linear inequality or equality of an inequality description of a polyhedron is called
redundant if removing it from the description does not change the polyhedron.

1We recall that a set X ⊆ Rn is convex if, for any x1, x2 ∈ X and λ ∈ [0, 1], we have λx1 + (1− λ)x2 ∈ X .

16 Rico Zenklusen 1 Linear Programming and Polyhedra

Example 1.7: Redundant constraints

The picture below shows a polytope with two redundant constraints, highlighted in red.

Definition 1.8: Dimension of a polyhedron

The dimension dim(P) of a polyhedron P ⊆ Rn is the dimension of a smallest-
dimensional affine subspace containing P , i.e.,

dim(P) := min{k ∈ Z≥0 : ∃A ∈ Rn×n with rank(A) = n− k & Ax =Ay ∀x, y ∈P} .

In particular, P is called full-dimensional if dim(P) = n.

Definition 1.9: Supporting hyperplane

Let P ⊆ Rn be a polyhedron. A hyperplane H = {x ∈ Rn : a⊤x = β} is called P -
supporting—or simply supporting, if P is clear from context—if P ∩ H ̸= ∅ and P is
contained in one of the two half-spaces defined by H , i.e., either P ⊆ {x ∈ Rn : a⊤x ≤
β} or P ⊆ {x ∈ Rn : a⊤x ≥ β}.

Example 1.10

The figure below shows a 2-dimensional polytope with two supporting hyperplanes.

1.2 Polyhedra and basic convex geometry Rico Zenklusen 17

Definition 1.11: Face, vertex, edge, and facet

Let P ⊆ Rn be a non-empty polyhedron.
(i) A face of P is either P itself or the intersection of P with a supporting hyperplane.

(ii) A vertex of P is a 0-dimensional face of P .
(iii) An edge of P is a 1-dimensional face of P .
(iv) A facet of P is a (dim(P)− 1)-dimensional face of P .

The empty polyhedron has only one face, which is the empty set. We denote by
vertices(P) the set of all vertices of P .

Notice that a face of a polyhedron P is also a polyhedron, because it is the intersection of
P with a hyperplane; indeed, this follows because a hyperplane is the intersection of two half-
spaces and a polyhedron is by definition a finite intersection of half-spaces. Thus, when talking
about the dimension of a face, we refer to the notion of dimension that we introduced for poly-
hedra.

Example 1.12

Below is a cube with three of its faces highlighted in red: a vertex, an edge, and a facet.

vertex

edge

facet

Note that vertices are the smallest (inclusion-wise and in terms of dimension) possible faces
of a non-empty polyhedron P , and edges are the next-smallest faces P can have. On the other
end, P is its largest face, and facets are the next-largest faces of P . A non-empty polyhedron
does not need to have any vertices or edges; for example, a hyperplane in Rn for n ≥ 3 is a
polyhedron without vertices or edges. Moreover, the empty polyhedron, the whole space Rn,
as well as polytopes consisting of a single point, do not have any facets. However, all other
polyhedra do have facets.

Proposition 1.13

Let P = {x ∈ Rn : Ax ≤ b} ⊆ Rn be a non-empty polyhedron with A ∈ Rm×n and
b ∈ Rm, and let F ⊆ P . Then the following statements are equivalent.

(i) F is a face of P .
(ii) ∃c ∈ Rn such that δ := max{c⊤x : x ∈ P} is finite and F = {x ∈ P : c⊤x = δ}.

(iii) F = {x ∈ P : Ax = b} ≠ ∅ for a subsystem Ax ≤ b of Ax ≤ b.

18 Rico Zenklusen 1 Linear Programming and Polyhedra

Proof. Points (i) and (ii) are clearly equivalent by the definition of a face. We complete the proof
by showing the equivalence between (iii) and (ii).
(iii) ⇒ (ii): Let c = A

⊤
1, where 1 ∈ Rm denotes the all-ones vector. We show that this vector

c fulfills the condition stated in (ii). Indeed, for any x ∈ P we have

c⊤x = 1⊤Ax ≤ 1⊤b ,

with equality if and only if Ax = b. Hence, for δ := 1⊤b = max{c⊤x : x ∈ P}, we have

{x ∈ P : c⊤x = δ} = {x ∈ P : Ax = b} = F ,

as desired.

(ii) ⇒ (iii): Let Ax ≤ b be the subsystem of all constraints of Ax ≤ b that are tight for all points
in F . We will show that these constraints satisfy F = {x ∈ P : Ax = b}, thus implying (iii).

Let Ãx ≤ b̃ be all other constraints of Ax ≤ b. Hence, for each constraint ã⊤x ≤ β̃ of
Ãx ≤ b̃, there is a point xã ∈ F with ã⊤xã < β. By summing up all of these points xã for all
rows ã of Ã and dividing by the number of rows of Ã, a point z ∈ Rn is obtained such that

(i) z ∈ F and hence c⊤z = δ, because z is a convex combination of the xã, and
(ii) Ãz < b̃ component-wise.

We complete the proof by showing that any point y ∈ P \F fulfills Ay ̸= b. Because y ∈ P \F ,
we have

c⊤y < δ = c⊤z . (1.3)

We now define for any ε > 0 the point

xε := z + ε · (z − y) .

Notice that for any ε > 0 we have
c⊤xε > δ

because of (1.3). Hence, xε ̸∈ P as δ = max{c⊤x : x ∈ P}. Thus, xε violates one of the
constraints of Ax ≤ b, no matter how small ε > 0 is. For small enough ε > 0, only constraints
of Ax ≤ b can be violated, because no other constraint of Ax ≤ b is tight at z. Hence, there is
some constraint a⊤x ≤ β of Ax ≤ b such that a⊤xε > β for any ε > 0, which, by the definition
of xε and the fact that a⊤z = β, implies a⊤y < β. Thus, Ay ̸= b, as desired.

Proposition 1.13 reveals a basic property of faces, namely that the face relationship is transi-
tive.

Corollary 1.14

Let P be a polyhedron. Then a face of a face of P is itself a face of P .

Proof. This follows immediately from point (iii) of Proposition 1.13.

1.2 Polyhedra and basic convex geometry Rico Zenklusen 19

Definition 1.15: Facet-defining inequality

Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron. An inequality a⊤x ≤ β of the system
Ax ≤ b is facet-defining if F := P ∩ {x ∈ Rn : a⊤x = β} is a facet of P . We also say
that a⊤x ≤ β is a constraint defining the facet F .

Example 1.16: Facet-defining inequalities

The example below shows a polytope P ⊆ R3 with dim(P) = 2. The two red constraints
imply an equality constraint and are responsible for P not being full-dimensional. Notice
that neither of these two constraints is facet-defining even though they are both not redundant.
Moreover, the orange constraint and the non-negativity constraint x1 ≥ 0 (highlighted in gray)
both define the same facet of P .

x1
x2

x3

P

P =

x1 + x2 + x3 ≤ 2
x1 + x2 + x3 ≥ 2
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0

− 4x1 + x2 + x3 ≤ 2

In the 2-dimensional example shown below, all constraints except for the red one are facet-
defining. Whenever P is full-dimensional, every non-facet-defining constraint is redundant.
However, as highlighted by the example above, this does not hold for lower-dimensional poly-
hedra.

x1

x2

0 1 2 3 4 5 6

1

2

3

4

5

6

P
P =

x1 − x2 ≥ −3

4x1 + x2 ≥ 4
x2 ≥ 1

x1 − 2x2 ≤ 2
x1 − x2 ≤ 3

20 Rico Zenklusen 1 Linear Programming and Polyhedra

Proposition 1.17

Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron. For any facet F ⊆ P of P , there is at
least one inequality a⊤x ≤ β of Ax ≤ b that defines F .

Proof. Let F ⊆ P be a facet of P . By Proposition 1.13, F can be written as

F =
{
x ∈ P : Ax = b

}
, (1.4)

where Ax = b is a subsystem of Ax ≤ b. Because F is a facet of P we have dim(F) =
dim(P) − 1. Hence, in particular F ̸= P , which implies that there is an equality a⊤x = β
among Ax = b such that P ̸⊆ {x ∈ Rn : a⊤x = β}. Hence

dim({x ∈ P : a⊤x = β}) < dim(P) . (1.5)

We finish the proof by observing in the following that

F = {x ∈ P : a⊤x = β} .

Notice that (1.4) implies
F ⊆ {x ∈ P : a⊤x = β} . (1.6)

Furthermore, it is impossible that there is a point y ∈ {x ∈ P : a⊤x = β} \ F , as this would
imply dim({x ∈ P : a⊤x = β}) > dim(F), which, together with (1.5) implies dim(F) ≤
dim(P)− 2, thus contradicting dim(F) = dim(P)− 1.

Definition 1.18: Extreme point

Let P be a polyhedron. A point y ∈ P is an extreme point of P if it is not the midpoint of
two distinct points of P , i.e., there are no p1, p2 ∈ P with p1 ̸= p2 and y = 1

2(p1 + p2).

Note that one can equivalently define an extreme point y ∈ P of a polyhedron P by requiring
that y is not a non-trivial convex combination of two distinct points p1, p2 ∈ P , i.e., we cannot
write y = λp1 + (1 − λ)p2 with λ ∈ (0, 1). This follows by observing that if a point in a
convex set C is a non-trivial convex combination of two distinct points in C, then it is also the
midpoint of two distinct points in C. In short, this modified definition as well as the one stated
in Definition 1.18 state that for y to be an extreme point in P , it should not be in the interior of
a segment that lies in P .

Proposition 1.19

Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron and y ∈ P . Then the following statements
are equivalent.

(i) y is a vertex of P .
(ii) y is the unique solution to Ax = b, where Ax ≤ b is the subsystem of Ax ≤ b

containing all y-tight constraints.
(iii) y is an extreme point of P .

1.2 Polyhedra and basic convex geometry Rico Zenklusen 21

Proof. We show the statement by showing (i)⇒ (iii)⇒ (ii)⇒ (i).
(i) ⇒ (iii): We show this statement by showing that if y is not an extreme point of P , then

it is also not a vertex of P . The point y not being an extreme point implies that there are two
distinct points p1, p2 ∈ P with y = 1

2p1 +
1
2p2. For y to be a vertex, there needs to be a vector

c ∈ Rn such that y is the unique maximizer of max{c⊤x : x ∈ P}. However, this is impossible
no matter how c is chosen, because c⊤y = 1

2c
⊤p1 +

1
2c

⊤p2. Hence, at least one of c⊤p1 and
c⊤p2 is no smaller than y. Thus, y is not the unique maximizer of max{c⊤x : x ∈ P}.

(iii) ⇒ (ii): We show this statement by showing the contraposition, i.e., we assume that y
is not the unique solution to Ax = b, where Ax ≤ b is the subsystem of Ax ≤ b containing
all y-tight constraints, and show that y is not an extreme point. Indeed, if y is not the unique
solution of Ax = b, then the dimension of {x ∈ Rn : Ax = b} is at least one; hence, there
is a non-zero vector v ∈ Rn such that Av = 0. Moreover, by choosing ε > 0 small enough
we have y + εv ∈ P and y − εv ∈ P , because all constraints of Ax ≤ b except for those
corresponding to Ax ≤ b are not y-tight, and y ± εv does not violate any y-tight constraints
because A(y±εv) = Ay = b. However, this implies that y is the midpoint of y+εv and y−εv,
and thus, y is not an extreme point of P .

(ii)⇒ (i): If y is the unique solution to Ax = b, where Ax ≤ b is the subsystem of Ax ≤ b
containing all constraints that are y-tight, then

{y} = {x ∈ P : Ax = b} .

By Proposition 1.13, {y} is therefore a face of P and, because it is 0-dimensional, the point y is
a vertex of P .

Even though we focus here on polyhedra, we want to highlight that some natural results like
Proposition 1.19 may not hold anymore when extending the involved notions to closed convex
sets. For example, when defining extreme points and vertices for closed convex sets analogously
to the polyhedral case, then an extreme point of a closed convex set does not need to be a vertex
of it. See Figure 1.8 for an illustration.

A

B C

D

E

Figure 1.8: A closed and bounded convex set with an infinite number of extreme points and
vertices, due to the curved boundary on the right of the object, which forms a
half-circle. All of the five named points are extreme points. However, among
these points, only A, B, and D are vertices. The points C and E are extreme
points but not vertices because there is no supporting hyperplane that touches
the set only at C or E, respectively.

22 Rico Zenklusen 1 Linear Programming and Polyhedra

Lemma 1.20

Let P = {x ∈ Rn : Ax ≤ b} be a full-dimensional polyhedron, then each inequality
a⊤x ≤ β of Ax ≤ b that is not facet-defining for P is redundant.

Proof. We prove the contraposition. Hence, assume that a⊤x ≤ β is not redundant, and we
will show that it is facet-defining for P . Let Ax ≤ b be all constraints of Ax ≤ b except for
a⊤x ≤ β. We define

Q :=
{
x ∈ Rn : Ax ≤ b

}
.

Because a⊤x ≤ β is not redundant, there is a point y ∈ Q\P , and hence a⊤y > β. Moreover, let
z ∈ P be a point in the interior of P , which exists because P is full-dimensional. Consequently,
there is some ε > 0 such that the ball B(z, ε) around z of radius ε, i.e.,

B(z, ε) = {x ∈ Rn : ∥x− z∥2 ≤ ε} ,

is contained in P , i.e., B(z, ε) ⊆ P . Notice that a⊤z < β, because z is in the interior of P .
Furthermore, as B(z, ε) ⊆ P ⊆ Q and y ∈ Q, we have that the set

C := conv(B(z, ε) ∪ {y})

satisfies
C ⊆ Q .

Because C is full-dimensional and contains points in the interior of each of the sides of the
hyperplane defined by a⊤x = β, namely the points y and z, we have that

C ∩ {x ∈ Rn : a⊤x = β}

is (n − 1)-dimensional. Finally, C ∩ {x ∈ Rn : a⊤x = β} ⊆ P because C ⊆ Q. Hence,
{x ∈ P : a⊤x = β} is (n − 1)-dimensional, which implies that a⊤x ≤ β is facet-defining for
P .

Corollary 1.21

Let P ⊆ Rn be a polyhedron, and let f be the number of facets of P . Then, every inequal-
ity description of P requires at least f inequalities. Moreover, if P is full-dimensional,
then an inequality description of P with f inequalities exists.

Proof. By Proposition 1.17, any inequality description of P needs at least one inequality per
facet of P . It remains to show that there is an inequality description of P with facet-many
inequalities if P is full-dimensional.

To this end, we start with an arbitrary inequality description P = {x ∈ Rn : Ax ≤ b} of P ,
and successively remove redundant constraints. We will be left with only facet-defining con-
straints due to Lemma 1.20. Let Ax ≤ b be the subsystem of Ax ≤ b of remaining constraints
after all redundant constraints have been successively removed from Ax ≤ b. Because only
redundant constraints have been successively removed, we have P = {x ∈ R : Ax ≤ b}. We

1.2 Polyhedra and basic convex geometry Rico Zenklusen 23

claim that this description has facet-many inequalities. Because each inequality of Ax ≤ b is
facet-defining, it remains to show that no two different inequalities a⊤1 x ≤ β1 and a⊤2 x ≤ β2
of Ax ≤ b define the same facet F ⊆ P of P . Assume for sake of contradiction that this
is not the case, i.e., F = {x ∈ P : a⊤1 x = β1} = {x ∈ P : a⊤2 x = β2}. Now, because
P ⊆ Rn is full-dimensional, there are n affinely independent points in F . As the hyperplanes
{x ∈ Rn : a⊤i x = βi} for i ∈ [2] := {1, 2} both contain these n affinely independent points,
and must be such that P ⊆ {x ∈ Rn : a⊤i x ≤ βi}, the half-spaces {x ∈ Rn : a⊤i x ≤ bi}
are the same for i ∈ [2]. This contradicts the fact that we removed successively all redundant
constraints, because the two constraints a⊤i x ≤ βi for i ∈ [2] are redundant. (Even though this
is not relevant for this proof, notice that after removing one of them, the other one may not be
redundant anymore.)

Definition 1.22: Degeneracy with respect to linear inequality descriptions

Consider a linear inequality description of a polyhedron P ⊆ Rn. A vertex y ∈
vertices(P) is called degenerate (w.r.t. the linear inequality description) if the number
of y-tight constraints in the linear inequality description is strictly larger than n. The
inequality description is called degenerate if there is a degenerate vertex with respect to
it.

Example 1.23: Degenerate vertex & degenerate inequality description

Below is a 2-dimensional polytope with a corresponding inequality description that is degen-
erate, because the vertex (41) is degenerate with respect to the given inequality description.

x1

x2

0 1 2 3 4 5 6

1

2

3

4

5

6

P
P =

x1 − x2 ≥ −3
4x1 + x2 ≥ 4

x2 ≥ 1
x1 − 2x2 ≤ 2
x1 − x2 ≤ 3
x1 + x2 ≤ 8

Definition 1.24: Degeneracy of a polyhedron

A polyhedron P ⊆ Rn is called degenerate if it has a vertex y ∈ P contained on strictly
more than dim(P) many facets.

Notice that even though the inequality description of the polytope in Example 1.23 is degen-

24 Rico Zenklusen 1 Linear Programming and Polyhedra

erate, the polytope itself is not degenerate.

Example 1.25: Degenerate polyhedron

Below is an example of a degenerate 3-dimensional polytope, namely a pyramid with a square
base. It is degenerate because the apex of the pyramid is a vertex contained in 4 facets.

x1

x2

x3

P
P =

x3 ≥ 0

2x1 − x3 ≥ 0
2x1 + x3 ≤ 2

2x2 − x3 ≥ 0
2x2 + x3 ≤ 2

In particular, if a polyhedron P ⊆ Rn is degenerate, then any inequality description for it
is degenerate too. This is a consequence of Proposition 1.17, which implies that for each facet
there must be a facet-defining inequality.

Definition 1.26: Dominant

For a set X ⊆ Rn, its dominant dom(X) ⊆ Rn is defined by

dom(X) := X + Rn
≥0 = {x+ y : x ∈ X, y ∈ Rn

≥0} .

For X,Y ⊆ Rn, the set addition X + Y := {x+ y : x ∈ X, y ∈ Y }, which we used above in
the definition of the dominant, is called the Minkowski sum.

Example 1.27: Dominant

The figure below shows an unbounded polyhedron P ⊆ R2 together with its corresponding
dominant dom(P).

1.2 Polyhedra and basic convex geometry Rico Zenklusen 25

dom (P)

P

Before moving over to the representation of polyhedra, we provide an example of a Minkowski
sum, because this simple yet useful operation will be relevant also later on. Hence, it is helpful
to develop some intuition for it.

Example 1.28: Minowski sum

The graphic below shows the Minkowski sum P + Q of two 2-dimensional polytopes P and
Q. The third pictures illustrates that P +Q can be obtained by “shifting” one of the polytopes,
say P , to each vertex of the other one—such that the origin in the figure showing P lies at the
vertices of Q—and then taking the convex hull of the shifted versions of P . In particular, each
vertex of P +Q is the sum of a vertex of P and one of Q. However, not all sums of vertices in
P and Q lead to a vertex of P +Q.

P
+

Q

=
P +Q

1.2.2 Representation of polyhedra

As mentioned, polyhedra are a basic family of convex sets. Not surprisingly, convexity is ex-
ploited in a multitude of results and algorithms linked to polyhedra. At the heart of convexity is
the notion of a convex combination.

Definition 1.29: Convex combination

A convex combination of x1, . . . , xk ∈ Rn is a point described by
∑k

i=1 λixi, where
λ ∈ Rk

≥0 and
∑k

i=1 λi = 1.

In this course, convex combinations are always with respect to a finite number of elements.
The fact that linear combinations with the above properties are called convex combinations is

26 Rico Zenklusen 1 Linear Programming and Polyhedra

motivated by the observation that a set X ⊆ Rn is convex if and only if any convex combination
of finitely many points in X lies in X . The convex combinations of an arbitrary point set are
known as its convex hull.

Definition 1.30: Convex hull

Let X ⊆ Rn. The convex hull conv(X) ⊆ Rn of X are all convex combinations of finitely
many points in X , i.e.,

conv(X) :=

{
k∑

i=1

λixi

∣∣∣∣∣ k ∈ Z≥1, x1, . . . , xk ∈ X, and
λ1, . . . , λk ∈ R≥0 with

∑k
i=1 λi = 1

}
.

Hence, a set X ⊆ Rn is convex if and only if conv(X) = X . This, together with the fact that
the convex hull operator is monotone, i.e., conv(X) ⊆ conv(Y) for any X ⊆ Y ⊆ Rn, implies
that conv(X) is the smallest convex set containing X .

Example 1.31: Convex hull

Example of the convex hull in 2 dimensions. The red area is the convex hull of the blue objects.

The following proposition highlights how polytopes are described by their vertices. The state-
ment will be proven in the problem sets.

Proposition 1.32

A polytope is the convex hull of its vertices.

Moreover, as stated below, the convex hull of any finite point set is a polytope. Again, the
statement will be shown in one of the problem sets.

Proposition 1.33

Let X ⊆ Rn be a finite set. Then conv(X) is a polytope.

1.2 Polyhedra and basic convex geometry Rico Zenklusen 27

To move from polytopes to polyhedra, we have to consider unbounded sets. One of the most
basic building blocks when dealing with unbounded sets are cones, which we define below. They
allow for obtaining a nice characterization of polyhedra that we mention later.

Definition 1.34: (Polyhedral) cone

A cone is a set C ⊆ Rn such that for any x ∈ C and λ ∈ R≥0 we have λ ·x ∈ C. A cone
that is a polyhedron is called a polyhedral cone.

We highlight that a cone does not need to be convex. Nevertheless, we will mostly be in-
terested in convex cones. These can be characterized as the sets that are invariant under conic
combinations, which are linear combinations with exclusively non-negative coefficients.

Example 1.35

Below are four examples of cones in R3. The first two of them are convex cones whereas the
last two are not. Moreover, only the first one is a polyhedral cone. Notice that the third is not a
polyhedral cone because it is not a polyhedron as it is not even convex.

x
y

z

x
y

z

x
y

z

x
y

z

Proposition 1.36

If C ⊆ Rn is a non-empty polyhedral cone, then

C = {x ∈ Rn : Ax ≤ 0} , (1.7)

for some matrix A ∈ Rm×n, where m ∈ Z≥0. Vice-versa, any set C with a description
as in (1.7) is a polyhedral cone.

Proof. Let C ⊆ Rn be a polyhedral cone. Because C is a polyhedron, we have

C = {x ∈ Rn : Ax ≤ b}

for some A ∈ Rm×n and b ∈ Rm, and we assume without loss of generality that none of the
constraints Ax ≤ b are redundant; for otherwise, we could first successively remove redundant
constraints. We claim that b = 0. For otherwise, there is some constraint a⊤x ≤ β with β ̸= 0
in the system Ax ≤ b. Because a⊤x ≤ β is not redundant, there is a point y ∈ C with a⊤y = β.

28 Rico Zenklusen 1 Linear Programming and Polyhedra

However, because C is a cone, we must have 1
2y, 2y ∈ C; but one of these points violates the

constraint a⊤x ≤ β. (If β > 0, then 2y will violate it; otherwise 1
2y will violate the constraint.)

Hence, b = 0, and we have C = {x ∈ Rn : Ax ≤ 0} as desired.
Conversely, any set C ⊆ Rn with C = {x ∈ Rn : Ax ≤ 0} for A ∈ Rm×n and b ∈ Rm is

clearly a polyhedron and a cone, and thus a polyhedral cone.

Another way to characterize polyhedral cones is by the fact that they have a finite set of
generators, as formalized in the statement below. This will be shown in the problem sets.

Proposition 1.37

If C ⊆ Rn is a polyhedral cone, then

C =

{
k∑

i=1

λixi : λi ≥ 0 ∀i ∈ [k]

}
, (1.8)

for some finite set of points x1, . . . , xk ∈ Rn. The points x1, . . . , xk are called a set of
generators of C. Vice-versa, any set C as described in (1.8) is a polyhedral cone.

Polyhedral cones can be thought of as the most basic unbounded polyhedra. The statement
below underlines this intuition by showing that any polyhedron can be written as a Minkowski
sum of a polytope and a polyhedral cone. The proof of it will be covered in the problem sets.

Proposition 1.38

Let P ⊆ Rn be a polyhedron. Then

P = Q+ C ,

where Q ⊆ Rn is a polytope and C ⊆ Rn is a polyhedral cone. Vice-versa, the
Minkowski sum of a polytope and a polyhedral cone is always a polyhedron.

Example 1.39

The graphic below shows an unbounded 2-dimensional polyhedron P and how it can be written
as the Minkowski sum of a polytope Q and a polyhedral cone C.

P = Q +
C

The above characterizations of polytopes and polyhedra often allow for deriving short and
elegant proofs of further important statements. One such statement, shown below, states that the
family of polyhedra is invariant under affine transformations. This property is at the heart of

1.2 Polyhedra and basic convex geometry Rico Zenklusen 29

various techniques in Combinatorial Optimization, in particular when a complex polytope, say
one with a very large number of facets, is described as the affine projection of a much simpler
one.

Proposition 1.40

An affine image of a polyhedron is a polyhedron, i.e., for any polyhedron P ⊆ Rn and
any affine function φ : Rn → Rm, the set φ(P) := {φ(x) : x ∈ P} is a polyhedron.

Proof. We first observe that it suffices to prove the statement only for linear functions φ : Rn →
Rm instead of affine ones. This follows from the fact that a translation of a polyhedron is
again a polyhedron. Indeed, a general affine function φ : Rn → Rm can always be written as
φ(x) = ϕ(x) + t, where ϕ : Rn → Rm is a linear function and t ∈ Rm. Now assume that for
any polyhedron P ⊆ Rn, the image ϕ(P) ⊆ Rm is again a polyhedron. We then have

φ(P) = ϕ(P) + t

= {x ∈ Rm : Ax ≤ b}+ t

= {x+ t : x ∈ Rm, Ax ≤ b}
= {y ∈ Rm : A(y − t) ≤ b}
= {y ∈ Rm : Ay ≤ b+At} ,

(1.9)

where the second equality follows from the assumption that ϕ(P) is a polyhedron, and can thus
be described by a linear inequality system ϕ(P) = {x ∈ Rm : Ax ≤ b}, and the penultimate
equality substitutes x + t by y. Indeed, (1.9) shows that φ(P) is a finite intersection of half-
spaces and therefore a polyhedron, as desired.

Hence, let P ⊆ Rn and it remains to show the statement for linear functions φ : Rn → Rm.
To highlight that the function is linear, we denote it again by ϕ : Rn → Rm. By Proposition 1.38,
any polyhedron P can be written as a Minkowski sum

P = Q+ C ,

where Q ⊆ Rn is a polytope and C ⊆ Rn is a polyhedral cone. Observe that

ϕ(P) = ϕ(Q+ C)

= {ϕ(q + c) : q ∈ Q, c ∈ C}
= {ϕ(q) + ϕ(c) : q ∈ Q, c ∈ C}
= ϕ(Q) + ϕ(C) .

(1.10)

We finish the proof by showing that ϕ(Q) ⊆ Rm is a polytope and ϕ(C) ⊆ Rm is a polyhedral
cone, which, by Proposition 1.38 then implies that ϕ(Q) + ϕ(C) is a polyedron, thus finishing
the proof because ϕ(P) = ϕ(Q) + ϕ(C) by (1.10).

Because Q is a polytope, we have

Q = conv(vertices(Q))

30 Rico Zenklusen 1 Linear Programming and Polyhedra

by Proposition 1.32. Let vertices(Q) = {q1, . . . , qk}. Hence,

ϕ(Q) = {ϕ(x) : x ∈ conv(vertices(Q))}

=

{
ϕ

(
k∑

i=1

λiqi

)
: λ ∈ Rk

≥0,

k∑
i=1

λi = 1

}

=

{
k∑

i=1

λiϕ(qi) : λ ∈ Rk
≥0,

k∑
i=1

λi = 1

}
= conv({ϕ(q) : q ∈ vertices(Q)}) ,

implying that ϕ(Q) is the convex hull of the finitely many points ϕ(q1), . . . , ϕ(qk), and thus is a
polytope due to Proposition 1.32.

It remains to show that ϕ(C) ⊆ Rm is a polyhedral cone. By Proposition 1.37, there are some
points x1, . . . , xℓ ⊆ Rn such that

C =

{
ℓ∑

i=1

λixi : λ ∈ Rℓ
≥0

}
.

Hence,

ϕ(C) =

{
ϕ

(
ℓ∑

i=1

λixi

)
: λ ∈ Rℓ

≥0

}

=

{
ℓ∑

i=1

λiϕ(xi) : λ ∈ Rℓ
≥0

}
,

which implies by Proposition 1.37 that ϕ(C) ⊆ Rm is a polyhedral cone, as desired.

Example 1.41: Projection of polytope

The illustration below shows an axis-parallel projection of a 3-dimensional polytope leading to
a 2-dimensional octagon. First, this exemplifies that the projection of a polytope is a polytope.

Moreover, we highlight that the number of facets of the projection, which is 8, is strictly larger
than the number of facets of the original polytope, which is only 6. The fact that polyhedra

1.2 Polyhedra and basic convex geometry Rico Zenklusen 31

with many facets can sometimes be represented as projections of polyhedra with much fewer
facets is a crucial property that can sometimes be exploited to obtain compact representations
of polyhedra with exponentially many facets in terms of the dimension. More precisely, there
are polytopes P ⊆ Rn whose number of facets is 2Ω(n), which can be obtained as a projection
of a polytope Q ⊆ Rm for some m ≥ n, where the number of facets of Q is bounded by a
polynomial in n.
Moving to a higher-dimensional space and then projecting is crucial to obtain a compact rep-
resentation. Indeed, due to Corollary 1.21, any inequality description of a polyhedron with ex-
ponentially many facets needs exponentially many constraints; actually, at least one per facet.

Moreover, Proposition 1.40 can be leveraged to show that certain sets are polyhedra by show-
ing that they are affine projections of polyhedra. This allows us to provide a simple proof of the
following basic fact on dominants.

Proposition 1.42

The dominant of a polyhedron is a polyhedron.

Proof. Let P ⊆ Rn be a polyhedron. We recall the definition of the dominant of P , i.e.,

dom(P) = P + Rn
≥0 .

By Proposition 1.38, the polyhedron P can be written as

P = Q+ C ,

where Q ⊆ Rn is a polytope and C ⊆ Rn is a polyhedral cone. Hence,

dom(P) = Q+ C + Rn
≥0 .

We prove the result by showing that C+Rn
≥0 is a polyhedral cone. This indeed finishes the proof

because dom(P) = Q + (C + Rn
≥0) is the Minkowski sum of a polytope Q and a polyhedral

cone C + Rn
≥0, and thus a polyhedron due to Proposition 1.38.

By Proposition 1.37, there are points x1, . . . , xk ∈ Rn such that

C =

k∑

j=1

µjxj : µ ∈ Rk
≥0

 .

Hence, by denoting by ei ∈ Rn the i-th unit vector in Rn, we have

C + Rn
≥0 =

k∑

j=1

µjxj : µ ∈ Rk
≥0

+

{
n∑

i=1

λiei : λ ∈ Rn
≥0

}

=

k∑

j=1

µjxj +
n∑

i=1

λiei : µ ∈ Rk
≥0, λ ∈ Rn

≥0

 ,

which implies by Proposition 1.37 that C + Rn
≥0 is a polyhedral cone, as desired.

32 Rico Zenklusen 1 Linear Programming and Polyhedra

1.2.3 Convex separation theorems

Definition 1.43: (Strictly) separating hyperplanes

Let Y,Z ⊆ Rn be two sets. A hyperplane H = {x ∈ Rn : a⊤x = β} is called a (Y,Z)-
separating hyperplane, or simply separating hyperplane, if Y is contained in one of the
half-spaces defined by H and Z in the other one, i.e., either

a⊤y ≤ β ≤ a⊤z ∀y ∈ Y, z ∈ Z , or

a⊤y ≥ β ≥ a⊤z ∀y ∈ Y, z ∈ Z .

The hyperplane is called strictly (Y,Z)-separating, or simply strictly separating, if the
above inequalities are strict.

If Y = {y} is a single point, we also write (y, Z)-separating hyperplane instead of ({y}, Z)-
separating hyperplane.

Example 1.44: Separating two sets

The illustration below shows two sets Y,Z ⊆ R2 together with three separating hyperplanes.
Hyperplane 3 is strictly separating the sets whereas hyperplanes 1 and 2 do not separate Y and
Z in a strict sense.

Y Z

12 3

Theorem 1.45: Separating a point from a polyhedron

Let P ⊆ Rn be a polyhedron and y ∈ Rn \ P . Then there is a strictly (y, P)-separating
hyperplane.

Proof. Consider an inequality description of P , i.e., P = {x ∈ Rn : Ax ≤ b}. Because
y ∈ Rn \ P , there is an inequality a⊤x ≤ β among the system Ax ≤ b such that a⊤y > β.
Then, the hyperplane {

x ∈ Rn : a⊤x =
1

2

(
β + a⊤y

)}

1.2 Polyhedra and basic convex geometry Rico Zenklusen 33

is strictly (y, P)-separating because

a⊤x ≤ β <
1

2

(
β + a⊤y

)
∀x ∈ P, and

a⊤y >
1

2

(
β + a⊤y

)
,

where the last inequality follows from a⊤y > β.

Example 1.46: Separating a point from a polyhedron

The illustration below shows a hyperplane strictly separating a point from a polytope. When-
ever a point is not contained in a polytope, it can always be strictly separated.

P

y

Moreover, as the proof of Theorem 1.45 highlights, one can always choose a separating hy-
perplane with the same normal vector as one of the constraints in any inequality description of
P . In particular, if P is full-dimensional, like in the example above, we can use an inequality
description that has one inequality per facet (see Corollary 1.21), and therefore separate y with
a hyperplane that is parallel to a facet of P , as illustrated below.

P

y

The above separation theorem is a very special case of the following much more general
convex separation theorem, which we state below without proof.

Theorem 1.47

Let Y,Z ⊆ Rn be two disjoint closed convex sets with at least one of them being com-
pact, then there exists a strictly (Y,Z)-separating hyperplane.

Example 1.48: Separating two sets

The illustration below shows two convex sets strictly separated by a hyperplane, which is al-
ways possible.

34 Rico Zenklusen 1 Linear Programming and Polyhedra

Y Z

However, when at least one of the sets is not convex, separation may not be possible anymore
as illustrated in the example below.

Y Z

1.3 Simplex Method

What is known as Simplex Methods, or simply the Simplex Method, is a class of approaches to
solve linear programs. Simplex Methods maintain a vertex solution that they iteratively improve
by moving along the edges of the feasible region to strictly better vertex solutions. The Simplex
Method is widely used in practice, despite the fact that there is no known realization of it that is
guaranteed to run efficiently, i.e., in polynomial time (see Chapter 2 for more details on Com-
putational Complexity). Moreover, most variants of the Simplex Method are even known to run
in exponential time on some instances. Nevertheless, the Simplex Method shows excellent per-
formance when applied to practical problems. Moreover, its study allows us to obtain a deeper
understanding of linear programming in general and comes in handy to discuss further concepts
like linear duality.

1.3.1 Geometric idea

We start with a high-level description of the main geometric idea behind the Simplex Method.
Consider a linear program max{c⊤x : x ∈ P}, where P ⊆ Rn is a polyhedron. Assume that we
know a vertex y ∈ vertices(P). The Simplex Method seeks to improve the solution y through
a local-search approach, that goes along one of the edges incident with y. In case of P being a
polytope, each of these edges will lead to another vertex of P ; such vertices that can be reached
from y by following an edge are called polyhedral neighbors, or simply neighbors, of y (with
respect to P). A key observation behind the Simplex Method is the following:

(i) Either y is an optimal solution to max{c⊤x : x ∈ P}, or

1.3 Simplex Method Rico Zenklusen 35

(ii) there is an edge incident with y such that by going along the edge, the objective value
strictly increases. In particular, if another vertex z is encountered along this edge, then
c⊤z > c⊤y; otherwise, if one can continue indefinitely along the edge without leaving P ,
then the linear program is unbounded because we can get solutions with arbitrarily high
objective value.

To illustrate the above, consider a linear program on a polytope P . Here, the Simplex Method
will do a walk along the edges of P , going from one vertex to a strictly better one until an
optimal vertex is reached. See Figure 1.9 for an illustration.

x

y

z

x
y

z

c =

0
1
1

 c =

0
1
1

Figure 1.9: Illustration of a possible walk performed by the Simplex Method in a 3-
dimensional linear program. The feasible region is the polytope depicted in
blue and the task is to maximize the objective y+ z. The right-hand side shows
the projection of the feasible region onto the (y, z)-space. In this projection,
one can nicely see that whenever we move from a vertex to a neighboring one,
the objective function value strictly increases.

In case of an unbounded LP, which implies in particular that P is an unbounded polyhedron,
the walk along the edges of P continues until y ∈ vertices(P) is found together with an improv-
ing edge direction v ∈ Rn, i.e., c⊤v > 0, such that y + λv ∈ P for λ ∈ R≥0. See Figure 1.10
for an illustration.

This simple geometric intuition of the Simplex Method leaves several technical questions
unanswered, including:

• Given y ∈ vertices(P), how to find an improving edge direction?
• How to find a starting vertex y ∈ vertices(P)?
• How to use such a method to show that a linear program is infeasible?

We start by addressing the first question, for which the so-called phase II of the Simplex
Method provides an answer. Once this is understood, a simple yet elegant auxiliary construction
allows for answering the other two questions; this is known as phase I of the Simplex Method.

36 Rico Zenklusen 1 Linear Programming and Polyhedra

v

c

y

Figure 1.10: In the above unbounded example, the red arrows highlight the vertex-to-vertex
walk performed by the Simplex Method. At the last vertex y there is an edge-
direction v such that y + λv for λ ≥ 0 is a feasible half-line with points of
arbitrarily large objective value.

To algebraically realize the geometric idea of moving from vertex to vertex along edges, we
will start with an LP in canonical form and then transform this description of the LP into the so-
called standard form. The standard form only has equality constraints on top of the usual non-
negativity requirements on the variables. This form allows us to highlight a particular vertex,
and can be brought into equivalent standard forms highlighting a neighboring vertex. This way,
we can capture the walk from vertex to vertex that is performed by the Simplex Method through
changing the standard form. We therefore start by introducing the standard form and showing
how to move between equivalent standard forms.

1.3.2 From canonical to standard form

A linear program is described in standard form if it only has equality constraints and its variables
are required to be non-negative. Hence, it is of the following form:

max c⊤x
Ax = b
x ≥ 0 .

(LP in standard form)

In the exposition that follows to introduce the Simplex Method, we will actually start with a
general LP in canonical form:

max c⊤x
Ax ≤ b
x ≥ 0 ,

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. From this canonical form, we build the corresponding
standard form by introducing a new set of m slack variables y ∈ Rm in the following way:

max c⊤x
Ax + y = b
x ≥ 0

y ≥ 0 .

(1.11)

1.3 Simplex Method Rico Zenklusen 37

Indeed, the feasible values that x ∈ Rn can take in the above LP in standard form are the same as
in the original LP in canonical form. Hence, the two linear programs are equivalent. Going from
canonical to standard form is a very common transformation. The variables y are called slack
variables because they measure the slack of x with respect to the originally given inequalities in
canonical form.

One may wonder why we started with an LP in canonical form, and only then moved to
standard form, instead of right-away starting with an LP in standard form. The main reason
is that even though we will do operations in standard form from now on, we interpret these
operations as walking from vertex to vertex on the polyhedron P := {x ∈ Rn

≥0 : Ax ≤ b}, i.e.,
the feasible region of the original LP given in canonical form. Hence, we will use the standard
form of a canonical LP description as a convenient algebraic way to represent a walk along
vertices of P . Thus, the geometric interpretation is with respect to the original LP in canonical
form.

Some terminology

A pair (x, y) ∈ Rn × Rm satisfying the equation system Ax+ y = b defined in (1.11) is called
a solution of the LP. If a solution also satisfies x ≥ 0 and y ≥ 0 it is called feasible.

We will first discuss solutions to the system of equations Ax + y = b, with m equations and
n + m unknowns. Notice that this system has full row rank due to the variables y. Hence, it
admits solutions for any right-hand side b ∈ Rm.

In what follows, we use the simple LP below, in canonical form, to exemplify some notation
and terminology.

max z = 400x1 + 900x2
x1 + 4x2 ≤ 40 (constraint 1)

2x1 + x2 ≤ 42 (constraint 2)
1.5x1 + 3x2 ≤ 36 (constraint 3)

x1 ≥ 0 (non-negativity for x1)
x2 ≥ 0 (non-negativity for x2)

(1.12)

Figure 1.11 highlights the feasible region of LP (1.12).
To transform the above LP to the corresponding standard form, we introduce three slack

variables y1, y2, and y3, leading to the following system, represented in tabular form below.

I

y1 y2 y3 x1 x2 1

1 0 0 1 4 40

0 1 0 2 1 42

0 0 1 1.5 3 36

︸ ︷︷ ︸
coefficient matrix

︸ ︷︷ ︸
right-hand side

An important property of the standard LP form built from a canonical LP form is that there is a
one-to-one correspondence between variables in the standard form and constraints in the original

38 Rico Zenklusen 1 Linear Programming and Polyhedra

1

3

2

c

10 20 30 40

10

20

30

40

x2

x1

0

Figure 1.11: Graphical representation of the linear program (1.12).

canonical form (including also the non-negativity constraints). More precisely, even though only
the variables y1, y2, and y3 are called slack variables in the above example, also the variables x1
and x2 measure slack, namely the slack with respect to the non-negativity constraints in (1.12).

Due to the particular form of the linear equation system in the standard LP above, we can
easily obtain a parametrized form of the set of all solutions, namely:

y1 = 40 − x1 − 4x2
y2 = 42 − 2x1 − x2
y3 = 36 − 1.5x1 − 3x2 .

(1.13)

Indeed, every choice of x1 and x2 determines a unique solution to the system. Correspondingly,

(x1, x2) are called free variables, and

(y1, y2, y3) are called dependent variables.

Clearly, the dimension of the solution space is determined by the number of free variables;
hence, 2 for our example. Moreover, to each parameterized equation system, like (1.13), we as-
sociate a basic solution, namely the one obtained by setting all free variables to zero. Thus, the
basic solution for (1.13) is (x1, x2, y1, y2, y3) = (0, 0, 40, 42, 36). By construction, such a basic
solution lies on the intersection of n linearly independent tight constraints of the initial canonical
form LP, i.e., the normal vectors of the constraints are linearly independent. Hence, if the basic
solution is feasible, it corresponds to a vertex of the feasibility region P = {x ∈ Rn

≥0 : Ax ≤ b}
of the original problem in canonical form by Proposition 1.19. Thus, parameterized forms are a
way to represent the equation system in a form highlighting a particular vertex solution. By mov-
ing from one parameterized form to another equivalent one, with different free and dependent

1.3 Simplex Method Rico Zenklusen 39

variables, we can highlight different basic solutions. This is the way how the geometric idea of
the Simplex Method of moving from vertex to vertex along edges will be realized algebraically.

Example 1.49

The tableau below corresponds to an equation system that is equivalent to system I , but with
different dependent and free variables.

II

y1 y2 y3 x1 x2 1
1
4 0 0 1

4 1 10

−1
4 1 0 7

4 0 32

−3
4 0 1 3

4 0 6

The columns corresponding to the variables B = (x2, y2, y3) form an identity matrix. The
solution space in its parametrized form with free variables (y1, x1) can directly be read from
the tableau:

x2 = 10 − 1
4y1 −

1
4x1

y2 = 32 + 1
4y1 −

7
4x1

y3 = 6 + 3
4y1 −

3
4x1 .

1.3.3 Equivalent linear systems

To move from one equation system to another equivalent one, elementary row operations can be
used.

Definition 1.50: Elementary row operations

(i) Change the order of the equations.
(ii) Multiply an equation with a non-zero real number.

(iii) Add a multiple of one equation to another one.

One can easily observe that these operations do not change the set of solutions to a linear
system.

Example 1.51

We illustrate these operations using our example, to show that the linear equation systems I and
II indeed have the same set of solutions.

y1 y2 y3 x1 x2 1

1 0 0 1 4 40

I 0 1 0 2 1 42

0 0 1 1.5 3 36

40 Rico Zenklusen 1 Linear Programming and Polyhedra

Multiply the first equation by 1
4 :

y1 y2 y3 x1 x2 1
1
4 0 0 1

4 1 10

→ Ia 0 1 0 2 1 42

0 0 1 1.5 3 36

Add (−1)× first row to the second row, and add (−3)× first row to the third row:

y1 y2 y3 x1 x2 1
1
4 0 0 1

4 1 10

II −1
4 1 0 7

4 0 32

−3
4 0 1 3

4 0 6

Definition 1.52: Equivalent equation systems

Systems of linear equations, which can be transformed to each other using elementary
row operations, are called equivalent.

I , Ia , and II are equivalent systems and have therefore the same set of solutions.

Conversely, it is not hard to see that two linear equation systems with full row rank and
identical solutions can be obtained from one another through elementary row operations.

As discussed, the equation system we obtained by transforming an LP given in canonical form
into one in standard form has the special property that the coefficients of the slack variables in
the system form an identity matrix. This form, which leads to a natural parameterization of the
solution space as highlighted previously and allows us to talk about basic solutions, is typically
referred to as the tableau form in the context of linear programming.

Definition 1.53: Tableau form

An equation system Ax = b with m equations in n+m variables is in tableau form if its
coefficient matrix contains an identity matrix. In this case:

• A tuple of variables whose corresponding columns—listed in the same order in
which they appear in the tuple—form an identity matrix, are called a basis.

• The variables used in the basis are called basic variables.
• All other variables are called non-basic variables.
• The columns corresponding to basic variables are called basic columns.
• The columns corresponding to non-basic variables are called non-basic columns.
• The basic solution corresponding to a basis is the unique solution obtained by

setting all non-basic variables to zero; hence, the basic variables will be set to b.

1.3 Simplex Method Rico Zenklusen 41

Notice that, given an equation system in tableau form, it may have more than one basis. This
is the reason why a basic solution is defined with respect to a basis and not with respect to an
equation system in tableau form. Nevertheless, if the basis of an equation system in tableau form
is unique, we also talk about the basic solution of the system.

As mentioned, for any values of the non-basic variables, there is a unique set of values for
the basic ones that leads to a solution to the equation system. Hence, the non-basic variables
correspond to what we called free variables and the basic ones to non-free variables.

Example 1.54

The following system of linear equations in tableau form has a unique basis, namely
(y1, y2, y3).

y1 y2 y3 x1 x2 1

1 0 0 1 4 40
0 1 0 2 1 42
0 0 1 1.5 3 36

The system of linear equations shown below is not in tableau form because it does not contain
an identity matrix.

y1 y2 y3 x1 x2 1

0 1 0 2 1 42

−1
4 1 0 7

4 0 32

−3
4 0 1 3

4 0 6

However, it turns out to be equivalent to the first system. To check this, one can apply row
operations to the second system to obtain the first one or vice versa. Applying row operations
to a matrix is the same as multiplying the matrix from the left with a full-rank matrix. Clearly,
up to column permutations, the only matrix S ∈ R3×3 that, when being multiplied with the
above matrix, can lead to the first system, is the inverse of 0 1 0

−1
4 1 0

−3
4 0 1

 ,

i.e., the matrix formed by the columns corresponding to y1, y2, and y3. Hence, we need to
choose

S =

 0 1 0

−1
4 1 0

−3
4 0 1

−1

=

4 −4 0

1 0 0

3 −3 1

 .

Finally, by multiplying S with the 3×6 matrix consisting of the entries (including its right-hand
side) of the second tableau, which is not in standard form, we obtain the matrix corresponding
to the first tableau. Hence, the two systems are indeed equivalent.

42 Rico Zenklusen 1 Linear Programming and Polyhedra

Moreover, the following system of equations in tableau form does not have a unique basis.

y1 y2 y3 x1 x2 1

1 0 0 0 1 40
0 1 0 1 2 50
0 0 1 0 3 60

Indeed, there are two possible bases, namely (y1, y2, y3) and (y1, x1, y3).

Example 1.55

Consider the three equation systems I, Ia, and II in Example 1.51. System I is in tableau form
with basis B = (y1, y2, y3). Hence, y1, y2, and y3 are the basic variables. System II is in
tableau form with basis B = (x2, y2, y3), whereas system Ia is not in tableau form.

Example 1.56

Consider the following LP, given in canonical form.

max −x1 − x2
− x2 ≤ −1

−x1 − x2 ≤ −2
−4x1 + x2 ≤ −2
−x1 + x2 ≤ 1
x1 ≥ 0

x2 ≥ 0

By adding slack variables we obtain the equivalent standard form shown below.

max − x1 − x2
y1 − x2 = −1

y2 − x1 − x2 = −2
y3 − 4x1 + x2 = −2

y4 − x1 + x2 = 1
x ∈ R2

≥0

y ∈ R4
≥0

The graphic below shows the feasible region of the LP in the (x1, x2)-space.

1.3 Simplex Method Rico Zenklusen 43

x1

x2

1

1

2

2

3

3

0

(a)

(b)

(c)

Below, we present three equivalent equation systems, (a), (b), and (c) in tableau form that all
correspond to the above-written LP in standard form. Each of these systems has a unique basis,
and hence, each system has a well-defined basic solution, which is highlighted in the graphic
above.
System (a) in tableau form with basic solution (x1, x2, y1, y2, y3, y4) = (1, 1, 0, 0, 1, 1):

(a)

y1 y2 y3 y4 x1 x2 1

−1 0 0 0 0 1 1

1 −1 0 0 1 0 1

5 −4 1 0 0 0 1

2 −1 0 1 0 0 1

System (b) in tableau form with basic solution (x1, x2, y1, y2, y3, y4) = (1, 2, 1, 1, 0, 0):

(b)

y1 y2 y3 y4 x1 x2 1

0 0 −1
3

4
3 0 1 2

0 0 −1
3

1
3 1 0 1

0 1 −2
3

5
3 0 0 1

1 0 −1
3

4
3 0 0 1

System (c) in tableau form with basic solution (x1, x2, y1, y2, y3, y4) = (0, 0,−1,−2,−2, 1):

(c)

y1 y2 y3 y4 x1 x2 1

1 0 0 0 0 −1 −1
0 1 0 0 −1 −1 −2
0 0 1 0 −4 1 −2
0 0 0 1 −1 1 1

44 Rico Zenklusen 1 Linear Programming and Polyhedra

1.3.4 Exchange step/pivoting

Transforming one tableau into another can be done using exchange steps, which are also called
pivoting steps. An exchange step is a sequence of elementary row operations that are uniquely
determined by the variables “entering” and “leaving” the basis. Consider a tableau with basis B.
Let k ∈ [m+n] be the index of a non-basic column, and let i ∈ [m] be a row such that Aik ̸= 0.
The variable corresponding to column k will enter the basis and its column will be transformed
to the i-th canonical vector ei ∈ Rm, i.e., for j ∈ [m] we have ei(j) = 1 if i = j and ei(j) = 0
otherwise. Therefore, the basic variable whose column is ei will leave the basis, leading to a
new basis B′.

The coefficient matrix A′ and right-hand side b′ of an equivalent tableau with basis B′ can be
obtained through the following rules, which simply correspond to a sequence of elementary row
operations achieving the above exchange:

(i) A′
iℓ =

Aiℓ

Aik
ℓ ∈ [m+ n]

(ii) A′
jℓ = Ajℓ −

Ajk ·Aiℓ

Aik
ℓ ∈ [m+ n], j ̸= i, j ∈ [m]

(iii) b′i =
bi
Aik

(iv) b′j = bj −
Ajk · bi
Aik

j ∈ [m] with j ̸= i ,

where

• Aik is called pivot element;
• the row with index i is called pivot row;
• the column with index k is called pivot column.

Typically, when talking about a pivot element Aik, we do not just refer to the actual scalar
Aik, but also to the corresponding row index i and column index k. Due to this, it makes sense
to talk about “performing an exchange step on the pivot Aik”, even if the matrix A contains
multiple entries with the same value as Aik.

Example 1.57

The unique basis of the tableau below is B = (x2, y2, y3).

y1 y2 y3 x1 x2 1
1
4 0 0 1

4 1 10

II −1
4 1 0 7

4 0 32

−3
4 0 1

�� ��3
4 0 6

After an exchange step with k = 4, i = 3 one obtains the following equivalent system:

1.3 Simplex Method Rico Zenklusen 45

y1 y2 y3 x1 x2 1
1
2 0 −1

3 0 1 8

III 6
4 1 −7

3 0 0 18

−1 0 4
3 1 0 8

The basis of this system is B′ = (x2, y2, x1), and its parameterized solution set is the follow-
ing:

x2 = 8 − 1
2y1 + 1

3y3

y2 = 18 − 6
4y1 + 7

3y3

x1 = 8 + y1 − 4
3y3

Moreover, the basic solution of III is (x1, x2, y1, y2, y3) = (8, 8, 0, 18, 0).

1.3.5 Short tableau

The short tableau is a more compact way of representing the tableau forms we have seen so far
and has further important advantages. First, as already mentioned, it reduces the amount of data
that has to be carried along when doing operations on the tableau. Second, it will prove very
useful when we talk about the dual of a linear program, many of whose properties can be read
more naturally from the short tableau. Last but not least, the short tableau avoids ambiguities in
terms of what variables are used in the basis. To clearly distinguish the tableau form we already
introduced from the short tableau, we will also sometimes talk about the long tableau to refer to
the former.

For simplicity, we introduce the structure of a short tableau through an example. Consider the
following long tableau with unique basis B = (x2, y2, y3).

y1 y2 y3 x1 x2 1
1
4 0 0 1

4 1 10

II −1
4 1 0 7

4 0 32

−3
4 0 1 3

4 0 6

By marking the i-th row of the tableau with the (basic) variable whose column is ei and by
deleting the corresponding unit vectors, we obtain a short tableau with basis B:

IIb

y1 x1 1

x2 1
4

1
4 10

y2 −1
4

7
4 32

y3 −3
4

3
4 6

B = (x2, y2, y3)

46 Rico Zenklusen 1 Linear Programming and Polyhedra

1.3.6 Exchange step in short tableau

The exchange step we introduced for the long tableau can now be translated to the short one.
For this consider a short tableau and let A ∈ Rm×n be the matrix defining its entries, which all
correspond to non-basic variables, and let b be the right-hand side of the short tableau. Hence,
for the example IIb above we have

A =

1
4

1
4

−1
4

7
4

−3
4

3
4

 and b =

10

32

6

 .

An exchange step on the pivot Aik ̸= 0 in the short tableau leads to a new and equivalent short
tableau with constraint matrix A′ and right-hand side b′ given by

A′
ik =

1

Aik
(pivot element)

A′
jk = −

Ajk

Aik
(pivot column) j ∈ [m], j ̸= i

A′
iℓ =

Aiℓ

Aik
(pivot row) ℓ ∈ [n], ℓ ̸= k

A′
jℓ = Ajℓ −

Ajk ·Aiℓ

Aik
j ∈ [m], j ̸= i

ℓ ∈ [n], ℓ ̸= k

b′i =
bi
Aik

b′j = bj −
Ajk · bi
Aik

j ∈ [m], j ̸= i .

(1.14)

Moreover, this pivoting step does not just change the entries of the short tableau, but also leads
to a modification of the boundary, i.e., the variables assigned with the rows and columns. More
precisely, the basic variable at row i swaps its role with the non-basic variable at column k.

Example 1.58

Consider performing an exchange step in system IIb at the pivot element A32 as highlighted
below.

1.3 Simplex Method Rico Zenklusen 47

IIb

y1 x1 1

x2 1
4

1
4 10

y2 −1
4

7
4 32

y3 −3
4

3
4 6

B = (x2, y2, y3)

This leads to the following equivalent system.

y1 y3 1

x2
1
2 −1

3 8

y2
6
4 −7

3 18 with basis B′ = (x2, y2, x1)

x1 −1 4
3 8

Exercise 1.59

Verify the validity of the rules for performing an exchange step in a short tableau, i.e., show
that they indeed give an equivalent linear system in tableau form with the claimed basis, by
using the long tableau.

Example 1.60

For the following system of equations we can read off a tableau for the basis B = (x1, x2, x3):

x1 + 2x4 + x5 = 3
x2 + x4 − x5 = 0

x3 + x4 = 2

x4 x5 1

x1 2
�� ��1 3

B = (x1, x2, x3) x2 1 −1 0

x3 1 0 2

(a)

The corresponding basic solution for this basis is:

(x1, x2, x3, x4, x5) = (3, 0, 2, 0, 0) .

We perform exchange steps to compute further basic solutions (the pivot element is marked).

48 Rico Zenklusen 1 Linear Programming and Polyhedra

(b):

x4 x1 1

x5 2 1 3

x2
�� ��3 1 3

x3 1 0 2

(c):

x2 x1 1

x5 −2
3

1
3 1

x4
1
3

�� ��1
3 1

x3 −1
3 −1

3 1

(d):

x2 x4

x5 -1 -1 0

x1 1 3 3

x3 0 1 2

(0, 3, 2, 0, 3) (0, 0, 1, 1, 1) (3, 0, 2, 0, 0)

basic solutions as tuples (x1, x2, x3, x4, x5)

Notice that the initial equation system corresponds to the standard form of an LP in canonical
form with constraints given by

2x4 + x5 ≤ 3
x4 − x5 ≤ 0
x4 ≤ 2
x4 ≥ 0

x5 ≥ 0 .

Hence, we can visualize the feasible region of the equation system we started with, including
non-negativity constraints, in the (x4, x5)-space:

x4

x5

0 1 2 3

1

2

3

(a), (d)

(b)

(c)

The basic solutions corresponding to the tableaus (a), (b), (c), and (d) are highlighted in red in
the above picture.

Example 1.60 also nicely exemplifies equivalent ways to look at an LP in terms of a different
set of basic variables. More precisely, even though the original equation system corresponds to

1.3 Simplex Method Rico Zenklusen 49

a 2-dimensional canonical LP in the variables x4 and x5, the other tableaus we obtained corre-
spond to equivalent 2-dimensional LPs in a different set of variables. For example, tableau (b)
corresponds to a 2-dimensional LP in the variables x4 and x1.

Exercise 1.61

Draw the 2-dimensional region of tuples (x2, x3) ∈ R2 that correspond to a feasible solution
to the equation system in Example 1.60. Moreover, highlight the four basic solutions obtained
in tableaus (a)–(d) in Example 1.60 in the (x2, x3)-space.

1.3.7 Simplex Method: phase II

The second phase of the Simplex Method requires a feasible basic solution to start with. It then
performs exchange steps in a systematic way to either reach an optimal solution or to show that
the given LP is unbounded.

To introduce the method, consider a general linear program in standard form obtained from
one in canonical form, where we allow the objective function to contain additionally a constant
term q ∈ R, i.e.,

max c⊤x + q
Ax + y = b
x ∈ Rn

≥0

y ∈ Rm
≥0 ,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. By introducing a variable z ∈ R for the objective, i.e.,
z = c⊤x+ q, we can rewrite the problem as:

max z
z − c⊤x = q

Ax + y = b
x ∈ Rn

≥0

y ∈ Rm
≥0 ,

(1.15)

which leads to a system of m + 1 equations in the variables z, x, and y. Consider the tableau
corresponding to (1.15) in matrix form:

z y1 . . . ym x1 . . . xn 1

1 0 . . . 0 −c1 . . . −cn q

0 I A b
(1.16)

We will work with the short form of this tableau, which is given below.

x1 . . . xn 1
z −c1 . . . −cn q
y1 A11 . . . A1n b1
...

...
...

...
ym Am1 . . . Amn bm

(1.17)

50 Rico Zenklusen 1 Linear Programming and Polyhedra

In the following, the auxiliary variable z will always stay in the basis. Therefore, when we
refer to a basic solution or basic variables, this will always be with respect to the remaining
variables, i.e., x and y. We highlight the special role of the variable z in the tableau by sepa-
rating the equation for the objective function with a horizontal line. Still, when we perform an
exchange step on a tableau as shown in (1.17), the exchange step is performed as we previously
introduced it, i.e., over all rows of the tableau including the first row −c⊤, which corresponds to
the objective.

Definition 1.62: Feasible tableau

The tableau (1.17) is called feasible if b1, . . . , bm ≥ 0, i.e., if the corresponding basic
solution is feasible.

Definition 1.63: Value of tableau

The entry q in a tableau (see 1.17) is called the value of the tableau. This is the objective
value of the basic solution that corresponds to the tableau. We use this terminology both
for feasible and infeasible tableaus.

Example 1.64: Feasible tableau

The tableau below corresponds to the linear program shown in (1.12). It is a feasible tableau.

x1 x2 1
z −400 −900 0
y1 1 4 40
y2 2 1 42
y3 1.5 3 36

The second phase of the Simplex Method starts with a feasible tableau and iteratively com-
putes new feasible tableaus. Hence, the method never encounters an infeasible tableau. Given a
feasible tableau, the goal is to move to another one with strictly higher objective value through a
single exchange step. This will not always be possible. Hence, the second phase of the Simplex
Method may sometimes pivot from one feasible tableau to another one with identical objective
value. However, it will never pivot to a tableau with strictly worse objective value.

Before introducing a formal rule of how to perform exchange steps, we show in the exam-
ple below how a well-chosen sequence of exchange steps solves the example linear program
highlighted in (1.12).

Example 1.65

We recall the linear program shown in (1.12) in canonical form together with a graphical rep-
resentation of its solution set.

1.3 Simplex Method Rico Zenklusen 51

1

3

2

c

10 20 30 40

10

20

30

40

x2

x1

0

(a)

(b)

(c)

(d)

The following sequence of tableaus, obtained through successive exchange steps, leads to the
unique optimal solution of this LP. The corresponding basic feasible solutions are highlighted
in the graphic above.

x1 x2 1 y2 x2 1

z −400 −900 0 z 200 −700 8400

y1 1 4 40 y1 −1
2

7
2 19

y2
�� ��2 1 42 −→ x1

1
2

1
2 21

y3
3
2 3 36 y3 −3

4

�� ��9
4

9
2

(a) (b)

↓
y1 y3 1 y2 y3 1

z 50 700
3 10400 z −100

3
2800
9 9800

y2
3
2 −7

3 18 y1

�� ��2
3 −14

9 12

x1 −1 4
3 8 ←− x1

2
3 −2

9 20

x2
1
2 −1

3 8 x2 −1
3

4
9 2

(d) (c)

Notice that in this example, each of the 3 exchange steps strictly improved the objective value
of the tableau, with the last tableau revealing the optimal objective value of 10400. Moreover, it

52 Rico Zenklusen 1 Linear Programming and Polyhedra

is not hard to see that the last tableau corresponds to an optimal solution. Indeed, the objective
row of the last tableau reveals that the objective value z satisfies

z = 10400− 50y1 −
700

3
y3 .

Because all variables, including y1 and y3, are non-negative, this implies that no feasible solu-
tion of value higher than 10400 can be obtained. Finally, 10400 is the objective value attained
by the basic solution that corresponds to the last tableau; hence, this solution is optimal.

To formally introduce a rule for selecting the pivot, consider a general feasible tableau as
shown below, where we denote by xB and xN the basic and non-basic variables, respectively.
Notice that there are always m many basic variables and n many non-basic variables. The
location of the variables xB and xN is called the boundary of the tableau.

x⊤N 1
z c1 . . . cn q

A11 . . . A1n b1

xB
...

...
...

Am1 . . . Amn bm

(1.18)

When we obtain the tableau from the canonical form of an LP by transforming it first into
standard form, then the variables xB correspond to the slack variables, which we often denote
by y. Moreover, because we consider a feasible tableau, we have that the right-hand side vector
b ∈ Rm is non-negative.

Definition 1.66: Legal pivot element for phase II of Simplex Method

Given a feasible tableau, as shown in (1.18), a tuple (i, k) ∈ [m] × [n] corresponds to a
legal pivot element Aik for phase II of the Simplex Method if

(i) ck < 0 , and
(ii) i ∈ argmin

{
bj
Ajk

: j ∈ [m] with Ajk > 0
}

.

Pivot elements in phase II of the Simplex Method are typically chosen by first selecting the
pivot column k, satisfying condition (i), and then the pivot row i to fulfill (ii). Condition (ii) is
often called the quotient rule. Notice that by first choosing the pivot column k before choosing
the row i, it may be that there is no row i that fulfills the quotient rule for column k, even though
there may be a legal pivot element in another column. As we will see later, if this happens,
then we do not have to look for another pivot column k, but can stop right-away because such
a column turns out to prove unboundedness of the LP. Before expanding on this and further
aspects, the following result motivates the definition of a legal pivot element.

1.3 Simplex Method Rico Zenklusen 53

Theorem 1.67

Consider a feasible tableau with a legal pivot element Aik for phase II of the Simplex
Method. Then the new tableau obtained after pivoting on Aik satisfies the following:

(i) The new tableau is feasible.
(ii) The value of the new tableau is no less than that of the original one.

(iii) If bi > 0, the value of the new tableau is strictly larger than that of the original one.

Proof.
(i) To check feasibility of the new tableau, we have to show that its right-hand side vector

b′ ∈ Rm is non-negative. We recall that b′ is given by the pivot rules (1.14). Hence, for
the pivot row we have

b′i =
bi
Aik
≥ 0 ,

as Aik > 0 because it is a legal pivot element and bi ≥ 0 because the original tableau is
feasible. Moreover, for any other row j ∈ [m] \ {i}, the new right-hand side b′j is given
by

b′j = bj −
Ajk · bi
Aik

. (1.19)

If Ajk ≤ 0, then we have b′j ≥ bj ≥ 0 as desired. Otherwise, if Ajk > 0, then, by the fact
that Aik is a legal pivot, we have

bi
Aik
≤ bj

Ajk
,

which, together with (1.19), again implies b′j ≥ 0, as desired.
(ii) When computing an exchange step, the row corresponding to the objective is treated in the

same way as the other non-pivot rows. Hence, to compute the new objective value q′, the
same pivot rule applies as the one used to compute the new right-hand side of a non-pivot
row:

q′ = q − ck · bi
Aik

≥ q , (1.20)

where the inequality follows from ck < 0 (legal pivot), bi ≥ 0 (feasibility of original
tableau), and Aik > 0 (legal pivot).

(iii) The above reasoning also immediately implies that q′ > q if bi > 0.

Notice that the conditions for a pivot element to be legal, i.e., Definition 1.66, leave significant
freedom in terms of which pivot to choose. Indeed, different rules of which legal pivot to choose
lead to different variations of the Simplex Method. One very common rule is to choose the pivot
column k such that ck is the most negative value among all columns. This choice guarantees the
largest marginal increase in the objective in the sense of how the objective changes per unit of
increase of the non-basic variable corresponding to the pivot column.

54 Rico Zenklusen 1 Linear Programming and Polyhedra

Moreover, it may be that no legal pivot element exists. This can happen either because ck ≥ 0
for k ∈ [n], or because for every column k ∈ [n] with ck < 0, there is no row i ∈ [m] with
Aik > 0. In this case, the statement below implies that either the current basic solution is optimal
or the problem is unbounded.

Theorem 1.68

Consider a feasible tableau (given as in (1.18)).
(i) If ck ≥ 0 ∀k ∈ [n], then the basic solution corresponding to (1.18) is an optimal

solution to the corresponding LP.

(ii) If ∃k ∈ [n] with ck < 0 and Ajk ≤ 0 ∀j ∈ [m], then the underlying LP is
unbounded.

Moreover, a certificate of unboundedness can be obtained as follows. For λ ∈
R≥0, let xλB, x

λ
N be the following assignments to the basic and non-basic variables,

respectively:

xλB = b− λA·k

(xλN)k = λ

(xλN)ℓ = 0 ∀ℓ ∈ [n] \ {k} ,

where A·k is the k-th column of A and (xλN)k is the value of the non-basic variable

corresponding to that column. Then, for any λ ∈ R≥0, xλ :=
(

xλ
B

xλ
N

)
is feasible

with objective value going to∞ as λ→∞.

Proof.
(i) We can read off from the tableau that the objective value z satisfies

z = q − c⊤xN .

Notice that the above expression is always at most q because c ≥ 0 and xN ≥ 0. Hence,
no feasible solution can have objective value strictly larger than q. Because the basic
solution for the current feasible tableau has objective value equal to q, it is optimal.

(ii) To show this point, we only have to show that the claimed certificate of unboundedness is
correct. To this end, we first observe that for any λ ∈ R≥0, the point xλ is a solution by
construction, i.e., it fulfills all equality constraints. Moreover, xλ is non-negative. This is
obvious for the non-basic variables, and follows for the basic variables by observing that
b ≥ 0, due to feasibility of the tableau, and A·k ≤ 0 by assumption. Finally, the objective
value achieved by xλ is

z = q − λck ,

which indeed goes to∞ for λ→∞.

Theorem 1.68 covers the case where no legal pivot element exists anymore. Nevertheless,
Theorem 1.68 may apply even though there still is a legal pivot element in the tableau. More

1.3 Simplex Method Rico Zenklusen 55

precisely, there may be a column k ∈ [n] satisfying point (ii) of Theorem 1.68, even though a
legal pivot element exists in a different column. The fact that Theorem 1.68 also applies in this
case is convenient, because it allows us to first fix a column k with ck < 0 and then only focus
on that column for legal pivots. As we will see, this is precisely what the Simplex Method does.

Theorem 1.68 naturally leads to the following terminology.

Definition 1.69: Optimal and unbounded tableaus

A feasible tableau (as in 1.18) is called optimal if ck ≥ 0 ∀k ∈ [n]. It is called unbounded
if ∃k ∈ [n] with ck < 0 and Ajk ≤ 0 ∀j ∈ [m].

Example 1.70

To exemplify the above statements, we start with the tableau below and perform legal pivots as
long as possible.
The first tableau below is a feasible starting tableau, and we choose x2 as the variable enter-
ing the basis, i.e., we want to pivot on the column corresponding to x2. The corresponding
quotients for this column are indicated to the right of the tableau.

x1 x2 1 quotient
bj
Ajk

z −400 −900 0

y1 1
�� ��4 40 10 ← minimum

y2 2 1 42 42

y3 1.5 3 36 12

After performing an exchange step with respect to the indicated pivot, we obtain the tableau
below, which, due to Theorem 1.67 (i), is feasible because the pivot was legal.

x1 y1 1 quotient

z −700
4

900
4 9000

x2
1
4

1
4 10 40

y2
7
4 −1

4 32 128/7

y3

�� ��3
4 −3

4 6 8 ← minimum

The current feasible basic solution is

(x1, x2, y1, y2, y3) = (0, 10, 0, 32, 6)

with objective value z = 9000. Notice that the objective value strictly increased from the value
of the original tableau, which was 0. The strict increase in objective value is guaranteed by
Theorem 1.67 (iii) in this case.

56 Rico Zenklusen 1 Linear Programming and Polyhedra

We continue with a pivot on the circled element to obtain the optimal tableau below.

y3 y1 1

z 700
3 50 10400

x2 −1
3

1
2 8

y2 −7
3

6
4 18

x1
4
3 −1 8

The corresponding basic solution of this tableau, which is optimal due to Theorem 1.68 (i), is

(x1, x2, y1, y2, y3) = (8, 8, 0, 18, 0)

with optimal objective value z = 10400. Again, the strict increase in objective value compared
to the previous tableau was guaranteed by Theorem 1.67 (iii).

We are now ready to formally state phase II of the Simplex Method.

Algorithm 1: Phase II of Simplex Method
Input: Feasible tableau as shown in (1.18).

1. Choice of pivot:

(a) Choice of pivot column (variable entering basis):
If ck ≥ 0 ∀k ∈ [n], then stop. (The current basic solution is optimal due to
Theorem 1.68 (i).) Otherwise, choose k ∈ [n] with ck < 0.

(b) Choice of pivot row (variable leaving basis):
If Ajk ≤ 0 ∀j ∈ [m], then stop. (The problem is unbounded, see Theorem 1.68 (ii).)
Otherwise, choose

i ∈ argmin

{
bj
Ajk

: j ∈ [m] with Ajk > 0

}
.

2. Exchange step:
Perform an exchange step on pivot element Aik and go back to step 1.

As previously mentioned, the above description leaves open which pivot column or row to
choose if there are several options fulfilling the above conditions. One of the most important
questions in the field is whether there exists a good way to select the pivot column and row in
the Simplex Method to obtain a polynomial-time algorithm. Interestingly, depending on how
the pivot column and row are chosen in the Simplex Method, it is not even clear whether the
algorithm terminates. We will get back to that point in Section 1.3.8.

1.3 Simplex Method Rico Zenklusen 57

Example 1.71: Phase II of Simplex Method

In this example, we apply phase II of the Simplex Method to solve the following LP given in
canonical form.

max −3x1 + 2x2
x1 − x2 ≤ 1

−2x1 + x2 ≤ 1
−x1 + x2 ≤ 2
x1 ≥ 0

x2 ≥ 0

We first transform it into standard form by introducing three slack variables y1, y2, and y3.

max z = − 3x1 + 2x2

y1 + x1 − x2 = 1

y2 − 2x1 + x2 = 1

y3 − x1 + x2 = 2

x ∈ R2
≥0

y ∈ R3
≥0

We now apply phase II of the Simplex Method. For this example, there is a unique legal pivot
element at each step, which is circled in the tableaus below.

tableau (a)

x1 x2 1

z 3 −2 0

y1 1 −1 1

y2 −2
�� ��1 1

y3 −1 1 2

→

tableau (b)

x1 y2 1

z −1 2 2

y1 −1 1 2
x2 −2 1 1

y3
�� ��1 −1 1

→

tableau (c)

y3 y2 1

z 1 1 3

y1 1 0 3
x2 2 −1 3
x1 1 −1 1

The last tableau is an optimal tableau because the coefficients of the non-basic variables in the
objective row, namely two 1s, are both non-negative. Hence, the corresponding basic solution
is optimal. It is

(x1, x2, y1, y2, y3) = (1, 3, 3, 0, 0) .

The graphic below highlights, in the (x1, x2)-space, the vertices of the feasible region that got
traversed by this run of the Simplex Method.

58 Rico Zenklusen 1 Linear Programming and Polyhedra

x2 = 0

x1 = 0

1 2

1

2

3

(a)

(b)

(c)

y1 = 0

y2 = 0

y3 = 0

z = 0

If we replace the objective function and maximize z = x2 instead of −3x1 + 2x2, then the
algorithm will stop with the tableau below.

tableau (c′)

y3 y2
z 2 −1 3

y1 1 0 3
x2 2 −1 3
x1 1 −1 1

This tableau is unbounded. As highlighted in Theorem 1.68, we can read off an unbounded
half-line as follows. The half-line starts at the current basic solution, which is

x1
x2
y1
y2
y3

 =

1
3
3
0
0

 .

Moreover, the unbounded improving direction can be read off the column corresponding to y2,
and is

1
1
0
1
0

 .

1.3 Simplex Method Rico Zenklusen 59

Hence, the following improving half-line, described in the space (x1, x2, y1, y2, y3), is an un-
boundedness certificate:

1
3
3
0
0

+ λ ·

1
1
0
1
0

 for λ ∈ R≥0 .

By only considering the first two coordinates, we obtain an unboundedness certificate in the
original (x1, x2)-space: (

1
3

)
+ λ ·

(
1
1

)
for λ ∈ R≥0 .

Exercise 1.72

Verify that one can indeed obtain tableau (c′) in Example 1.71 through pivoting steps when
starting with the modified objective max z = x2.

Degeneracy

One of the most central questions we left open so far, is whether the Simplex Method terminates
in a finite number of steps. It turns out that this is closely related to the notion of degeneracy,
which we already saw in the context of polyhedra, and can be rephrased in terms of tableaus and
basic solutions as follows.

Definition 1.73

The basic solution to a tableau (given as in 1.18) is called degenerate if there is an index
i ∈ [m] such that bi = 0. In this case, the tableau is also called degenerate.

This notion of degeneracy, defined in the context of tableaus, is indeed tightly linked to the
notion of degeneracy that we encountered in the context of polyhedra, as highlighted in the
following statement.

Proposition 1.74

A feasible tableau is degenerate if and only if its basic solution is a degenerate vertex of
the feasible region of the problem (with respect to both the canonical or standard form).

Proof. Assume that

max c⊤x
Ax ≤ b
x ≥ 0

(1.21)

60 Rico Zenklusen 1 Linear Programming and Polyhedra

is the LP we started with in canonical form, and

max c⊤x
Ax + y = b
x ≥ 0

y ≥ 0

(1.22)

is the standard form of the LP we used to build the tableau. Now let (x, y) be the basic solution
to a feasible tableau, and let η be the total number of zeros in x and y. Notice that the number
of tight constraints among the original constraints in canonical form, i.e., Ax ≤ b and x ≥ 0, is
equal to η. Hence, x, which is a vertex of

P := {x ∈ Rn : Ax ≤ b, x ≥ 0} ,

is degenerate if and only if η > n. Notice that in any basic solution, all n-many non-basic
variables are set to zero. Hence, we have η > n if and only if at least one basic variable is set to
zero. This is the case if and only if the tableau is degenerate.

Finally, we highlight that the same statement also holds when considering the point
(
x
y

)
as a

vertex of

Q :=

{(
x
y

)
∈ Rn+m : Ax+ y = b, x ≥ 0, y ≥ 0

}
,

i.e., the feasible region for the LP in standard form. Indeed, the number of tight constraints
for
(
x
y

)
in the description of Q is equal to m + η, which leads to degeneracy in the (n + m)-

dimensional space Rn+m if and only if η > n, as in the canonical form.

We now observe that without degeneracy, any realization of phase II of the Simplex Method,
as described in Algorithm 1, will be successful, i.e., it will terminate. We recall that when talking
about a “realization” of the algorithm, we mean a specific way to choose the pivot column and
row in case of multiple options.

Theorem 1.75: Finiteness of Simplex Method in non-degenerate case

If phase II of the Simplex Method never encounters a degenerate tableau, then it will stop
after a finite number of steps. (This holds no matter how the pivot column and row is
chosen if there are several legal options.)

Proof. Whenever phase II of the Simplex Method does an exchange step, the value of the tableau
strictly improves because of Theorem 1.67 (iii). (Notice that non-degeneracy of the tableau
guarantees that the right-hand side bi of the pivot row is strictly positive, which is required by
Theorem 1.67 (iii).) This implies that we will never encounter the same tableau twice. However,
for any given problem, there is only a finite number of possible tableaus, because there are only
finitely many options to partition all variables into a basic and non-basic group. Hence, the
algorithm must terminate.

Thus, if the inequality description Ax ≤ b, x ≥ 0 of an LP in canonical form is not degenerate,
then phase II of the Simplex Method will always terminate in a finite number of steps. This is a
consequence of Theorem 1.75 together with Proposition 1.74.

1.3 Simplex Method Rico Zenklusen 61

To summarize what we discussed so far, if phase II of the Simplex Method never encounters
a degenerate tableau, then it will stop, which implies that we will either have found an optimal
solution or shown that the problem is unbounded. However, to obtain a working algorithm for
solving general linear programs, we also need to be able to handle the case of degenerate basic
solutions.

1.3.8 Cycling and Bland’s rule

Even though, due to Theorem 1.75, we know that phase II of the Simplex Method will stop if
there is no degeneracy, it is not yet clear whether degeneracy is actually a problem for the algo-
rithm or whether it is merely an issue for the analysis we employed. It turns out that degeneracy
can indeed lead to Simplex Methods that do not terminate. Notice that if the Simplex Method
does not terminate, then it will visit some tableaus an infinite number of times. This is called
cycling. The terminology of cycling is even more perspicuous when considering a Simplex
Method with a deterministic rule for choosing the pivot row and column that does not terminate.
In this case, the first time the same tableau is encountered twice, the method will keep cycling
through the precise same exchange steps performed between these two encounters.

We start with an example that highlights the issue of cycling in degenerate tableaus.

Example 1.76: Cycling of Simplex Method

Consider the following linear program.

max z = 2x3 + 2x4 − 8x5 − 2x6
x2 − 7x3 − 3x4 − 7x5 + 2x6 = 0

x1 + 2x3 + x4 − 3x5 − x6 = 0
x ∈ R6

≥0

We will apply phase II of the Simplex Method to it with the following rule for choosing a
pivot element. When there are several options for choosing the pivot column or row, we always
choose the leftmost or topmost one, respectively. This leads to the following tableaus.

(a)

x3 x4 x5 x6 1

z −2 −2 8 2 0

x2 −7 −3 7 2 0

x1
�� ��2 1 −3 −1 0

(b)

x1 x4 x5 x6 1

z 1 −1 5 1 0

x2
7
2

�� ��1
2 −7

2 −3
2 0

x3
1
2

1
2 −3

2 −1
2 0

(c)

x1 x2 x5 x6 1

z 8 2 −2 −2 0

x4 7 2 −7 −3 0

x3 −3 −1
�� ��2 1 0

(d)

x1 x2 x3 x6 1

z 5 1 1 −1 0

x4 −7
2 −3

2
7
2

�� ��1
2 0

x5 −3
2 −1

2
1
2

1
2 0

62 Rico Zenklusen 1 Linear Programming and Polyhedra

(e)

x1 x2 x3 x4 1

z −2 −2 8 2 0

x6 −7 −3 7 2 0

x5
�� ��2 1 −3 −1 0

(f)

x5 x2 x3 x4 1

z 1 −1 5 1 0

x6
7
2

�� ��1
2 −7

2 −3
2 0

x1
1
2

1
2 −3

2 −1
2 0

(g)

x5 x6 x3 x4 1

z 8 2 −2 −2 0

x2 7 2 −7 −3 0

x1 −3 −1 2 1 0

After six exchange steps, we again find a tableau with basis B = (x2, x1). This is not the pre-
cise same tableau as (a) because the order of the columns is different. However, one can check
that the next six exchange steps will choose the precise same entering and leaving variables as
the first six and result in the original tableau (a). Hence, the tableaus will keep changing in this
cyclic order with the employed pivot rule.
Another quick way to see that the above example leads to cycling, is by observing that the
tableau (e) has the precise same entries as tableau (a), only the boundary is different. Because
our pivoting rule chooses the pivot elements only depending on the entries and not the bound-
aries, we will obtain a tableau with identical entries after every 4 exchange steps. Hence, we
will never find an optimal or unbounded tableau in this example. Thus, the method cycles.

One of the easiest pivot selection rules to avoid cycling is Bland’s rule, which is defined as
follows.

Definition 1.77: Bland’s pivot rule

All variables are first ordered in an arbitrary way (e.g., according to increasing index).
Whenever a pivot column or row is to be selected and there are several options, we choose
the column or row corresponding to the variable appearing first in the fixed order.

Hence, if we are given a tableau with variable x1, . . . , xk and apply Bland’s rule (using the
order induced by the indices), then, among all possible pivot columns, we select the one whose
corresponding variable has smallest index, and do the same in the next step for selecting the
pivot row.

Theorem 1.78

When applying Bland’s rule for choosing the pivot, phase II of the Simplex Method does
not cycle. More precisely, with Bland’s rule, the Simplex Method will never encounter
two tableaus with the same set of basic (and therefore also non-basic) variables.

1.3 Simplex Method Rico Zenklusen 63

Example 1.79

Using Bland’s rule in Example 1.76 leads to a different pivot choice in tableau (f):

(f)

x5 x2 x3 x4 1

z 1 −1 5 1 0

x6
7
2

1
2 −7

2 −3
2 0

x1
1
2

�� ��1
2 −3

2 −1
2 0

This results in the following optimal tableau:

x5 x1 x3 x4 1

z 2 2 2 0 0

x6 3 −1 −2 −1 0

x2 1 2 −3 −1 0

Notice that both in Example 1.76 and also here we always pivoted on a row whose right-
hand side was zero. Consequently, all tableaus we encountered have identical basic solutions.
(Though they have different bases.) Hence, in this special case, the basic solution of tableau
(a) was already optimal. (Even though the tableau is not an optimal one!) However, it is not
hard to modify the example such that after breaking out of the cycling with Bland’s rule, one
can still find tableaus with strictly higher value through further exchange steps.

Proof of Theorem 1.78. Assume for the sake of obtaining a contradiction that we cycle with
Bland’s rule. Recall that Bland’s rule is deterministic, hence we will always cycle in the same
order through the same tableaus. Some variables will sometimes be basic and sometimes non-
basic, whereas others may always be either basic or non-basic. We first observe that we can
assume that no variables of the latter type exist, i.e., no variable will always be basic or always
be non-basic. Indeed, consider one tableau we encounter when cycling, and assume that such a
variable exists, say an always basic one. Then we can simply delete the row corresponding to
the variable from the tableau and obtain a smaller tableau where Bland’s rule cycles. Clearly,
because the pivot elements in the cycle are never chosen on the row corresponding to the deleted
basic variable, the selection of the pivot elements does not change. Analogously, we can delete
from a tableau any column corresponding to a variable that is always non-basic. Hence, we can
assume that we have a cycling example for Bland’s rule where each variable is sometimes basic
and sometimes non-basic in the tableaus encountered in the cycle.

An important observation is that when cycling, the basic solution never changes. Because each
variable is at least once non-basic on the cycle, and hence has value 0 in the corresponding basic
solution, this implies that the basic solution to all tableaus encountered in the cycle is the all-
zeros vector. In particular, the right-hand side of any tableau encountered in the cycle consists of
zeros only. Moreover, the constant entry in the objective function row always remains the same;
hence, we can assume without loss of generality that it is zero.

64 Rico Zenklusen 1 Linear Programming and Polyhedra

Let x1, . . . , xk be all variables involved in the tableau, and the numbering is chosen such that
Bland’s rule always chooses the variable with the smallest index if there are several options.
Now consider a tableau in the cycle in which xk is basic and is chosen as the basis-leaving
variable, i.e., the pivot element is chosen in the row of xk. We denote this tableau as tableau (a)
and let xi be the basis-entering variable. Figure 1.12 highlights the signs of the entries in the
column corresponding to xi.

(a)

xi
z − 0

⊖ 0
...

...
⊖ 0

xk + 0

⊖ 0
...

...
⊖ 0

Figure 1.12: Tableau (a) shown above is a tableau encountered during cycling where, in
the next exchange step, the basis-leaving variable is xk. We denote by xi the
basis-entering variable. As discussed, all right-hand sides are 0. Moreover,
we highlight the signs of the values in the column corresponding to xi. Here,
‘−’ stands for a strictly negative number, ‘+’ for a strictly positive one, and
‘⊖’ for a non-positive one. The signs follow by the fact that we choose a legal
pivot element, which implies the ‘+’ and ‘−’ signs, and because we apply
Bland’s rule, which implies in this case that no other choice than xk for basis-
leaving variable was possible, because xk is the variable with the largest index
and all quotients are 0. Due to this, all the ‘⊖’ signs above follow.

Additionally, there is a tableau in the cycle where xk is non-basic but will enter the basis
during the next exchange step. We denote this tableau as tableau (b).

(b)

xk
z ⊕ · · · ⊕ − ⊕ · · · ⊕ 0

0
...
0

Figure 1.13: Tableau (b) shown above is a tableau encountered during cycling where, in
the next exchange step, the basis-entering variable is xk. Because Bland’s
rule chooses xk as last option when selecting a basis-entering variable, this
implies that it is the only non-basic variable with a strictly negative entry in
the objective row, as highlighted above.

1.3 Simplex Method Rico Zenklusen 65

Consider now the following point d ∈ Rk, where we think of the k coordinates of d as values
for (x1, x2, . . . , xk). All entries of d are zero except for di and for the entries corresponding to
variables in tableau (a) that are basic. We set di = 1 and then set the entries corresponding to
the basic variables of tableau (a) to the unique values such that d is a solution. Due to the sign
pattern highlighted in Figure 1.12, we have

(i) dk < 0,
(ii) dj ≥ 0 ∀j ∈ [k − 1], and

(iii) the objective value of the solution d is strictly better than the all-zeros solution because
the objective coefficient of xi in tableau (a) is strictly negative.

Even though this is not crucial for this proof, we highlight that d is not feasible because dk < 0.
Note that we can evaluate the objective value of the solution d by plugging its values into the

objective row of any equivalent tableau, which must lead to the same value. However, if we
evaluate the objective value of d by plugging its values into the objective row of tableau (b), we
obtain—due to the sign pattern of d and of the objective row of tableau (b) as highlighted in
Figure 1.13—that its objective value is strictly worse than the one of the all-zeros solution. This
contradicts point (iii) above and finishes the proof.

Practical experience shows that Bland’s pivot selection rule often significantly increases the
running time of the Simplex Method. On the other hand, countless practical examples also show
that the Simplex Method with the simple pivot rule that chooses the basis-entering variable (pivot
column) of largest marginal increase very rarely gets stuck in a degeneracy. Consequently, many
common implementations of the Simplex Method mainly follow the latter rule and only deviate
from it if necessary. One way to get a practical pivot rule that is guaranteed not to get stuck
is to only change to a different rule that does not cycle, like Bland’s rule, if another rule that
is typically faster, like the one based on marginal improvements, does not strictly improve the
objective value during a predefined number of steps.

It is important to know that degeneracy is not a rare phenomenon. In particular, as we will see
later, most classical combinatorial optimization problems can naturally be rephrased as highly
degenerate linear programs. In these problems, degeneracy appears very naturally and is not
just an artefact of a badly-chosen inequality description with redundant constraints that lead to
degeneracy.

1.3.9 Simplex Method: phase I

Phase II of the Simplex Method assumes that we start with a feasible tableau, i.e., we know
a basic feasible solution. We now consider the problem of obtaining a basic feasible solution.
This can be achieved with what is called phase I of the Simplex Method, which is a technique to
reduce the problem back to the one solved by phase II of the Simplex Method. More precisely, in
phase I, an auxiliary problem is defined for which we know a trivial basic feasible solution and,
by optimizing the auxiliary problem, we either obtain a feasible basis for the original problem—
and can then start phase II with that basis—or learn that the original problem is infeasible.

Consider a general LP in canonical form for which we want to find a basic feasible solution

66 Rico Zenklusen 1 Linear Programming and Polyhedra

(of the corresponding problem in standard form).

max c⊤x
Ax ≤ b
x ∈ Rn

≥0 ,
(1.23)

where, as usual, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.
We construct the following auxiliary problem, which uses one new auxiliary variable x0;

moreover, we denote by 1 the all-ones vector in Rm.

max −x0
Ax− 1 · x0 ≤ b

x ∈ Rn
≥0

x0 ∈ R≥0

(1.24)

Notice that problem (1.24) is always feasible. Actually, one can even fix x ∈ Rn arbitrarily and
still obtain a feasible solution by choosing x0 ≥ 0 large enough. In particular, x0 can be thought
of as allowing a violation in the original constraints. By maximizing−x0, we aim at minimizing
this violation. This leads to the following relation between the two problems.

Observation 1.80

LP (1.23) is feasible ⇔ LP (1.24) has optimal value 0.

We now show the following two points:
(i) One can easily determine a feasible basis for the auxiliary LP (1.24) such that phase II of

the Simplex Method can be applied to it, and
(ii) if the auxiliary LP has optimal value zero, then an optimal tableau for it allows for reading

off a feasible starting basis for the original LP, which can be used to solve the original
problem with phase II of the Simplex Method.

To apply phase II of the Simplex Method to the auxiliary problem (1.24), we first write it in
standard form by introducing the slack variables xs ∈ Rm:

max −x0
xs +Ax− 1 · x0 = b

x ∈ Rn
≥0

x0 ∈ R≥0

xs ∈ Rm
≥0 ,

(1.25)

and get the corresponding tableau, where we use z̃ = −x0 as the variable for the auxiliary
objective function:

x x0 1

z̃ 0 1 0

−1
xs A −1 b

−1

(1.26)

1.3 Simplex Method Rico Zenklusen 67

We assume that b is not non-negative; for otherwise, there is no need to apply phase I of the
Simplex Method because one could simply right-away apply phase II with the slack variables as
basis. Hence, tableau (1.26) is not feasible. However, it is easy to transform the above tableau
into a feasible one through the following well-chosen exchange step.

(i) Choose x0 as the variable entering the basis, i.e., as the pivot column.
(ii) Choose as basis-leaving variable a row with most negative b-value, i.e., a

row with index i ∈ argmin{bℓ : ℓ ∈ [m]}.

Note that in the second step above, we can indeed choose a row with negative b-value because
we assumed that (1.26) is not feasible. Hence, bi < 0.

Proposition 1.81

Performing an exchange step on tableau (1.26) using a pivot element as described above
leads to a feasible tableau.

Proof. To verify that the new tableau, after performing an exchange step on a pivot element as
described above, is feasible, we have to check that the new right-hand side b′ is non-negative. For
this, let A = [A −1] be the constraint matrix of the auxiliary problem (1.24), which includes the
negative all-ones column corresponding to x0. Let Aik be a pivot element as described above.
In particular, k = n+ 1.

The new right-hand side b′ is expressed by the pivot rules (1.14). Notice that Aik = −1.
Hence, the new right-hand side b′i of the pivot row is indeed non-negative:

b′i =
bi

Aik

= −bi > 0 .

Moreover, also for any non-pivot row j ∈ [m]\{i}, we have non-negativity of the new right-hand
side:

b′j = bj −
Ajk · bi
Aik

= bj − bi ≥ 0 ,

where the second equality is due to Ajk = Aik = −1, and the inequality follows from our
choice of the pivot row.

Hence, Proposition 1.81 provides the last missing step to solve the auxiliary problem with
phase II of the Simplex Method. Moreover, the optimal tableau of the auxiliary problem can be
used to solve the original problem with phase II of the Simplex Method. We show how this can
be done in the example below.

Example 1.82

We start with the following linear program in canonical form. Notice that there are two con-
straints with strictly negative right-hand sides. Hence, we cannot start phase II of the Simplex
Method by transforming this problem into standard form and then using the slack variables as

68 Rico Zenklusen 1 Linear Programming and Polyhedra

basis.
max x1 − x2 + x3

2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0

We now start with phase I of the Simplex Method and build the auxiliary problem.

max − x0
2x1 − x2 + 2x3 − x0 ≤ 4
2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1

x0, x1, x2, x3 ≥ 0

Again, we use z̃ = −x0 for the auxiliary objective function, and write the problem in tableau
form:

x1 x2 x3 x0 1

z̃ 0 0 0 1 0

x4 2 −1 2 −1 4

x5 2 −3 1
�� ��−1 −5

x6 −1 1 −2 −1 −1
This tableau is not feasible, however it will turn feasible after performing an exchange step on
the above-explained pivot element. More precisely, the pivot element, which is circled in the
table above, is in the column of the auxiliary variable x0 and in the row of the most negative bi
entry. After performing the exchange step, the following tableau is obtained, which is feasible
by choice of the pivot element.

x1 x2 x3 x5 1

z̃ 2 −3 1 1 −5
x4 0 2 1 −1 9

x0 −2 3 −1 −1 5

x6 −3
�� ��4 −3 −1 4

Starting from the tableau above, we perform phase II of the Simplex Method. The chosen pivot
elements are circled.

x1 x6 x3 x5 1

z̃ −0.25 0.75 −1.25 0.25 −2
x4 1.5 −0.5 2.5 −0.5 7

x0 0.25 −0.75
�� ��1.25 −0.25 2

x2 −0.75 0.25 −0.75 −0.25 1

1.3 Simplex Method Rico Zenklusen 69

x1 x6 x0 x5 1

z̃ 0 0 1 0 0

x4 1 1 −2 0 3

x3 0.2 −0.6 0.8 −0.2 1.6

x2 −0.6 −0.2 0.6 −0.4 2.2

(1.27)

The tableau above is optimal with value 0. Hence, the original linear program is feasible.
Moreover, the basic solution to the above tableau, which is

(x0, x1, x2, x3, x4, x5, x6) = (0, 0, 2.2, 1.6, 3, 0, 0) ,

corresponds to a feasible solution to the original problem by dropping the x0 coordinate, i.e.,

(x1, x2, x3, x4, x5, x6) = (0, 2.2, 1.6, 3, 0, 0) .

Moreover, the basis of (1.27) is a feasible basis for the original LP. Indeed, by simply removing
the x0 column from tableau (1.27), a tableau for the original problem is obtained, modulo the
fact that the objective function z̃ is the auxiliary one and not the original one. We can obtain
the original objective, expressed in the basis (x4, x3, x2), as follows. By setting x0 = 0 in
tableau (1.27), we obtain the relations

x3 = −0.2x1 + 0.6x6 + 0.2x5 + 1.6 , and
x2 = 0.6x1 + 0.2x6 + 0.4x5 + 2.2 .

By plugging in the above expressions for x2 and x3 into the original objective function z =
x1 − x2 + x3, we get the objective in the new basis (x4, x3, x2):

z = x1 − (0.6x1 + 0.2x6 + 0.4x5 + 2.2)
+ (−0.2x1 + 0.6x6 + 0.2x5 + 1.6)

= 0.2x1 + 0.4x6 − 0.2x5 − 0.6 .

Hence, the tableau for the original problem in the basis (x4, x3, x2) is the following:

x1 x6 x5 1

z −0.2 −0.4 0.2 −0.6
x4 1 1 0 3

x3 0.2 −0.6 −0.2 1.6

x2 −0.6 −0.2 −0.4 2.2

Starting from this feasible tableau, we can now use phase II of the Simplex Method to solve
the original problem.

70 Rico Zenklusen 1 Linear Programming and Polyhedra

Remark 1.83

Note that the optimal tableau obtained after solving the auxiliary problem, i.e., tableau (1.27)
in Example 1.82, may be such that x0 is a basic variable of value 0, due to degeneracy. In this
case, the basis of the auxiliary problem, which contains x0, is clearly not a feasible basis of
the original one, where no x0 variable exists. However, whenever this happens, one can simply
perform an additional exchange step on any non-zero pivot element in the row of x0, to obtain
another optimal tableau where x0 is non-basic.
Observe that, whenever x0 is basic, there must always be a non-zero element in the row corre-
sponding to x0. For otherwise, all solutions to the auxiliary problem would have the same x0
value. However, this is not true, because there are feasible solutions for arbitrarily high values
of x0.

Finally, we highlight that one can avoid the reconstruction of the original objective function
after obtaining an optimal tableau for phase I of the Simplex Method by carrying along the
original objective function in the tableau. More precisely, when constructing the tableau for the
auxiliary LP for phase I of the Simplex Method, one can add one additional row corresponding
to the original objective z as follows:

auxiliary column

↓
x x0 1

auxiliary row → z̃ 0 1 0 ← objective function for phase I

objective function → z −c 0 0 ← objective function for phase II

−1

xs A
... b

−1

Starting from this tableau, we continue as before. More precisely, we first perform an ex-
change step to obtain a feasible tableau where x0 is a basic variable. We then perform phase II
of the Simplex Method with the special rule that we never choose a pivot on the row correspond-
ing to z. More precisely, the row corresponding to z is ignored for choosing pivot elements
or for determining whether the tableau is feasible. Nevertheless, whenever the pivot element is
fixed and an exchange step is performed, the row corresponding to z is treated like any other
row.

This way, the original objective remains expressed in the current non-basic variables through-
out phase I of the Simplex Method. Hence, when phase I of the Simplex Method terminates with
an optimal tableau of value 0, and with x0 being non-basic, then it suffices to delete the column
corresponding to x0 and the row corresponding to z̃ to obtain a feasible tableau for the original
problem. From this tableau, we can then start phase II of the Simplex Method.

1.4 Linear duality Rico Zenklusen 71

1.4 Linear duality

It turns out that for every linear program there exists a closely related linear program, called the
dual problem. The dual program can be seen as a different way to look at the original problem,
which is typically referred to as the primal. The close relation between primal and dual can be
exploited in several ways. In particular, the dual provides quick ways for showing optimality of
an optimal primal solution. Moreover, given an optimal solution for either the primal or the dual
often allows for quickly obtaining an optimal solution to the other problem. This connection
can sometimes be used to find an optimal solution to the primal more quickly. More precisely,
sometimes it is faster to use for example the Simplex Method to solve the dual problem and then
derive from an optimal dual solution an optimal primal one. Duality is also key in the context of
sensitivity analysis, and has various algorithmic applications, for example in so-called primal-
dual procedures, which solve a problem by simultaneously exploiting properties of the primal
and dual of a problem.

In the next section, we introduce linear duality as a way to find strong upper bounds for the
optimal value of a linear program.

1.4.1 Motivation: finding bounds on optimal value

Consider the following linear program in canonical form. Its feasible region is highlighted
below on the right-hand side together with the objective function, which is maximized at the
point (x1, x2) = (3, 3).

max 2x1 + 3x2
x1 + 3x2 ≤ 12

2x1 + x2 ≤ 9
x1 ≤ 4
x1 + 2x2 ≤ 10
x1 ≥ 0

x2 ≥ 0

c =

(
2
3

)

x1

x2

Assume we want to find an upper bound on the optimal value of the above linear program. One
way to obtain such a bound is by multiplying the constraint x1 + 2x2 ≤ 10 by 2 to obtain

2x1 + 4x2 ≤ 20 .

Because any solution to the LP satisfies x1, x2 ≥ 0, we have

2x1 + 3x2 ≤ 2x1 + 4x2 ≤ 20 .

72 Rico Zenklusen 1 Linear Programming and Polyhedra

Hence, 20 is an upper bound on the optimal LP value. An obvious questions is whether we can
obtain a better bound by a similar technique. Indeed, by adding up the constraints x1+3x2 ≤ 12
and x1 ≤ 4 we get

2x1 + 3x2 ≤ 16 ,

showing that the optimal LP value is upper bounded by 16. In general, to obtain a valid bound
for the objective 2x1 + 3x2, one can try to multiply each ‘≤’-constraint by some non-negative
factor such that a linear constraint αx1 + βx2 ≤ γ is obtained with α ≥ 2, β ≥ 3. Then γ is an
upper bound to the optimal value of the LP.

Hence, finding the best such upper bound is itself an LP where we have a variable for each
constraint of the original LP, except for the non-negativity constraints. Those variables describe
the coefficients in the conic combination of the constraints. Furthermore, there is a constraint
for each variable in the original LP. For the example above it looks as follows.

min 12y1 + 9y2 + 4y3 + 10y4
y1 + 2y2 + y3 + y4 ≥ 2

3y1 + y2 + 2y4 ≥ 3
y1 ≥ 0

y2 ≥ 0
y3 ≥ 0

y4 ≥ 0

This problem is called the dual problem to the original problem. The unique optimal solution of
this dual problem is (y1, y2, y3, y4) = (45 ,

3
5 , 0, 0) and leads to an optimal value of 15. The way

how we set up this dual problem implies that 15 is an upper bound to the value of the original
LP. As it turns out, the optimal value of the dual LP is even equal to the optimal value of the
original LP, which is achieved at the point (3, 3). This is no coincidence. It is at the heart of one
of the most important results in linear programming, namely strong duality.

In the following, we start by making the above discussion on constructing the dual more
formal before covering some key results linked to linear duality, like strong duality.

1.4.2 Dual of a linear program

Let us revisit the above discussion in more generality. Consider a general linear program in
canonical form, which we will call the primal problem to distinguish it later from the dual
problem:

max c⊤x
Ax ≤ b
x ≥ 0 .

(PLP)

Following the above discussion, its corresponding dual problem is:

min b⊤y
A⊤y ≥ c

y ≥ 0 .
(DLP)

1.4 Linear duality Rico Zenklusen 73

Notice that for each constraint in the primal there is a variable in the dual and vice versa. In par-
ticular, if the primal problem has n variables and m constraints (not counting the non-negativity
constraints) then the dual problem has m variables and n constraints (not counting the non-
negativity constraints).

Dualization of LPs not in canonical form

So far, we focussed on dualizing linear programs in canonical form. However, dualitzation can
be applied to a linear program in an arbitrary form. Of course, one can simply bring an arbitrary
linear program first into canonical form and then dualize it. However, one can also dualize any
linear program directly, without first transforming it into canonical form. For example, if we
have a constraint of type ‘≥’ in the primal, then we can use a dual variable for this constraint
that is non-positive instead of non-negative.

Recall that if we first transform a problem into canonical form, then this can lead to extra
variables and/or constraints, which leads to extra constraints and/or variables in the dual. Nev-
ertheless, one can simplify the resulting dual to avoid the introduction of extra variables or
constraints.

In the problem sets, we will expand on the above discussion about dualizing linear programs
that are not in canonical form. In what follows, we focus on the case of primal problems that are
in canonical form.

Dual of dual is primal

An interesting property of linear duality is that the dual of the dual is the primal problem. One
way to see this is to first transform (DLP) into canonical form:

−max −b⊤y
−A⊤y ≤ −c

y ≥ 0 ,
(1.28)

and then dualizing the above problem, which leads to

−min −c⊤x
−Ax ≥ −b

x ≥ 0 ,

which is again the primal problem (PLP). As discussed, it is not necessary to first trans-
form (DLP) into (1.28) to dualize it. One can immediately dualize it by again deriving how
one can bound the objective value b⊤y with the available constraints.

1.4.3 Weak and strong linear duality

Notice that by the way how we constructed the dual problem (DLP) from the primal prob-
lem (PLP), the value of any feasible solution to the dual upper bounds the value of any feasible
solution to the primal. This result is known as weak duality and is easy to prove formally.

74 Rico Zenklusen 1 Linear Programming and Polyhedra

Theorem 1.84: Weak duality

Let x, y be feasible solutions to (PLP) and (DLP), respectively. Then

c⊤x ≤ b⊤y .

Proof. The result follows from

c⊤︸︷︷︸
≤y⊤A

x ≤ y⊤ Ax︸︷︷︸
≤b

≤ y⊤b = b⊤y ,

where the first inequality holds due to c ≤ A⊤y and x ≥ 0, and the second inequality follows
from Ax ≤ b and y ≥ 0.

Weak duality comes already with some interesting implications. It implies that if the primal
is unbounded, then the dual must be infeasible. Since the primal-dual relation is symmetric, it
also implies that if the dual is unbounded then the primal is infeasible. Furthermore, if one can
find a primal feasible solution x and a dual feasible solution y such that c⊤x = b⊤y, then both
x and y are optimal solutions for the primal and dual, respectively. Hence, in this case, the dual
solution is an optimality certificate of the primal solution and vice versa.

Notice that weak duality does not rule out that both the primal and dual are infeasible, which
is indeed possible.

Example 1.85: Infeasible primal and dual LP

Below is a pair of a primal and dual linear program that are both infeasible.

max 2x1 − x2
x1 − x2 ≤ 1
−x1 + x2 ≤ −2
x1 ≥ 0

x2 ≥ 0

min y1 − 2y2
y1 − y2 ≥ 2
−y1 + y2 ≥ −1
y1 ≥ 0

y2 ≥ 0

Notice that the existence of such an example is not surprising due to the following. Consider
two independent linear programs in canonical form, one that is infeasible and one for which the
dual is infeasible. Then we can simply combine them into a single linear program maximizing
the sum of both objectives. It is not hard to check that this leads to a new linear program for
which both the primal and dual are infeasible.

Interestingly, when the primal and dual are both feasible—which is often the most interesting
case—then a cornerstone result in linear duality implies that their optimal values are equal. This
result is known as strong duality.

1.4 Linear duality Rico Zenklusen 75

Theorem 1.86: Strong duality

If the primal has a finite optimum, then also the corresponding dual problem has a finite
optimum and their values are equal, i.e., there exists a feasible solution x for (PLP) and
a feasible solution y for (DLP) such that c⊤x = b⊤y.

We provide a proof of Theorem 1.86 later in Section 1.4.4, after having discussed the dual
interpretation of the simplex tableau, which allows us to simultaneously make statements about
the primal and dual problem using the same tableau.

Strong duality implies that if an LP has a finite optimum, then the optimality of a solution to
that LP can always be certified by exhibiting a dual solution with the same value. Moreover,
strong duality has numerous implications in various combinatorial optimization problems. In
particular, most max-min relations in Combinatorial Optimization, like the max-flow min-cut
theorem, can be interpreted as a consequence of strong duality.

We recall that every linear program either (i) has a finite optimum, (ii) is unbounded, i.e.,
allows for solutions with arbitrarily strong objective values, or (iii) is infeasible. The table
below shows in which of those 3 states an LP and its corresponding dual can be, where a check
mark (✓) indicates that the corresponding combination is possible and a cross (✗) that it is not.

finite unbounded infeasible

infeasible

unbounded

finite

✗ ✓ ✓

✗ ✗ ✓

✓ ✗ ✗

dual

primal

The above table is symmetric because the dual of the dual is the primal. The first row and
first column follow from strong duality. The second row and column follow from weak duality.
Finally, the check mark at the bottom right follows from the fact that there are pairs of primal
and dual LPs that are both infeasible (see Example 1.85).

1.4.4 Dual interpretation of simplex tableau

We now discuss how the simplex tableau for the dual problem is tightly related to the one of
the primal problem. More precisely, by reading the tableau differently, one can interpret the
primal tableau as one for the dual problem. To highlight this connection, consider again the dual

76 Rico Zenklusen 1 Linear Programming and Polyhedra

problem (DLP) in canonical form, i.e.,

max −b⊤y
−A⊤y ≤ −c

y ≥ 0 ,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Introducing the objective function variable w = b⊤y
for the dual and the dual slack variables ys ∈ Rn, we write the dual problem in standard form:

max −w = −b⊤y
ys −A⊤y = −c

y, ys ≥ 0 .

Given an initial primal tableau for the primal, with objective z = c⊤x and slack variables xs,
we can directly read the dual relations by reading the tableau column-wise with the equality sign
next to the variables:

x (ys) 1 (w)

z (1) −c⊤ 0

xs (y) A b

(=)

(+)

Here, xs and ys denote the primal and dual slack variables, respectively. When reading the
tableau column-wise, we interpret the boundary of the tableau differently, as highlighted by the
parenthetical expressions in the tableau above:

(i) The role of the primal variables x is replaced by the dual slack variables ys.
(ii) The primal slack variables xs are replaced by the dual variables y.

(iii) The primal objective z takes the role of the dual constant 1.
(iv) The primal constant column 1 takes the role of the dual objective w.

This so-called dual reading or dual interpretation leads to:

ys = −c + A⊤y
w = 0 + b⊤y ,

which indeed corresponds to the dual constraints in standard form. In particular, this way of
reading uses the following one-to-one correspondence between the primal slack variables and
the dual variables:

Relation between primal/dual variables and slacks

xsj primal slack variable ←→ yj dual variable
xi primal variable ←→ ysi dual slack variable

A crucial fact is that the dual reading method works for any primal tableau, i.e., it always leads
to an equivalent equation system for the dual. Hence, any primal tableau can be interpreted as a
dual tableau when using dual reading. This key property, which readily leads to a proof of the
strong duality theorem, is formally stated below.

1.4 Linear duality Rico Zenklusen 77

Lemma 1.87

For any primal tableau, the dual reading of the tableau leads to an equivalent equation
system for the dual (including the objective function).

Proof. To set notation, assume that the original primal problem in standard form is described as
usual by:

max z = c⊤x
xs + Ax = b

x, xs ≥ 0 ,
(1.29)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. We recall that the corresponding dual problem in
standard form is given by:

max −w = −b⊤y
ys −A⊤y = −c

y, ys ≥ 0 .
(1.30)

Now consider a primal tableau for (1.29) (with respect to an arbitrary basis):

xN 1

z −c⊤ q

xB A b ,

(1.31)

where xB and xN are just names for the vectors of basic and non-basic variables, respectively,
in the above tableau. Our task is to show that by dual reading the tableau (1.31), one obtains an
equation system for the dual problem that is equivalent to the one in (1.30). Notice that the dual
equation system obtained from dual reading (1.31) clearly has full rank because it is in tableau
form. Hence, one only has to show that each of the dual constraints stemming from (1.31) is
implied by the equations in (1.30), i.e., it is a linear combination of the equations in (1.30).

Now consider an arbitrary column of (1.31); this can either be one of the n columns corre-
sponding to the non-basic variables xN or the last column, which corresponds to the constant 1.
Let us call the considered column the selected column. Notice that any such column corresponds
to a dual equation when using dual reading. To represent the entries of the selected column in
a way that we can naturally interpret both in the primal and the dual, we define a vector in the
space Q := R × Rm × Rn × R, where we interpret the m + n + 2 coordinates of the space Q
as follows:

(i) The first entry corresponds to the primal objective z and thus to the dual constant term.
(ii) The next m entries correspond to the primal slacks xs and thus to the dual variables y.

(iii) The next n entries correspond to the primal variables x and thus to the dual slacks ys.
(iv) The last entry corresponds to the primal constant term and thus to the dual objective w.

Hence, a primal solution with values x ∈ Rn for the original primal variables, xs ∈ Rm for the

78 Rico Zenklusen 1 Linear Programming and Polyhedra

primal slack variables, and z ∈ R for the objective is represented by the vector
z
xs

x
1

 ∈ Q . (1.32)

Because this is just another way to represent a primal solution, we also call the above vector a
primal solution.

Now let η ∈ Q be the vector defined as follows:

(i) If the selected column corresponds to a variable of xN , then we set the η-entry that cor-
responds to this variable to −1. Otherwise, if the selected column corresponds to the
constant column, then we set the η-entry that corresponds to the constant term to 1.

(ii) For any row of the tableau (1.31), which either corresponds to z or a variable in xB , we
set the corresponding entry of η to the value that the selected column has in this row.

(iii) All other entries of η are set to zero.

We now observe a few properties of the vector η. First, by reading the tableau (1.31) in the
primal way, we see that adding or subtracting η to any primal solution given in the space Q, as
shown in (1.32), another primal solution (in space Q) is obtained. Notice that whether z, xs, and
x is a primal solution can be rephrased as follows:

z ∈ R, xs ∈ Rm, x ∈ Rn is a primal solution ⇔
(
1 0⊤ −c⊤ 0
0 I A −b

)
·

z
xs

x
1

 =

(
0
0

)
.

Hence, this implies (
1 0⊤ −c⊤ 0
0 I A −b

)
· η =

(
0
0

)
.

Thus, η is in the null space of
(

1 0⊤ −c⊤ 0
0 I A −b

)
. This null space is spanned by the columns of

c⊤ 0
−A b
I 0
0 1

 ,

which implies that there exists some λ ∈ Rn+1 such that

η =

c⊤ 0
−A b
I 0
0 1

 · λ . (1.33)

1.4 Linear duality Rico Zenklusen 79

Moreover, observe that the dual equation stemming from dual reading the tableau (1.31) is
given by

η⊤

1
y
ys

−w

 = 0 . (1.34)

To show that the above constraint is implied by the equations in (1.30), we have to show that any
dual solution y ∈ Rm, ys ∈ Rn, and w ∈ R fulfills (1.34). Observe that the fact of y, ys, and
w being a dual solution, i.e., fulfilling the equations of (1.30), can be written in matrix form as
follows:

(
c −A⊤ I 0
0 b⊤ 0⊤ 1

)
·

1
y
ys

−w

 = 0 . (1.35)

Finally, we conclude that (1.34) indeed holds for any dual solution y, ys, w because

η⊤

1
y
ys

−w

 = λ⊤
(
c −A⊤ I 0
0 b⊤ 0⊤ 1

)
1
y
ys

−w

 = 0 ,

where the first equality follows from (1.33) and the second one from (1.35).

Lemma 1.87 allows for providing a quick proof of the strong duality theorem of linear pro-
gramming, i.e., Theorem 1.86. Indeed, the dual interpretation of the simplex tableau, together
with Proposition 1.87, show that whenever we have an optimal (primal) tableau, it also reveals
an optimal dual solution. This fact is at the heart of the proof below.

Proof of Theorem 1.86. Assume that we are given a linear (primal) program with a finite op-
timum. Now consider an optimal tableau for the problem. Notice that such a tableau exists
because first there is a feasible tableau due to feasibility of the problem. (Indeed, phase I of
the Simplex Method implies this.) Then there is also an optimal tableau because of phase II of
the Simplex Method which, when run with Bland’s rule, must either return an optimal tableau
or an unbounded direction, which does not exist because the primal optimum is finite. In an
optimal tableau the row corresponding to the primal objective is a non-negative vector. Hence,
when reading the tableau using dual reading, we obtain a feasible basic dual solution. Moreover,
because the objective value obtained through dual reading is the same as through primal reading,
we obtain that the dual basic solution y for the optimal tableau satisfies b⊤y = c⊤x, where x is
the primal basic solution of the optimal tableau. Hence, by weak duality, x and y are optimal
primal and dual solutions, respectively.

80 Rico Zenklusen 1 Linear Programming and Polyhedra

Example 1.88

Consider the following (primal) linear program in canonical form.

max 4x1 + x2 + 5x3 + 3x4

x1 − x2 − x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55

−x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1, x2, x3, x4 ≥ 0

Below is an optimal tableau that corresponds to the above LP.

x1 (y
s
1) x3 (y

s
3) xs1 (y1) xs3 (y3) 1 (w)

(1) z 1 2 11 6 29

(ys2)x2 2 4 5 3 14

(ys4)x4 1 1 2 1 5

(y2)x
s
2 −5 −9 −21 −11 1

Because the tableau is optimal, the basic primal solution, i.e.,

(x1, x2, x3, x4) = (0, 14, 0, 5) ,

is an optimal primal solution to the LP, and the basic dual solution of the above tableau, i.e.,

(y1, y2, y3) = (11, 0, 6) ,

which is obtained by dual reading the tableau, is an optimal dual solution. Both solutions are
obtained from the primal and dual reading, respectively, when setting the corresponding non-
basic variables to zero. Notice that if a slack variable xsi (ysi) is in the optimal basis, then the
corresponding dual variable yi (xi) is non-basic and therefore equal to zero. This relationship
is known as complementary slackness and will be discussed in more detail in Section 1.4.5.

Remark 1.89: Notation of primal & dual variables and slacks

Due to the strong correspondence between the primal (dual) slack variables and the dual (pri-
mal) variables, both variables are often denoted by the same symbol. This simplifies the dual
reading, but also involves the risk of mistaking the primal slack variables for the dual variables
and vice versa. For instance, let us consider the following tableau, corresponding to a primal

1.4 Linear duality Rico Zenklusen 81

problem in canonical form:
x 1

z −c⊤ 0

y A b

In the primal interpretation, x denotes the variables and y the slack variables, whereas in the
dual interpretation, x denotes the slack variables and y the variables. Moreover, z is the primal
objective but dual constant, whereas 1 is the primal constant but dual objective.

Moreover, all terminology we introduced for (primal) tableaus, like degeneracy, optimality,
or feasibility, can be defined analogously with respect to the dual. More precisely, given a
primal tableau, we call it dual feasible if its corresponding dual basic solution (obtained through
dual reading) is feasible, i.e., all entries in the objective row are non-negative. It is called dual
degenerate if at least one of the objective row entries is zero. Finally, there is no difference
between the notions of a primal and dual optimal tableau.

1.4.5 Complementary slackness

The complementary slackness theorem formalizes a crucial relation between optimal primal and
dual solutions, which we already observed in Example 1.88.

Theorem 1.90: Complementary slackness theorem

Consider a pair of primal and dual linear programs with finite optima:

max c⊤x
Ax ≤ b
x ≥ 0

min b⊤y
A⊤y ≥ c

y ≥ 0 .

Let x be a feasible primal solution and y a feasible dual solution. Then both x and y are
optimal solutions (for the primal and dual, respectively) if and only if

(i) (b−Ax)⊤y = 0, and
(ii) (A⊤y − c)⊤x = 0.

Proof. Consider again the chain of relations that we used to derive the weak duality theorem:

c⊤x ≤ y⊤Ax ≤ y⊤b , (1.36)

which is based on the relations c ≤ A⊤y, Ax ≤ b, and x, y ≥ 0. Now, by strong duality, x and
y are optimal if and only if c⊤x = b⊤y, i.e., the left-hand side and right-hand side of (1.36) are
equal. This happens if and only if both inequalities in (1.36) are equalities, which is equivalent
to

(i) (b−Ax)⊤y = 0, and
(ii) (A⊤y − c)⊤x = 0,

82 Rico Zenklusen 1 Linear Programming and Polyhedra

as desired.

As we will see in the problem sets, apart from providing an important insight on the relation
between optimal primal and dual solutions, the complementary slackness theorem can often be
used to derive an optimal dual solution from a primal one or vice versa.

2 Brief Introduction to Computational
Complexity

Typically, there are many different ways to tackle a computational problem. Different ap-
proaches lead to different algorithms that solve the same problem. Consequently, one faces
the task of comparing these algorithms with each other. What should be the criteria under which
we evaluate an algorithm? Depending on the application, different criteria may be important:
Sometimes simplicity is crucial to enable a quick and error-free implementation. For complex
problems, a clean and easy-to-understand structure is often in the foreground: A mathemati-
cal language, mathematical tools, and a mathematical formalism should be used in such a way
that complicated aspects are cleanly expressed in a comprehensible way. This avoids errors in
implementation and interpretation. When the focus is on dealing with large problem instances,
however, the efficiency of the algorithm is often decisive: we want to solve the problem with
the least amount of computation. This leads us to the runtime analysis of algorithms. When we
examine the running time of an algorithm, we want to know how much time it needs to solve a
particular problem instance. We are interested in the dependence of this duration on the size of
the problem instance. From a formal point of view, we have to be clear on what we mean by
the “size” of a problem instance and how we measure the “running time” (or “runtime”) of an
algorithm. When we talk about a problem class in the context of Complexity Theory, we limit
ourselves to instances of a problem for which the algorithm we are examining was designed. For
example, for the problem of finding the largest among n numbers, a list of n numbers comprises
a problem instance.

The size of a problem is the number of bits needed to store it. For example, an integer a ∈ Z≥0

can be saved in a standard representation with ⌈log2(a+1)⌉ bits, where ⌈q⌉ for q ∈ R represents
the smallest integer r ∈ Z that satisfies r ≥ q. The number 9 can therefore be represented as
a binary code in the form 1001. Because we often want to encode negative numbers, we can
use an extra bit to encode the sign. More generally, a (possibly negative) integer a ∈ Z can be
represented in ⌈log2(|a|+ 1)⌉+ 1 bits.

Unfortunately, it is difficult to give a good definition of the “runtime” of an algorithm. A
first approach could be to implement the algorithm in a common programming language, run it
on different sized problem instances and analyze the measured running times. However, such
measurements are highly dependent on the underlying hardware, the programming language
used, and many details linked to the implementation. But all these aspects have no relation to
the efficiency of the algorithm that we actually want to measure. For the running time of an
algorithm, a much less fine-grained measure is employed in Complexity Theory, with the goal
of achieving independence of the above-described factors: The running time of an algorithm
is measured by counting elementary operations. Elementary operations include additions, sub-
tractions, multiplications, divisions, and comparisons of two numbers. In particular, we want to

84 Rico Zenklusen 2 Brief Introduction to Computational Complexity

measure the number of elementary operations performed depending on the size of the problem
instance, which we refer to as ⟨input⟩ and which represents the number of bits used to encode
input.

Example 2.1: Maximum element

Consider the problem of finding the largest number in a given list a1, . . . , an ∈ Z≥0 of num-
bers. One possible algorithm that solves this problem is as follows: Start by comparing a1 and
a2 and store the larger of the two numbers as x, i.e., x = max{a1, a2}. Compare x with a3.
If a3 is the larger of the two numbers, override x with a3, and so on. This algorithm performs
n − 1 comparisons, so its running time is n − 1. Because we need at least n bits to store the
numbers a1, . . . , an, the running time of this algorithm is linearly (upper) bounded by the size
of the problem instance.
This example shows a situation typical of running time analyses: Often, one can describe the
running time as a function of the number of given elements (in this case n), without having to
look at the exact size of the input instance in binary encoding. If a polynomial bound of this
type is possible on the number of elementary operations, we talk about a strongly polynomial
algorithm.

In the example above, it was easy to specify an upper bound on the runtime of the algorithm.
Note that the actual running time of an algorithm, i.e., the number of elementary operations,
depends not only on the size of the concrete problem instance but also on the problem instance
itself. For example, consider an algorithm that calculates the largest common divisor of two
numbers a1, a2 ∈ Z>0. Such an algorithm can terminate much faster on some problem instances
(e.g., if a1 = a2) than on others. Classical running time analysis in Complexity Theory focusses
on so-called worst case analysis. That is, for each possible input size s = ⟨input⟩, we want to
know an upper bound on the running time of the algorithm that holds for any instance of input
size at most s. The runtime of an algorithm is thus captured by a function f : Z≥0 → Z≥0,
such that every problem instance of input size at most s is solved in at most f(s) elementary
operations.

To further simplify the analysis and avoid dependencies on unimportant details, we are not in-
terested in the exact number of elementary operations, but only in their order. More specifically,
we want to determine the runtime up to a constant factor. For example, we call an algorithm
linear if there is a constant c > 0 such that, for each problem instance, the algorithm needs
at most c · ⟨input⟩ elementary operations, where ⟨input⟩ is the size of the problem instance.
Thus, for an algorithm to have linear running time, it does not matter how large the constant c
is, as long as its runtime is bounded by c · ⟨input⟩. To succinctly describe the order of a term
without including constant factors, we use the Landau O notation. In this notation, the runtime
f(⟨input⟩) ≤ c · ⟨input⟩ of a linear algorithm is written as f(⟨input⟩) = O(⟨input⟩), that
of a quadratic algorithm as f(⟨input⟩) = O(⟨input⟩2). Analogously to the Landau O nota-
tion, which describes upper bounds up to constant factors, the notations Ω and Θ are commonly
used for lower bounding expressions and relating expressions of the same order (up to constant
factors), respectively. They are defined as follows.

Rico Zenklusen 85

Definition 2.2: Landau notation

Let f and g be two functions.
(i) We write f = O(g) if and only if

∃M > 0, c > 0 such that |f(s)| ≤ c · |g(s)| ∀s ≥M .

(ii) We write f = Ω(g) if and only if g = O(f).
(iii) We write f = Θ(g) if and only if f = O(g) and f = Ω(g).

In words, f = O(g) means that, for values of s that are large enough, f(s) does not grow
faster than g(s), up to a constant factor. Similarly, f = Ω(g) means that, for s being large
enough, f(s) does not grow more slowly than g(s), up to a constant factor. The combination of
both properties, that is f = Θ(g), means that f and g grow equally fast, up to constant factors,
for large values.

It turns out that subdividing algorithms into fast and slow algorithms, according to the crite-
rion of whether their runtime can be bounded by a polynomial in the size of the input instance,
is a natural way that proved to be highly influential both in theory and practice. As highlighted
below, algorithms that run in polynomial time are called efficient algorithms and, equally impor-
tantly, this notion can be used to classify problems.

Definition 2.3: Polynomial algorithms and problems

An algorithm is polynomial or efficient if its running time f(⟨input⟩) is bounded by a
polynomial in the size of the input, i.e., there is a polynomial g such that

f = O(g) .

A problem is solvable in polynomial time if it can be solved by a polynomial algorithm.

Example 2.4: Systems of linear equations

Consider a linear equation system of the form Ax = b with A ∈ Zm×n and b ∈ Zm. Note
that the special case of integer systems that we consider also covers the more general case of
rational systems of equations, since each rational system of equations can be converted into
an equivalent integer equation system by multiplying it by a common multiple of all occurring
denominators. The size of the problem instance is approximately given by

⟨input⟩ ≈
m∑
i=1

n∑
j=1

(⌈log2(|Aij |+ 1)⌉+ 1) +

m∑
i=1

(⌈log2(|bi|+ 1)⌉+ 1) . (2.1)

We do not write an actual equality in the above statement, because we normally cannot just
write all encodings consecutively without additional overhead. Indeed, we have to make sure
that we are able to separate the encodings of the involved entries. From a technical point of
view, this is not hard to achieve, for example when using additional syntax for delimiters to

86 Rico Zenklusen 2 Brief Introduction to Computational Complexity

mark the beginning and end of each encoded entry. However, the number of these extra bits is
typically small compared to the expression in (2.1). Because, as explained above, we are only
interested in the order of magnitude of the running time as a function of the input size, constant
factors do not play a role in the analysis. It is therefore sufficient to estimate the size of the
problem instance up to a constant factor. In this case, we see that (2.1) satisfies this requirement.
In addition, we emphasize that due to the double sum in (2.1) we have ⟨input⟩ ≥ m · n.
The system Ax = b can be solved through Gaussian elimination in O(mn2) elementary op-
erations. In particular, this means that the number of elementary operations is restricted by
a polynomial in ⟨input⟩, because ⟨input⟩ ≥ m · n. It can also be shown that the encoding
length of any matrix entry encountered during the calculations is upper bounded by a polyno-
mial in ⟨input⟩. Hence, Gaussian elimination is an efficient algorithm for the solution of linear
systems of equations.

We are particularly interested in the complexity of finding optimal solutions to mathematical
optimization problems. When talking about the complexity of problems, one typically considers
so-called decision problems. A decision problem is a problem that asks a yes-or-no question.
For example, one could consider a linear program and ask whether its optimal value is at least
some number q. This way, optimization problems can naturally be transformed into decision
problems.

Complexity Theory divides decision problems into different classes. The following are the
arguably two best known complexity classes:

• The class P , which contains all polynomially-solvable problems (or the corresponding de-
cision problems). We have seen that both finding the maximum in a list of given numbers
(Example 2.1) and solving linear systems of equations (Example 2.4) are included in P .
For problems in P , also large problem instances can very often be solved in a relatively
short time.

• The class NP , which contains all the decision problems for which the answer “yes” can
be verified by a cleverly chosen polynomial-size certificate in polynomial time. The cer-
tificate is often a solution to the problem itself, but may also contain other (polynomially
bounded) information. The idea of a certificate is that you can quickly convince yourself
that a “yes” instance really is a “yes” instance. For example, consider the decision prob-
lem whether a number a ∈ Z>0 is not a prime. If a is not a prime, you could choose as a
certificate a divisor t ∈ {2, . . . , a − 1} of a. In fact, given such a divisor t of a, we can
convince ourselves very quickly (in polynomial time) that a is a “yes” instance, i.e., it is
not a prime: it is enough to check that a is actually divisible by t. This algorithmic process
of convincing yourself with a certificate is called verification. Hence, problems in NP
allow for fast verification of “yes” instances, but that does not imply that a “no” instance
can be quickly verified, nor does it imply that a problem class can be solved efficiently,
i.e., that it lies in P .
Another example of a problem inNP is the so-called knapsack problem: Given is a set [n]
of n objects, where each object i ∈ [n] has a weight wi ∈ Z≥0 and a value pi ∈ Z≥0, and
a global weight bound W ∈ Z≥0. The task is to select a subset I ⊆ [n] of the objects with
total weight not exceeding W , i.e.,

∑
i∈I wi ≤ W and total value as large as possible,

Rico Zenklusen 87

i.e., it should maximize
∑

i∈I pi. The natural decision version of this problem adds to
the input of the problem a value P ∈ Z≥0 and asks whether there is a knapsack solution
of value at least P . A knapsack solution of value at least P clearly is a certificate that
the answer is “yes”. However, it is not clear how, in case of a “no”-instance, one could
provide a quickly checkable proof showing that no knapsack solution with value at least
P exists.

One may wonder, whether by moving from an optimization problem to its natural decision
version, like in the knapsack example above, one may end up with a significantly easier problem.
This is not the case. For example, assume we had an efficient algorithm for the decision version
of the knapsack problem. Then we could apply binary search with respect to P to find a knapsack
solution of largest possible value, thus solving the optimization problem. The range over which
we have to apply binary search can be bounded by [0,

∑n
i=1 pi]. Binary search needs a number

of steps that is logarithmic in the width of this search interval, which leads to a number of steps
that is linear in the input size. Hence, in particular, an efficient algorithm to solve the decision
version of the knapsack problem can easily be transformed to efficiently solve the optimization
version.

Intriguingly, it remains unknown whether the two complexity classes P andNP are different,
i.e., whether P ≠ NP . The question of whether P ≠ NP is one of the most famous open prob-
lems in Mathematics and Computer Science. It is one of the 7 Millennium Prize Problems, stated
by the Clay Mathematics Institute, who awards a prize of 1 000 000USD for its resolution.1 The
prevailing opinion of experts in the field is that P ̸= NP .

Notice that we have P ⊆ NP , because a provably correct algorithm for a problem in P can
be used to certify in polynomial time the correctness of a yes answer. The problems in NP are
a very big problem class with simple and extremely complex problems. To better understand
how difficult problems can be in NP , a subclass of NP has been defined, the so-called NP-
complete problems. NP-complete problems can be interpreted as the most difficult problems
in NP . In particular, it can be shown that if you can efficiently solve any single NP-complete
problem, you can efficiently solve all the problems in NP , which would imply P = NP . The
existence ofNP-complete problems is a very central and profound result in Complexity Theory
that led to a significantly better understanding of the problems that the class NP captures. If
P ̸= NP is true, then no NP-complete problem can be solved efficiently. An obvious proof
plan for P ≠ NP would thus start with an NP-complete problem and show that it is not
efficiently solvable.

It is crucial to understand that the number of solutions typically does not reflect the complexity
of a problem. Many combinatorial problems have solution spaces that are exponentially large in
the size of the input but can nevertheless be solved efficiently. One such example is sorting n
different integers in ascending order. To algorithmically deal with a problem, it is crucial to know
which complexity class the problem belongs to. In some cases, this is anything but simple—and
there remain many interesting problem classes for which this question remains open.

Complexity Theory has strongly influenced research on algorithms. Especially for problems
that are known to belong to difficult complexity classes (for example,NP-complete problems),

1See https://www.claymath.org/millennium-problems for more information on the Millennium
Prize Problems.

https://www.claymath.org/millennium-problems

88 Rico Zenklusen 2 Brief Introduction to Computational Complexity

Complexity Theory gives clear indications that there are good chances that no polynomial al-
gorithms exist to solve these problems. Hence, different approaches need to be explored. This
is a central motivation of so-called approximation algorithms. These are efficient algorithms
that return solutions of a guaranteed quality (in a well-defined sense) with respect to an optimal
solution. Also, when we know from a complexity-theoretic point of view that a problem is very
difficult to solve, this also justifies the use of heuristic algorithms, which typically do not come
with any solution guarantee but are often very fast.

3 Basics on Graphs

Graphs are a central structure in Discrete Mathematics with numerous real-world applications.
This comes at no surprise, as graphs and networks are ubiquitous in everyday life and can be
used to model transport networks, social networks, telecommunications networks, and neural
networks, just to name a few examples. By exploiting the underlying graph-theoretical struc-
tures, problems in such networks can often be solved fast even for enormously large instances.

The aim of this chapter is to provide a very brief introduction to some of the basics linked
to graphs and networks. After some motivational examples, we first introduce terminology
and notation commonly used in Graph Theory. Moreover, we talk about the most common
data structures to store graphs. This allows us to understand the input size of a problem that
involves graphs and also clarifies how much time certain simple graph operations take. Finally,
we discuss one of the most basic graph algorithms, namely breadth-first search, and some of
its implications. This first algorithmic example also helps us to combine and better understand
the previously introduced concepts, and is a first non-trivial example of how to analyze a graph
algorithm.

We would like to emphasize that the terms “graph” and “network” are used interchangeably
in many contexts. Sometimes, however, a network is used to describe graphs with additional
information, for example on its edges or vertices.

3.1 Some motivational examples

In this introductory section we describe some classical problems that can be modeled and solved
using graphs.

Example 3.1: Road network

Five cities, A, B, C, D, and E, are linked by the road network shown in Figure 3.1. The
cities are represented by vertices, the streets as connections between two vertices, which are
also called edges. The edges are labeled with the respective distances (in km) between the
connected cities.

A

B

C

D

E

2

4

5

4

3

2

Figure 3.1: A road network represented as a graph.

90 Rico Zenklusen 3 Basics on Graphs

One typical problem is to find the distance (i.e., the length of a shortest path) between any two
cities as well as a corresponding path of that length. For example, the distance between city A
and city E is 7 kilometers, and A-B-D-E is a possible path between A and E with this length.

The schematic representation of the road network in Figure 3.1, consisting of vertices and
edges, is a graph. The edges here are labeled with numbers—representing the distances in the
example— so we are talking about a weighted graph. If Example 3.1 contained a one-way street,
we could illustrate this in the graph by adding an arrow pointing in the allowed direction. Such
an edge is called directed edge, or simply arc. If every edge is directed in a graph, we are talking
about a directed graph.

Example 3.2: Utility network

Between five locations, a supply network is to be set up (e.g., for water, gas, electricity, or
internet access). The goal is that each pair of locations is connected, where a connection can go
through other intermediate stations. In Figure 3.2, the locations are represented as vertices and
the possible connections as edges between the vertices. The numbers on the edges correspond
to the installation cost for the respective connection. The problem is to find a minimum cost
set of edges that connect all locations. The highlighted edges in Figure 3.2 show an optimal
solution for this particular example.

5 6

1 3

8

4 5

2

Figure 3.2: A utility network respresented as a graph.

Example 3.3: Assignment problem

A set of n jobs {j1, . . . , jn} are to be completed by m workers {a1, . . . , am}. Not every job can
be completed by every worker: for each job, there is a given list of workers who are qualified
to perform it. The question is whether it is possible to assign to each job one worker who is
qualified for it. Each worker can be assigned to at most one job. Figure 3.3 shows a toy problem
of this type with five jobs and six workers. The problem is represented as a graph. The top
row of vertices corresponds to the jobs and the bottom one to the available workers. There is
an edge between a job and a worker if and only if the job can be performed by the worker. The
highlighted edges indicate a possible allocation assigning to each job one worker.

3.1 Some motivational examples Rico Zenklusen 91

job qualified workers

j1 a1, a3, a4
j2 a1, a2, a3, a5
j3 a4, a5, a6
j4 a3, a4
j5 a4, a5, a6

j1 j2 j3 j4 j5

a1 a2 a3 a4 a5 a6

Figure 3.3: An assignment problem and its representation as a graph.

Example 3.4: Flow problem

In a system of water pipes there is a source s and a sink t. The system consists of junctions
and pipes connecting these points. Each pipe can be used to let water flow in either one of the
two directions. Moreover, each pipe has a maximum throughput, i.e., a maximum amount of
water that can flow through the pipe per time unit. Junctions cannot store water. Hence, for
each junction, the water inflow must be equal to its outflow. A canonical optimization problem
in this setting is to determine the largest so-called s-t flow, which is the water flow—in terms
of water per time unit—from s to t.
Figure 3.4 shows an example of a pipe network. The edges represent pipes and the vertices
junctions, except for the two labelled vertices, which represent the source s and the sink t. The
black numbers on the edges, i.e., the ones on the right-hand side, are the known maximum
throughput rates for the pipes. This concrete example allows a maximum s-t flow of 17 units.
The blue numbers, which are to the left of the throughput values, indicate a possible flow in the
direction of the blue arrows that realizes this maximum.

s t

6
| 7
→

2 | 2
→

9 | 9→

5 | 5
→

4 | 4→ 7
| 8
→

6 | 8
→

3 | 3 ↑

5 | 6
→

3 | 3
→

Figure 3.4: A flow problem together with a maximum s-t flow represented as a graph.

92 Rico Zenklusen 3 Basics on Graphs

Example 3.5: Connection problem

In a telecommunications network, there is a central server in a network of locations. There are
connections between the locations of different bandwidths. At certain stations are customers
who would like to each have a connection of bandwidth 1 to the server. The task is to determine
a maximum number of customers that can simultaneously be served by the server with a unit
bandwidth each. The left part of Figure 3.5 shows such a problem where the server and loca-
tions are represented as vertices of a graph and the edges correspond to the connections. The
numbers on the edges indicate the bandwidth of the respective connections. The tokens above
vertices represent the clients. As highlighted on the right-hand side of Figure 3.5, a maximum
of 4 clients can be connected to the server simultaneously.

2 45

6

10

1

2

1

1

1

2

1

1

3

1 1

13

2

1

server

2 45

6

10

1

2

1

1

1

2

1

1

3

1 1

13

2

1

server

Figure 3.5: A connection problem and an optimal solution for it.

Example 3.6: Round trip

Our goal is to plan a road trip through the USA going through 20 given cities. The road trip
should be a round trip, i.e., start and endpoint must coincide. The task is to determine a road
trip that minimizes the driving time. The driving time from any of the 20 cities to any other
one is known upfront. Figure 3.6 shows an example.

Boston

New York
Washington, D.C.

Miami

Atlanta

New Orleans
Houston

Phoenix

Las Vegas

Los Angeles

San Francisco

Portland

Seattle

Salt Lake City

Denver

Minneapolis

St. Louis

Chicago

Detroit

Cleveland

Figure 3.6: A possible road trip through 20 given cities in the USA.

3.2 Basic terminology and notation Rico Zenklusen 93

Here, the problem is presented as a graph with 20 vertices, one per city, and all possible edges
between these vertices. Each edge is assigned a value, representing the travel time between its
endpoints. With this abstraction, the shortest round trip problem, also famously known as the
Traveling Salesman Problem, can be formulated as follows: Find a shortest cycle in the graph
that goes through all vertices.

Example 3.7: Drilling circuit boards

One of the steps in the production process of an electronic circuit board is the drilling of holes.
This is performed by automatic drilling machines, whose drill head wanders over the circuit
board and drills one hole after the other. In order to optimize the time required for this task,
the distance traveled by the drill head should be minimized. This problem is very similar to
the round trip problem depicted in Example 3.6 and can be modeled in an analogous way.
However, in contrast to the round trip problem, we do not need that the drill head returns back
to the starting point after completion of the drilling. Figure 3.7 shows a section of a circuit
board and a possible drilling order for that area.

Figure 3.7: Section of a circuit board with a possible drilling order.

3.2 Basic terminology and notation

A graph consists of a set of vertices and connections between pairs of vertices, which are called
edges. Edges can be undirected or directed, that is, oriented from one endpoint to another. A
graph containing only undirected edges is an undirected graph (Figure 3.8a). If all edges are di-
rected, we speak of a directed graph (Figure 3.8b). It is also possible that undirected and directed
edges occur simultaneously. In this case we are talking about a mixed graph (Figure 3.8c).

Our main focus will be on directed and undirected graphs, which we will formally introduce
shortly. In the context of graphs, various notations and terminology are used throughout the
literature. We focus on one widespread formalization in the following.

94 Rico Zenklusen 3 Basics on Graphs

(a) An undirected graph. (b) A directed graph. (c) A mixed graph.

Figure 3.8: Different types of graphs.

Undirected graphs

An undirected graph G = (V,E) is a pair consisting of a finite set V of vertices and a finite
set E of edges. Each edge e ∈ E has two endpoints u, v ∈ V , which may be identical. The
endpoints of an edge are denoted by endpoints(e) = {u, v}.

An edge e ∈ E is called a loop if its two endpoints are identical, or in other words if
| endpoints(e)| = 1. Two different edges e1, e2 ∈ E are called parallel if endpoints(e1) =
endpoints(e2). An (undirected) graph without loops and parallel edges is called a simple graph.
For example, in Figure 3.9a, we have

endpoints(e1) = {v1} and endpoints(e2) = endpoints(e3) = {v2, v3} ;

hence e1 is a loop and the edges e2 and e3 are parallel. Thus, the graph in Figure 3.9a is not a
simple graph. The graph in Figure 3.9b, on the other hand, has neither loops nor parallel edges
and is thus simple.

v1

v2

v3

e3

e2

e1

(a) A non-simple graph.

v3

(b) A simple graph.

Figure 3.9: Non-simple and simple graphs.

In simple graphs, we often describe an edge as the set of its endpoints, i.e.,

E ⊆
(
V

2

)
:= {{u, v} : u, v ∈ V, u ̸= v} .

Figure 3.10 illustrates this notation, which is unambiguous in simple graphs, because for any
set of endpoints there is at most one edge corresponding to it. In non-simple graphs, however,

3.2 Basic terminology and notation Rico Zenklusen 95

ambiguities may appear when referring to one of several parallel edges by its endpoints. Never-
theless, we also frequently use the above notation in the context of non-simple graphs in cases
where there is little danger of confusion.

v1 v2

v3 v4
G = (V,E)

V = {v1, v2, v3, v4}

E = {{v1, v2}, {v2, v3}, {v1, v3}, {v3, v4}}

Figure 3.10: Notation for simple graphs. Due to its convenience, this notation is also often
used in the context of non-simple graphs.

An edge e ∈ E and a vertex v ∈ V are called incident if v is one of the endpoints of e, i.e., if
v ∈ endpoints(e). Two distinct vertices u, v ∈ V are called adjacent (or neighboring) if there is
an edge e with endpoints(e) = {u, v}. With the notation introduced above, u and v are adjacent
if and only if {u, v} ∈ E. Figure 3.11 shows examples of incident and adjacent vertices.

v4 v1

v2

v3

e1
e2

e3

v1 is incident to e1, but not to e2 or e3.

v4 is adjacent to v1, v2, and v3.

v1 and v2 are not adjacent.

Figure 3.11: Incidence and adjacency in the context of vertices.

Directed graphs

An directed graph G = (V,A) consists of a finite set V of vertices and a finite set A of directed
edges, which we call arcs to more easily distinguish them from their undirected counterparts.
Every arc a ∈ A has a tail tail(a) ∈ V and a head head(a) ∈ V and points from tail to head. In
particular, the endpoints are given by endpoints(a) = {tail(a),head(a)}.

An arc a is a loop if tail(a) = head(a). Two distinct arcs a1 and a2 are called parallel
if tail(a1) = tail(a2) and head(a1) = head(a2). They are called antiparallel if tail(a1) =
head(a2) and head(a1) = tail(a2). As for undirected graphs, a directed graph G = (V,A) is
called simple if it contains neither loops nor parallel arcs. However, a simple directed graph may
contain antiparallel arcs. Figure 3.12 shows examples of a non-simple and a simple directed
graph. In Figure 3.12a, we have

head(a1) = head(a2) = v1

tail(a1) = tail(a2) = v2

}
=⇒ a1 and a2 are parallel,

96 Rico Zenklusen 3 Basics on Graphs

tail(a3) = head(a4) = v3

head(a3) = tail(a4) = v4

}
=⇒ a3 and a4 are antiparallel,

head(a5) = tail(a5) = v4

or, equivalently: endpoints(a5) = {v4}

}
=⇒ a5 is a loop.

Hence, because the directed graph in Figure 3.12a has both parallel edges and moreover a loop,
it is not simple. The directed graph in Figure 3.12b is simple.

v1

v2

v3 v4

a1

a2

a3

a4

a5

(a) A non-simple directed graph.

v3 v4

e4

(b) A simple directed graph.

Figure 3.12: Non-simple and simple directed graphs.

Analogously to the undirected case, we can use a simplified notation for arcs that is unam-
biguous in simple graphs. More precisely, we can describe an arc a ∈ A as an ordered pair
a = (u, v) of vertices, where u = tail(a) and v = head(a). With this notation it holds that

A ⊆ {(u, v) : u, v ∈ V, u ̸= v} ,

where A is the arc set of a simple directed graph G = (V,A). As before, this notation is
unambiguous only if no parallel arcs exist. Similar to the undirected case, we nevertheless use
this convenient notation also for directed graphs with parallel arcs, as long as there is no danger
of ambiguity. Figure 3.13 illustrates this notation.

v1 v2

v3 v4
G = (V,A)

V = {v1, v2, v3, v4}

A = {(v1, v2), (v1, v3), (v2, v3), (v3, v4)}

Figure 3.13: Notation for simple directed graphs. Due to its convenience, this notation is
also used in the context of non-simple graphs.

Basic notation and terminology

We continue with some very common and basic notation and terminology in the context of
graphs. Because of the close relation between undirected and directed graphs, when it comes to

3.2 Basic terminology and notation Rico Zenklusen 97

terminology and notation, we discuss both cases together. In parenthesis, we indicate whether
the introduced notation is commonly used for undirected (undir.) graphs, directed (dir.) graphs,
or both (undir./dir.).
• (undir./dir.) Edges that cross the subset of vertices S ⊆ V :

δ(S) :=
{{u, v} ∈ E : |{u, v} ∩ S| = 1, u ̸= v} ,
{(u, v) ∈ A : |{u, v} ∩ S| = 1, u ̸= v} .

• (dir.) Arcs leaving the vertex set S ⊆ V :
δ+(S) := {(u, v) ∈ A : u ∈ S, v ̸∈ S} .

• (dir.) Arcs entering the vertex set S ⊆ V :
δ−(S) := {(u, v) ∈ A : u ̸∈ S, v ∈ S} .

In particular, for a directed graph G = (V,A) and a subset of vertices S ⊆ V , it always holds
that δ(S) = δ+(S) ∪ δ−(S).

For a single vertex v ∈ V , we use the following shorthands of the above notation:

δ(v) := δ({v}) , δ+(v) := δ+({v}) , and δ−(v) := δ−({v}) .

• (undir./dir.) Degree of v: deg(v) := |δ(v)|+ 2 · |{loops at v}| .
• (dir.) Outdegree of v: deg+(v) := |δ+(v)|+ |{loops at v}| .
• (dir.) Indegree of v: deg−(v) := |δ−(v)|+ |{loops at v}| .

Figure 3.14 exemplifies the introduced notation.

v1

v2

v3

v4

v5

v6

v7

δ(v2) = {{v1, v2}, {v2, v3}, {v2, v7}}
deg(v2) = 3

S = {v4, v5, v6}
δ(S) = {{v1, v4}, {v1, v6}, {v3, v4},

{v3, v5}, {v3, v6}, {v5, v7}}

(a) Undirected graph.

v1

v2

v3

v4

v5

v6

v7

δ+(v2) = {(v2, v3), (v2, v7)}
δ−(v2) = {(v1, v2)}
deg+(v2) = 2

deg−(v2) = 1

S = {v4, v5, v6}
δ+(S) = {(v5, v7), (v6, v1), (v6, v3)}
δ−(S) = {(v1, v4), (v3, v4), (v3, v5)}

(b) Directed graph.

Figure 3.14: Crossing edges and vertex degrees.

Having introduced the most important notations for dealing with graphs, we now present two
simple yet very useful properties of the vertex degrees occurring in a graph.

Property 3.8: Sum of all vertex degrees

In an undirected graph G = (V,E), the sum of the degrees of all vertices is even.

98 Rico Zenklusen 3 Basics on Graphs

Proof of Property 3.8. If we sum up the vertex degrees, each edge is counted twice, once for
each of its endpoints. Consequently ∑

v∈V
deg(v) = 2|E| ,

implying that the sum of all vertex degrees is even.

The proof of Property 3.8 is an example of double counting. A direct implication of Prop-
erty 3.8 is the so-called handshaking lemma.

Property 3.9: Handshaking lemma

In every undirected graph, the number of odd-degree vertices is even.

Proof of Property 3.9. We partition the vertex set V = V1
.
∪ V2, where

V1 := {v ∈ V : deg(v) odd} = {odd-degree vertices} , and

V2 := {v ∈ V : deg(v) even} = {even-degree vertices} .

We now have ∑
v∈V1

deg(v) =
∑
v∈V

deg(v)−
∑
v∈V2

deg(v) .

On the right-hand side of the last equation, the first sum is even by Property 3.8, and the second
one is even as well because each summand is even. Thus it follows that the sum on the left-hand
side is even. Notice that each term in the sum on the left-hand side is odd by definition of V1;
hence, the number of summands must be even, i.e., |V1| is even.

The reason why Property 3.9 is also known as the handshaking lemma is the following: Prop-
erty 3.9 states that at every party the number of people who shake hands with an odd number of
guests has to be even. To see this, consider a graph that has the party’s guests as its vertices. Two
people are connected by an edge if and only if they shake hands. Thus, the degree of a vertex
is the number of guests with whom the corresponding person shook hands. The statement now
follows immediately from Property 3.9.

A walk in an undirected graph G = (V,E) is a sequence v1, e1, v2, . . . , vk−1, ek−1, vk (possi-
bly with repetitions) consisting of k ∈ Z≥1 vertices v1, . . . , vk ∈ V and k − 1 edges
e1, . . . , ek−1 ∈ E with ei = {vi, vi+1} for all i ∈ [k − 1], where we recall that [ℓ] := {1, . . . , ℓ}
for ℓ ∈ Z≥1, and we use the convention [0] = ∅. We call such a walk a walk between v1 and vk.
For an undirected walk, we consider the description v1, e1, v2, . . . , vk−1, ek−1, vk and the de-
scription vk, ek−1, vk−1, . . . , v2, e1, v1 in the opposite direction as equivalent, i.e., they describe
the same walk.

In a directed graph G = (V,A), a walk is a sequence v1, a1, v2, . . . , vk−1, ak−1, vk (possibly
with repetitions) consisting of vertices v1, . . . , vk ∈ V and arcs a1, . . . , ak−1 ∈ A with ai =

3.2 Basic terminology and notation Rico Zenklusen 99

(vi, vi+1) ∈ A for all i ∈ [k − 1]. In the directed case we are talking about a walk from v1 to
vk or a v1-vk walk. This notation is also used for undirected walks, where in undirected graphs,
each v1-vk walk is also a vk-v1 walk.

In both cases we define the length of a given walk with k vertices—where a vertex is counted
as many times as it appears in the walk—as k − 1, which is the number of edges in the walk,
also counted with multiplicities if an edge appears multiple times. A walk is called a path if it
contains no vertex more than once, i.e., vi ̸= vj for all i, j ∈ [k] with i ̸= j. A walk is called
closed, if v1 = vk. A closed walk, in which all vertices except for start and endpoint are pairwise
distinct, is called a cycle. Figure 3.15 illustrates the new terminology.

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

v1, e1, v1, e2, v2, e6, v7, e6, v2 is a
walk of length 4, but not a path,
since v1 and v2 appear multiple
times.

v1, e3, v3, e7, v4, e11, v7 is a v1-v7-
path of length 3.

v3, e8, v5, e12, v6, e9, v3 is a closed
walk with pairwise distinct vertices
(up to start and endpoint), hence it is
a cycle of length 3.

Figure 3.15: Walks, paths, closed walks, cycles, and their lengths.

To simplify the notation, we often denote a path or cycle simply by the set of edges it traverses,
for example, a cycle C in a graph G = (V,E) is represented as an edge set C ⊆ E. In
addition, ‘+’ and ‘−’ are used for adding or deleting a single element to or from a set, i.e.,
S + u− w := (S ∪ {u}) \ {w}.

A subgraph of an undirected graph G = (V,E) is a graph H = (W,F) with W ⊆ V and
F ⊆ {e ∈ E : e ⊆ W}, i.e., F is a subset of those edges of G that have both endpoints in W .
For a vertex set W ⊆ V , the subgraph induced by W is the subgraph of G = (V,E) defined by

G[W] = (W,E[W]) ,

where E[W] := {e ∈ E : e ⊆ W} is the set of all edges of G with both endpoints in W . The
definitions of subgraph and induced subgraph are analogous for directed graphs. Figure 3.16
exemplifies these notions for undirected graphs.

Exercise 3.10: Seating arrangements

You invite n guests over for dinner. For each pair of guests it is known whether they are friends
or not. The task is to create a seating plan for a round table such that guests sitting next to each
other are friends. Formulate this problem as the graph-theoretic problem of finding a certain
cycle in a well-defined graph.

100 Rico Zenklusen 3 Basics on Graphs

v1

v2

v3

v4

v5

v6

v7

(a) A graph G = (V,E).

v1

v3

v4

v5

v6

v7

(b) A subgraph of G.

v1

v3

v4

v5

v6

v7

(c) Induced subgraph G[V \{v2}].

Figure 3.16: Graphs, subgraphs, and induced subgraphs.

Solution
We construct a graph G = (V,E) in which each vertex corresponds to a guest. Two vertices
are connected by an edge if and only if the two corresponding guests are friends. A desired
seating plan now corresponds to a cycle in G that contains all the vertices in V exactly once
(see Figure 3.17a). Such a cycle is called a Hamilton cycle. Of course, not every graph contains
a Hamilton cycle. For example, for the graph in Figure 3.17b, it can be shown that it does not
contain a Hamilton cycle.

(a) A graph with a Hamilton cycle. (b) A graph with no Hamilton cycle.

Figure 3.17: Hamilton cycles in graphs.

A cut in a graph G = (V,E) is a nonempty subset S ⊊ V of vertices, where S ⊊ V is a
shorthand notation for S ⊆ V and S ̸= V . One can also imagine a cut as a non-trivial partition
of the vertex set V into the sets S and V \ S. This partition is non-trivial because both S and
V \S are nonempty. For this reason, a cut is sometimes also written as the pair (S, V \S). Cuts
are defined analogously in directed and undirected graphs. For a cut S in an undirected graph,
the edges in δ(S) are also referred to as the edges in the cut S or as the edges crossing S. In the
case of a directed graph, we denote the edges in δ+(S) as the edges in the cut S. For two distinct
vertices s, t ∈ V , an s-t cut in G is a cut S ⊆ V such that s ∈ S and t ̸∈ S. In other words, an
s-t cut separates s from t. Figure 3.18 illustrates the difference between the undirected and the

3.3 Data structures for graphs Rico Zenklusen 101

directed case.

s

t

δ(S)S

(a) Undirected graph.

s

t

δ+(S)S

(b) Directed graph.

Figure 3.18: An s-t cut S and the edges in the cut δ(S) (for the undirected case) and
δ+(S) (for the directed case).

Exercise 3.11

Let G = (V,A) be a directed graph, S a cut in G, and C ⊆ A a directed cycle in G. Show that
|δ+(S) ∩ C| = |δ−(S) ∩ C|.

Solution
Let H = (V,C) be the subgraph of G only containing the arcs in C. For each vertex set
W ⊆ V , let δ+H(W) := δ+(W) ∩ C and δ−H(W) := δ−(W) ∩ C. Using this notation, we
therefore need to prove |δ+H(S)| = |δ−H(S)|. First we show

|δ+H(S)| − |δ−H(S)| =
∑
v∈S

(
deg+H(v)− deg−H(v)

)
. (3.1)

This equality can be verified by checking that each arc a ∈ C contributes to both sides of the
equation equally. An easy way to perform this check is by distinguishing the following three
types of arcs: (i) a ∈ δ+H(S), (ii) a ∈ δ−H(S), and (iii) a ̸∈ δ+H(S) ∪ δ−H(S).
Because C is a directed cycle, every vertex in H has the same indegree as outdegree, i.e.,
deg+H(v) = deg−H(v) for all v ∈ V . Consequently, every single summand on the right-hand
side of (3.1) is equal to zero. Hence, the difference on the left-hand side is zero, too. It follows
that |δ+H(S)| = |δ−H(S)|, as desired.

3.3 Data structures for graphs

One of our main goals is to develop and analyze algorithms for graph optimization problems.
To this end, we need to clarify how a graph is stored in a computer and how graph-related data
can be accessed. This will both clarify the input size of a graph and the time we need to perform
basic graph operations, both of which are key to talk about the running time of graph algorithms.

102 Rico Zenklusen 3 Basics on Graphs

In this section we address these points by talking about data structures for graphs.
Two of the most widely used data structures for graphs are the representation as an adjacency

matrix (sometimes called neighborhood matrix) and the representation as an incidence list. Un-
less explicitly indicated otherwise, we will always assume that the underlying data structure is
an incidence list. However, we start by presenting the adjacency matrix before expanding on the
incidence list, due to its simplicity. The choice of data structures is a crucial and often highly
non-trivial step in algorithmics that comes with various trade-offs. Introducing another graph
data structure besides the incidence list allows us to discuss and compare advantages and disad-
vantages of these two data structures in comparison to each other, and to highlight some example
trade-offs faced when choosing a graph data structure.

The adjacency matrix

The adjacency matrix of an undirected graph G = (V,E) is the symmetric matrix M ∈ ZV×V
≥0

whose entries for all u, v ∈ V are defined by

M(u, v) :=

{
|{e ∈ E : endpoints(e) = {u, v}}| if u ̸= v ,

2 · |{loops at v}| if u = v .

Figure 3.19 shows the adjacency matrix of an undirected graph with 4 vertices.

v1 v2

v3

v4

M =

0 3 1 0

3 0 1 1

1 1 2 0

0 1 0 4

v1 v2 v3 v4

v1
v2
v3
v4

Figure 3.19: The adjacency matrix of an undirected graph.

The adjacency matrix of a directed graph G = (V,A) is the matrix M ∈ ZV×V
≥0 whose entries

for all u, v ∈ V are given by

M(u, v) := |{a ∈ A : tail(a) = u,head(a) = v}| .

Figure 3.20 shows the adjacency matrix of a directed graph with 4 vertices. As the example in
Figure 3.20 highlights, the adjacency matrix of a directed graph is not necessarily symmetric.

For simple graphs, the corresponding adjacency matrices are {0, 1}-matrices, i.e., matrices
where each entry is either 0 or 1. In addition, for simple graphs, all entries on the diagonal of
the adjacency matrix are 0.

The incidence list

An incidence list contains for each vertex a doubly linked list of those (directed or undirected)
edges incident to the corresponding vertex. To access these lists, we can use an array indexed

3.3 Data structures for graphs Rico Zenklusen 103

v1 v2

v3

v4

M =

0 2 0 0

1 0 1 1

1 0 1 0

0 0 0 2

v1 v2 v3 v4

v1
v2
v3
v4

Figure 3.20: The adjacency matrix of a directed graph.

by the vertices of the graph, which contains the pointers to the respective lists. More precisely,
these pointers point to the first element of the respective lists. For each vertex v, accessing the
first element of the list corresponding to v requires constant time. Figure 3.21 schematically
shows the incidence list of a directed graph.

v1 v2

v3

v4

a1

a3

a2

a4

a7

a6

a5

a8

a9

v1

v2

v3

v4

a6 a1 a2 a3

a1 a2 a3 a7 a4

a6 a4 a5

a7 a8 a9

Figure 3.21: The incidence list of a directed graph.

For undirected edges e we use a data structure in which the set endpoints(e) is stored and
can be queried. In the case of an arc a, it is possible to query tail(a) and head(a) in constant
time. Further information about the edges, for example weights, can also be stored in the data
structure for the edges.

Comparison: adjacency matrix and incidence list

Space requirements We consider a simple undirected graph G = (V,E) (the directed case
is analogous). Let n := |V | be the number of vertices and m := |E| the number of edges of G.
An important difference between the adjacency matrix and the incidence list of G is the space
required:

• Adjacency matrix: Θ(n2).
• Incidence list: Θ(m+ n).

Thus, for simple graphs the incidence list is typically a more compact encoding of the graph,
because in this case m = O(n2). The reason for the significantly larger space requirement of
the adjacency matrix is that even if two vertices are not connected by an edge, it stores a 0 to

104 Rico Zenklusen 3 Basics on Graphs

capture this information. This difference is particularly pronounced if the graph is sparse, that
is, if it has only few edges, for example m = O(n). Here, the adjacency matrix needs quadratic
space in n whereas the incidence list only requires linear space. This difference is crucial when
dealing with graphs with millions of vertices but constant average degree—a regime that is very
common in many applications.

Algorithmic complexity of some operations the Table 3.1 lists, for both the adjacency
matrix and the incidence list, the running times of several simple computational tasks in an
undirected graph G = (V,E), namely: calculating the degree of a vertex or listing all incident
edges, deciding whether a particular edge is part of the graph, and computing the number of
edges |E|.

deg(v) or δ(v) ∃?{u, v} ∈ E |E|

adjacency matrix O(n) O(1) O(n2)

incidence list O(deg(v)) O(min{deg(u),deg(v)}) O(m+ n)

Table 3.1: Running time of simple computations in graphs.

Exercise 3.12

Let G = (V,E) be a graph given by an incidence list and let u, v ∈ V two vertices. Show that
in time O(min{deg(u), deg(v)}) it can be decided whether G contains an edge {u, v}.

We recall that, unless explicitly stated otherwise, we will always assume that graphs are given
as incidence lists. The size of a graph with n vertices and m edges is therefore Θ(m+n). Thus,
an algorithm whose input is a single such graph is polynomial if and only if its running time is
upper bounded by a polynomial in m+ n.

3.4 Breadth-first search (BFS): shortest paths and more

We now discuss one of the best-known search methods on graphs, namely breadth-first search,
or BFS for short. To be exact, breadth-first search is an algorithmic idea that can be adapted
to solve many different problems. We introduce it in the context of finding shortest paths in
undirected graphs. Later we will see how the algorithm can be modified for directed graphs.

Let G = (V,E) be an undirected graph. We define a distance function d : V × V → Z≥0 ∪
{∞} as follows:

d(u, v) := min{|P | : P ⊆ E, P is a walk between u and v} ∀u, v ∈ V , (3.2)

i.e., d(u, v) is the length of the shortest u-v-walk in G. If there is no walk between u and v, then
d(u, v), as defined above, is the minimum over an empty set. For this case we set by convention
d(u, v) = ∞. Notice that one can impose in (3.2) the additional requirement that P must be a

3.4 Breadth-first search (BFS): shortest paths and more Rico Zenklusen 105

path (instead of a walk) without changing the definition. Indeed, this would not change the value
of d(u, v) because a shortest walk is always a path. Figure 3.22 shows a graph G = (V,E) that
contains next to each vertex v the distance to the fixed vertex v1, i.e., the length of a shortest
path to v1.

v1

v2

v3

v4v5

v6

v7

v8

v9

v10

v11

0

1

2

3
2

1

1

2
2

3

4

Figure 3.22: The number next to each vertex gives the distance to v1.

Breadth-first search is an algorithm that efficiently calculates the distances d(v1, v) for all
vertices v ∈ V for a fixed vertex v1 ∈ V . Algorithm 2 describes BFS in pseudocode.

Algorithm 2: Breadth-first search: computation of distances from a fixed vertex v1

Input: G = (V,E), v1 ∈ V .
Output: d(v1, v) for all v ∈ V .

1. Initialization:

d(v1, v) =

{
∞ if v ∈ V \ {v1},
0 if v = v1.

L = {v1}. // vertices to be processed

k = 1. // shortest possible assignable distance

2. while (L ̸= ∅) do:
Lnew = ∅.
for v ∈ N(L) := {u ∈ V : ∃w ∈ L with {w, u} ∈ E} do:

if d(v1, v) =∞ then:
d(v1, v) = k.

Lnew = Lnew ∪ {v}.
k = k + 1.

L = Lnew.

3. return d(v1, v) for all v ∈ V .

The idea of breadth-first search is simple: We first consider the vertex v1. For this vertex, we
know that d(v1, v1) = 0, because an empty walk has no edges and therefore has length 0. In

106 Rico Zenklusen 3 Basics on Graphs

the following, we consider all vertices in the neighborhood N({v1}) of v1, that is, all vertices
connected to v1 by an edge. For these vertices v we set d(v1, v) = 1. In the next step we
consider all vertices that are adjacent to one of the vertices of distance 1 and have not yet been
considered. For these vertices v we set d(v1, v) = 2, and so on. Table 3.2 shows the sets L and
N(L) for each iteration of the while-loop Algorithm 2 runs through for the graph in Figure 3.22.
The set L contains the vertices newly considered in the previous iteration, N(L) their neighbors.

k L N(L)

1 {v1} {v2, v6, v7}
2 {v2, v6, v7} {v1, v3, v5, v6, v7, v8, v9}
3 {v3, v5, v8, v9} {v2, v3, v4, v6, v7, v8, v9, v10}
4 {v4, v10} {v3, v4, v5, v8, v10, v11}
5 {v11} {v4, v10}
6 {} {}

Table 3.2: Breadth-first search table for the graph in Figure 3.22.

In the following we show that the function d computed by breadth-first search indeed corre-
sponds to the distances from v1. In addition, we show that the runtime of BFS is O(m + n),
where n := |V | and m := |E|, which is linear in the size of the graph.

Theorem 3.13: Correctness of breadth-first search

For every graph G = (V,E) and every vertex v1 ∈ V , Algorithm 2 calculates the values
d(v1, v) correctly for all v ∈ V .

Proof. To avoid confusion, let d′(v1, v) for v ∈ V be the distances computed by Algorithm 2,
and d the true distances in G as defined in (3.2). Furthermore, let D′

ℓ = {v ∈ V : d′(v1, v) = ℓ}
and Dℓ = {v ∈ V : d(v1, v) = ℓ} for all ℓ ∈ Z≥0.

We show for every k ∈ Z≥0 that Algorithm 2, after k iterations of the while-loop, computed
the set of all vertices v ∈ V satisfying d(v1, v) ≤ k as well as their distances correctly, i.e.,
Dℓ = D′

ℓ for all ℓ ≤ k. For this we use induction on k. For k = 0 the statement is certainly
true, because only v = v1 satisfies d(v1, v) = 0 and only v = v1 satisfies d′(v1, v) = 0, So,
suppose the statement holds for iteration k and consider iteration k+1 of the while-loop. In this
iteration, we set d′(v1, v) = k + 1 for all v that are adjacent to at least one vertex in D′

k = Dk

and have not yet been considered, hence d′(v1, v) =∞. Consequently,

D′
k+1 = {v ∈ V : d(v1, v) > k, v ∈ N(Dk)} .

We need to show that D′
k+1 = Dk+1. For this we prove both inclusions ⊆ and ⊇.

D′
k+1 ⊆ Dk+1: Let v ∈ D′

k+1. Because v ∈ N(Dk), it holds that d(v1, v) ≤ k + 1: At
least one neighbor w of v has distance k from v1, thus there exists a v1-w walk of length
at most k. This walk can be extended to a v1-v walk of length at most k + 1, which

3.4 Breadth-first search (BFS): shortest paths and more Rico Zenklusen 107

yields d(v1, v) ≤ k + 1. In addition, we have d(v1, v) > k because, due to the inductive
assumption, all vertices v with d(v1, v) ≤ k have already been considered. Together it
follows that d(v1, v) = k + 1, so v ∈ Dk+1.

Dk+1 ⊆ D′
k+1: Let v ∈ Dk+1. Hence, there is a v1-v walk of length k + 1 with vertices

v1, . . . , vk+1, v. It follows that vk+1 ∈ Dk needs to hold; for otherwise we could construct
a v1-v-path of length < k + 1. Thus, v ∈ N(Dk), and consequently v ∈ D′

k+1.

This completes the inductive step and thus implies the statement.

Theorem 3.14: Running time of breadth-first search

For every graph G = (V,E) and every vertex v1 ∈ V , Algorithm 2 has a running time
bounded by O(m+ n).

Proof. The initialization in the first step of Algorithm 2 requires O(n) time. For the second
step, we first determine the time needed to compute the neighborhoods N(L) calculated at the
beginning of the for-loop. Let L1 = {v1}, L2, . . . , Lk−1, Lk = ∅ be the sets L occurring during
the algorithm. Then Li contains exactly those vertices of V that have distance i − 1 from v1.
Thus, L1, . . . , Lk is a partition of all vertices that are in the same connected component as v1.

The calculation of N(L) takes O
(
|L|+

∑
v∈L deg(v)

)
time, because all neighbors of ver-

tices in L are explored. Thus, the running time to determine all neighborhoods N(L1), . . . , N(Lk)
is bounded by

O

 k∑
i=1

|Li|+
∑
v∈Li

deg(v)

 = O

(
|V |+

∑
v∈V

deg(v)

)
= O(n+m) ,

where we use that L1, . . . , Lk is a partition of V , and that the sum of all vertex degrees is
exactly 2m (see proof of Property 3.8). Furthermore, each vertex v ∈ V is contained in at
most 3 different neighborhoods N(Lj), namely in the iteration i such that v ∈ Li, as well as
in the one before and after. Indeed, a vertex can only be a neighbor of vertices with either the
same distance to v1 or with a distance to v1 differing from d(v1, v) by exactly one unit. Thus,∑k

i=1 |N(Li)| = O(n), and because every operation within the for-loop only requires constant
time per iteration, the total running time of all operations within the for-loop is bounded by
O(n). The output of the distances d(v1, v) in the last step requires O(n) time. Overall, the
running time is therefore bounded by O(m+ n), as desired.

Algorithm 2 can easily be adapted for directed graphs G = (V,A). For this we define the
out-neighborhood N+(L) as

N+(L) = {u ∈ V : ∃w ∈ L with (w, u) ∈ A} .

It suffices to replace N(L) by N+(L) in Algorithm 2 to adapt it to the directed case.

108 Rico Zenklusen 3 Basics on Graphs

Connectivity and connected components

A canonical application of BFS is to study the connectivity of a graph.

Definition 3.15: Connectivity in undirected graphs

Let G = (V,E) be an undirected graph.
(i) Two vertices s, t ∈ V are called connected in G if G contains an s-t walk.

(ii) The graph G is callled connected if each pair of vertices in G is connected.

With breadth-first search it is easy to check if a graph G = (V,E) is connected. It suffices
to perform a single breadth-first search with an arbitrary starting vertex v1 ∈ V , because G is
connected if and only if d(v1, v) <∞ holds for all v ∈ V .

In directed graphs G = (V,A), connectivity can be defined analogously by “forgetting” the
directions of the arcs. Moreover, there is a stronger notion of connectivity for directed graphs.

Definition 3.16: Connectivity in directed graphs

Let G = (V,A) be a directed graph.
(i) G is called connected, if the undirected graph G′, obtained from G by ignoring arc

directions, is connected.
(ii) Let s, t ∈ V . The vertex t can be reached from s in G if G contains a directed s-t

walk.
(iii) The graph G is called strongly connected if every vertex in G can be reached from

every other vertex.

Also strong connectivity (of a directed graph) can be checked through BFS, using only two
BFS calls. To this end, we fix an arbitrary vertex v1 and start BFS with v1 as starting vertex. This
run allows us to determine whether every vertex can be reached from v1, that is, if d(v1, v) <
∞ ∀v ∈ V . If a vertex cannot be reached from v1, then G is not strongly connected. Otherwise,
we call BFS a second time with starting vertex v1 but this time on the graph G obtained from G
by reversing all arc directions. This allows us to determine whether in G, the vertex v1 can be
reached from all other vertices. If not, then G is not strongly connected. Otherwise, G is strongly
connected. Indeed, if there is a vertex that can reach any other vertex and can be reached by any
other vertex then the graph must be strongly connected. This follows from the fact that for any
two vertices u,w ∈ V there is a u-w walk because such a walk can be obtained by concatenating
a u-v1 walk with a v1-w walk.

Definition 3.17: Connected components in undirected graphs

Let G = (V,E) be an undirected graph. A connected component of G is an induced
subgraph G[W] such that G[W] is connected and W ⊆ V is maximal with respect to this
property, i.e., for every X ⊆ V with X ⊋ W the graph G[X] is not connected.

3.4 Breadth-first search (BFS): shortest paths and more Rico Zenklusen 109

We emphasize the crucial notion of maximality, which is ubiquitous in Mathematical Opti-
mization. Namely, a set W is maximal with respect to a particular property if there is no strict
superset of W that also fulfills the property. This does not necessarily mean that W is a set of
maximum cardinality among all the sets with the property. The converse, however, is true: If a
set among all sets with a given property has maximum cardinality, then it is also maximal with
respect to that property.

Each graph can be decomposed into its connected components. Figure 3.23 shows a graph
with four connected components.

v11

v8
v9

v4
v5

v6

v7

v1
v3

v10

v2

v12

Figure 3.23: The above graph G has four connected components: G[{v1, v2}], G[{v3}],
G[{v4, v5, v6, v7, v10, v12}], and G[{v8, v9, v11}].

Using BFS, one can also find the connected components of a graph. Starting from a starting
vertex v1, breadth-first search reaches exactly those vertices that are in the same connected
component as v1. Indeed, the vertices in the same connected component are precisely those that
can be reached from v1, i.e., those vertices v satisfying d(v1, v) < ∞. So, if V1 is the set of
vertices reached by the breadth-first search, then G[V1] is a connected component of G. We
can repeat this procedure for another starting vertex v2 ∈ V \ V1 to find a second connected
component G[V2], and so on. A crude way to bound the running time of this procedure is by
observing that we make O(n) calls to BFS—because a graph has at most n := |V | connected
components—each of which uses O(n + m) time by Theorem 3.14. This leads to an overall
running time bound of O(n(m+ n)).

Exercise 3.18: Running time improvement

Show that the connected components of an undirected graph G = (V,E) can be found in
running time O(m + n). To achieve this, improve the running time analysis presented above
and, if necessary, adapt BFS (Algorithm 2) for this setting.

We can analogously define connected components in directed graphs by disregarding arc di-
rections. Again, for directed graphs, there is moreover a natural stronger notion of connected
components.

110 Rico Zenklusen 3 Basics on Graphs

Definition 3.19: Connected components in directed graphs

Let G = (V,A) be a directed graph.
(i) The connected components of G are the connected components of the undirected

graph G′, which results from G by ignoring arc directions.
(ii) A strongly connected component of G is an induced directed subgraph G[W] such

that G[W] is strongly connected and W ⊆ V is maximal with respect to this
property.

Figure 3.24 shows a directed graph with five strongly connected components.

v1
v2

v3

v4

v5v6

v7

v8

v9

v10

v11

v12
v13

v14

Figure 3.24: A graph G with two connected components and five strongly connected
components (in red): G[{v10}], G[{v1, v2, v3, v5, v6, v9}], G[{v4, v8, v11}],
G[{v7, v12, v13}], and G[{v14}].

4 Flows and Cuts

Flows and cuts allow for modeling and solving a surprisingly large set of real-world problems.
Furthermore, they can be used to answer many foundational questions related to graphs, for
example, whether a graph admits k arc-disjoint paths between two vertices s and t. We consider
flows in directed graphs. An undirected version can easily be derived from this. Throughout
this chapter, we denote by G = (V,A) a directed graph with arc capacities u : A → Z≥0.
Notice that we assume that arc capacities are integral. Non-negative rational arc-capacities can
be transformed into integral ones by scaling, leading to properties and results analogous to the
ones we discuss in the following.

4.1 Basic notions and relations

We start by defining the notion of an s-t flow, where s, t ∈ V, s ̸= t. Intuitively, one can imagine
G to be a network of water pipes where one wants to continuously send water from s to t. Each
arc a = (v, w) ∈ A is a pipe that can have a maximum throughput of u(a) from vertex v to w.
The quantity u(a) is called the capacity of a. Assume that one can decide how water entering
a vertex v is sent out on the outgoing arcs δ+(v), subject to respecting the arc capacities u. An
s-t flow then simply captures a possible steady-state mode for continuously sending water from
s to t, by indicating how much water flows on each arc per time unit.

Definition 4.1: s-t flow / flow

Let s, t ∈ V , s ̸= t. An s-t flow in G is a function f : A→ R≥0 satisfying the following
conditions.

(i) Capacity constraints: f(a) ≤ u(a) ∀a ∈ A.
(ii) Balance constraints: for v ∈ V ,

f(δ+(v))− f(δ−(v))

= 0 if v ∈ V \ {s, t} ,

≥ 0 if v = s ,

≤ 0 if v = t .

The value of a flow f is ν(f) := f(δ+(s))− f(δ−(s)).

The capacity constraints assure that the flow on each arc does not exceed the capacity. For a
vertex v ∈ V , we call the quantity f(δ+(v)) the outflow of v. Similarly, f(δ−(v)) is called the
inflow of v. Hence, the balance constraints can be rephrased as imposing that for each vertex
v ∈ V \ {s, t}, the outflow of v equals the inflow into v. The balance constraints guarantee

112 Rico Zenklusen 4 Flows and Cuts

that whatever flows into some vertex v ∈ V \ {s, t} also has to flow out of it. Furthermore, the
outflow of s is at least the inflow into s, and the outflow of t is at most the inflow into t. In other
words, no flow is created or destroyed at any vertex v ∈ V \ {s, t}. Furthermore, flow can be
created at vertex s, i.e., there may be more outgoing flow than incoming one, and flow may be
absorbed at vertex t. Therefore, the vertex s is often called the source and t is called the sink
of the flow network. Also note that the value of a flow f in the analogy based on water pipes
indicates how much flow is sent from s to t per time unit. Figure 4.1 shows an example of an
s-t flow.

s

v1

v2

v3

v4

v5

v6

t

5
2 | 4

1
3 | 1

2 | 3

5
2 | 5

0 | 1

0 | 2

5
3 | 3

2 | 4

1
2 | 1

2 | 2

1
3 | 2

0 | 2

0 | 1

11
6 | 5

1 | 1
1 | 1

Figure 4.1: Example of an s-t flow. Next to each arc a ∈ A, one can find the value of the
flow on a, i.e., f(a), followed by its capacity u(a), written as f(a) |u(a). The
value of the shown flow f is ν(f) = 29

6 .

Notice that in the water pipe analogy we used, flow values correspond to how much water is
sent per time unit, and the capacities limit the throughput, which is also measured in terms of
water per time unit. Nevertheless, in the context of network flows, we simply talk about the flow
value on an arc, and the flow sent from s to t, without repeatedly referring to a time component
that may underlie the problem.

An s-t flow in G is called maximum if it has maximum value among all s-t flows in G.
This leads to the maximum s-t flow problem, or simply the maximum flow problem, which is
formally defined as follows.

Maximum flow problem, or maximum s-t flow problem

Input: A directed graph G = (V,A), arc capacities u : A→ Z≥0, and s, t ∈ V , s ̸= t.

Task: Find a maximum s-t flow in G, i.e., an s-t flow f that maximizes ν(f).

Hence, in the analogy of the water pipes, the maximum s-t flow problem asks to send water
from s to t with maximum throughput. Before we present algorithms to solve this problem, we
will derive some further results regarding different ways to measure the value of an s-t flow.

4.1 Basic notions and relations Rico Zenklusen 113

This will play an important role in understanding how to verify that a flow has maximum value,
which is useful in the design of maximum s-t flow algorithms.

The value of a flow can be measured in several ways. We defined it as the difference between
outflow of s and inflow into s, which is also called the net outflow of s. Since all vertices except
for s and t have the same outflow as inflow, we know that the only place where the net outflow
of s can be absorbed is at t. Hence, the net inflow of t must be equal to the net outflow of s, and
is therefore also equal to the value of the flow ν(f). In the following, we want to formalize and
generalize this reasoning, which will also play an important role in understanding how to verify
that a flow has maximum value among all possible s-t flows. For this we recall the notion of
s-t cut, to which we assign a value in the context of flow problems.

Definition 4.2: s-t cut

An s-t cut is a set C ⊆ V such that s ∈ C and t /∈ C. Furthermore, in the context
of a maximum flow problem with capacities u : A → Z≥0, the value of an s-t cut C is
defined as u(δ+(C)). An s-t cut C is called minimum if it has minimum value among all
s-t cuts.

The following lemma shows that any s-t cut C ⊆ V can be used to measure the value of an
s-t flow f .

Lemma 4.3: Value of a flow expressed via an s-t cut

Let f be an s-t flow and C ⊆ V an s-t cut. Then

ν(f) = f(δ+(C))− f(δ−(C)) .

Proof. By condition (ii) (balance constraints) in the definition of an s-t flow f , we have f(δ+(v))−
f(δ−(v)) = 0 for all v ∈ V \ {s, t}. Thus

ν(f) = f(δ+(s))− f(δ−(s)) +
∑

v∈C\{s}

(
f(δ+(v))− f(δ−(v))

)
︸ ︷︷ ︸

=0

=
∑
v∈C

(
f(δ+(v))− f(δ−(v))

)
= f(δ+(C))− f(δ−(C)) ,

as required.

Exercise 4.4: Value of a flow

Show that the value of any s-t flow f is equal to the difference between inflow into t and
outflow of t, i.e., ν(f) = f(δ−(t))− f(δ+(t)).

Additionally to being a means of measuring the value of an s-t flow, an s-t cut also natu-
rally leads to an upper bound on the value of any s-t flow. This central result is known as the

114 Rico Zenklusen 4 Flows and Cuts

weak max-flow min-cut theorem and can be seen to be a special case of weak duality of linear
programming.

Theorem 4.5: Weak max-flow min-cut theorem

Let f be an s-t flow and let C ⊆ V be an s-t cut. Then

ν(f) ≤ u(δ+(C)) .

In other words, the value of a maximum s-t flow is upper bounded by the value of a
minimum s-t cut.

Proof. Using Lemma 4.3, we obtain

ν(f) = f(δ+(C))︸ ︷︷ ︸
≤u(δ+(C))

− f(δ−(C))︸ ︷︷ ︸
≥0

≤ u(δ+(C)) ,

where f(δ+(C)) ≤ u(δ+(C)) and f(δ−(C)) ≥ 0 follow from 0 ≤ f(a) ≤ u(a) ∀a ∈ A.

Hence, if we find an s-t flow and an s-t cut with identical values, then Theorem 4.5 implies
that the s-t flow is maximum and the s-t cut is minimum. The (strong) max-flow min-cut
theorem, which we will see later, guarantees that such a pair of s-t flow and s-t cut with matching
values always exists.

Remark 4.6: Infinite capacities

Even though in our definition of the maximum s-t flow problem, capacities are assumed to
be non-negative integers, it is common to allow that some arcs a ∈ A have infinite capacity,
i.e., u(a) = ∞. This case can easily be reduced to the one with finite capacities. Notice that
when allowing infinite capacities, an s-t flow of infinite value may exist, which can easily be
checked by using BFS only over the arcs with infinite capacity. If no infinitely large s-t flow
exists, then one can for example replace the infinite capacities by a sufficiently large capacity
that is at least as large as the value of a maximum s-t flow. One can use for example the value
of any finite-valued s-t cut, because this is an upper bound on the maximum flow value by
Theorem 4.5. All vertices reachable from s by arcs of infinite capacity form such a cut that can
easily be found by BFS. Due to this simple reduction, we will sometimes use infinite capacities
to model problems later on, because they express in a clean and easy-to-parse way that some
arcs do not have any relevant upper bound on the flow that may traverse them.

We next discuss a first algorithm to solve maximum flow problems, namely the Ford-Fulkerson
algorithm. Theorem 4.5 plays a crucial role in proving that this algorithm indeed works. More
precisely, one can exhibit from the Ford-Fulkerson algorithm not only an s-t flow f , but also
an s-t cut C, such that ν(f) = u(δ+(C)). By Theorem 4.5, this will immediately imply that
the s-t flow is maximum and that the s-t cut is minimum. Since the Ford-Fulkerson algorithm
always terminates with such a flow/cut pair, we can then derive from Theorem 4.5 the strong
max-flow min-cut theorem mentioned above.

4.2 Ford-Fulkerson’s algorithm and max-flow min-cut theorem Rico Zenklusen 115

4.2 Algorithm of Ford-Fulkerson and strong max-flow
min-cut theorem

Ford and Fulkerson’s max-flow algorithm starts with the zero flow, which is the s-t flow f
defined by f(a) = 0 ∀a ∈ A , and modifies it iteratively. In each iteration, the value of the
flow strictly increases by at least one unit until a maximum flow is obtained. To find a way to
augment an s-t flow f to an s-t flow with strictly larger value, Ford and Fulkerson’s algorithm
works on a residual graph, defined as follows.

Definition 4.7: f -residual graph & f -residual capacities

Let f be an s-t flow in G. The f -residual graph Gf = (V,B) with f -residual capacities
uf : B → Z≥0 is defined as follows. The set of arcs B := A ∪ AR contains all original
arcs A together with reverse arcs AR , where for a ∈ A, the set AR contains an arc aR

that is antiparallel to a, i.e., the head of aR is the tail of a and vice versa. Furthermore,

uf (b) :=

{
u(b)− f(b) if b ∈ A ,

f(a) if b = aR ∈ AR .

Figure 4.2 Illustrates the notion of f -residual graph and f -residual capacities.

s

v1

v2

t

2 | 2

1 | 3

1 | 1

1 | 3

2 | 2

(a) A graph G = (V,A) with flow f and capacities u
specified in the form f(a) |u(a).

s

v1

v2

t0

2

2

10 12

1

0

2

(b) The f -residual graph Gf = (V,B) with f -residual
capacities uf .

Figure 4.2: A flow f and the corresponding f -residual graph Gf .

Notice, an arc a ∈ A has a residual capacity of zero, i.e., uf (a) = 0, if and only if f(a) =
u(a). Such an arc is called f -saturated, or simply saturated.

A key observation used in the Ford-Fulkerson algorithm is the fact that if there is an s-t path
P ⊆ B in the residual graph Gf = (V,B) such that each arc of P has strictly positive residual
capacity, then there is a simple operation to increase the flow f by at least one unit. Such an s-

116 Rico Zenklusen 4 Flows and Cuts

t path in Gf is called an f -augmenting path, or simply augmenting path, and is formally defined
as follows.

Definition 4.8: f -augmenting path/augmenting path

Let f be an s-t flow in G. An f -augmenting path P ⊆ B is an s-t path in Gf = (V,B)
with uf (b) > 0 ∀b ∈ P .

Once an f -augmenting path is found, one can augment the value of the flow f as follows.

Definition 4.9: Augmentation

The augmentation of an s-t flow f in G along an f -augmenting path P ⊆ B, where
Gf = (V,B) is the f -residual graph, is the flow f ′ in G defined as

f ′(a) =

f(a) + γ if a ∈ P ,

f(a)− γ if aR ∈ P ,

f(a) if a, aR ̸∈ P ,

where γ := min{uf (b) : b ∈ P} > 0. We call the value γ the augmentation volume of
the augmenting path P .

One can easily verify that the augmentation f ′ of f is indeed a flow in G of value ν(f ′) =
ν(f) + γ. Furthermore, finding an augmenting path is easy. This can be done with breadth-first
search, as an augmenting path is simply an s-t path in the network (V,B′), where B′ = {b ∈
B : uf (b) > 0} are all arcs of the residual graph with strictly positive residual capacities. We
thus obtain the following.

Lemma 4.10: Running time for finding f -augmenting paths

Let f be an s-t flow in G and denote the number of arcs and vertices in G by m and n,
respectively. If there is an f -augmenting path, then such a path can be found in O(m+n)
time via breadth-first search.

Ford and Fulkerson’s maximum flow algorithm starts with a zero flow and augments that
flow via augmenting paths for as long as possible. Algorithm 3 describes Ford and Fulkerson’s
procedure. Figure 4.3 illustrates the Ford-Fulkerson algorithm on an example.

There are still several points to be discussed concerning the correctness and running time of
Ford and Fulkerson’s algorithm. A priori, it is not even clear whether the algorithm terminates,
because one may never leave the while-loop in the second step and always find new augmenting
paths. It turns out that if the initial capacities are not required to be integral but can be any
non-negative real numbers—in particular, irrational ones—then this can indeed happen. In such
bad examples one can indefinitely find augmenting paths and augment along them. This seems
somehow counter-intuitive, as the value of the flow increases each time we augment. The prob-

4.2 Ford-Fulkerson’s algorithm and max-flow min-cut theorem Rico Zenklusen 117

Algorithm 3: Ford and Fulkerson’s algorithm to find a maximum s-t flow
Input : Directed graph G = (V,A) with arc capacities u : A→ Z≥0 and s, t ∈ V , s ̸= t.
Output: A maximum s-t flow f .

1. Initialization:
f(a) = 0 ∀a ∈ A.

2. while (∃ f -augmenting path P in Gf) do:
Augment f along P and set f to be the augmented flow.

3. return f.

lem lies in the fact that, when having arbitrary real capacities, a bad example can be built such
that the augmentation volumes become smaller over the iterations and the value of the s-t flow
remains bounded, despite an infinite number of iterations. However, when dealing with integral
(or rational) capacities u : A → Z≥0—which is the case we are interested in and we recall that
integrality of the capacities is assumed in our definition of the maximium flow problem—this
cannot happen as we will show next.

Lemma 4.11: Positive integral augmentation volume

Each augmentation step of Ford and Fulkerson’s algorithm has an integral augmentation
volume of at least one unit.

Proof. By definition, the augmentation volume is strictly positive. Thus, it suffices to prove that
it is additionally integral. We claim that each flow f encountered at the beginning and end of
one iteration of step 2 is integral. This can easily be seen by induction. We start with the zero
flow, which is integral. Whenever we construct the residual graph Gf for an integral flow f ,
the residual capacities uf are integral, because f and u are integral. This implies that no matter
which augmenting path we choose, the augmentation volume is integral. Therefore, the updated
flow will be integral too.

Hence, all encountered flows f during Ford and Fulkerson’s algorithm are integral, and there-
fore, all augmentation volumes are integral too, as already discussed above.

From Lemma 4.11 we can easily derive bounds on the number of augmentation steps of Ford
and Fulkerson’s algorithm, and therefore also on its running time.

Corollary 4.12: Running time bound for Ford and Fulkerson’s algorithm

The number of augmentation steps in Ford and Fulkerson’s algorithm is bounded by the
value α ∈ R≥0 of a maximum s-t flow in G. Hence, the running time of Ford and
Fulkerson’s algorithm is bounded by O(α · (m+ n)), assuming α ≥ 1.

Notice that the above running time bound depends on an unknown quantity α > 0. However,
there are different ways how we can upper bound α to obtain a running time bound without
unknowns. A straightforward bound is α ≤ u(A) :=

∑
a∈A u(a). Often, stronger bounds can

118 Rico Zenklusen 4 Flows and Cuts

be obtained through Theorem 4.5 by using the value of a well-chosen s-t cut to bound α. A
canonical candidate is often the singleton s-t cut C = {s}.

When using the trivial bound α ≤ u(A), we therefore obtain a running time bound of
O(u(A) · (m + n)), where we assume u(A) > 0. It turns out that this bound can be tight
for some examples, i.e., there are examples where Ford and Fulkerson’s algorithm indeed needs
Θ(u(A) · (m + n)) elementary operations. Notice that this running time bound is not polyno-
mial in the input size, because u(A) is not polynomial in the input size. We recall that to store
a positive number, like u(a) for some a ∈ A, we only need Θ(log u(a)) bits. Hence, u(a) can
be exponential in the input size. Still, whenever the maximum capacity is small, say bounded
by a polynomial in n, then the bound O(α · (m+ n)) is polynomial in the input size, implying
that Ford and Fulkerson’s algorithm runs efficiently on such instances. This covers many inter-
esting applications as we will see later. In the following, we will show the correctness of Ford
and Fulkerson’s algorithm. We will prove this together with further properties that imply the
(strong) max-flow min-cut theorem.

Theorem 4.13

Let f be an s-t flow in G. Then the following are equivalent:
(i) f is a maximum s-t flow.

(ii) There does not exist an f -augmenting path in Gf .
(iii) There exists an s-t cut C ⊆ V with u(δ+(C)) = ν(f).

Furthermore, a minimum s-t cut can be found in linear time given a maximum s-t flow.

Before proving Theorem 4.13, we discuss some of its various implications. First, Theo-
rem 4.13 together with Theorem 4.5 implies that the value of a maximum s-t flow is always
equal to the value of a minimum s-t cut. This is called the strong max-flow min-cut theorem, or
simply the max-flow min-cut theorem.

Corollary 4.14: Strong max-flow min-cut theorem

The value of a maximum s-t flow in G is equal to the value of a minimum s-t cut in G:

max {ν(f) : f is s-t flow in G} = min
{
u(δ+(C)) : C ⊆ V, s ∈ C, t ̸∈ C

}
.

Consequently, Corollary 4.14 implies that the maximality of an s-t flow can always be shown
by specifying a minimum s-t cut because the maximum value of an s-t flow is equal to the value
of a minimum s-t cut.

Furthermore, Theorem 4.13 also implies that, as soon as one obtains an s-t flow f such that
there are no f -augmenting paths, then f has maximum value. This immediately implies that
Ford and Fulkerson’s algorithm indeed returns a maximum s-t flow, because we already know
that Ford and Fulkerson’s algorithm terminates, as stated in Corollary 4.12, and we recall that
the only way for the algorithm to terminate is the inexistence of further f -augmenting paths.

4.3 Integrality of s-t flows Rico Zenklusen 119

Corollary 4.15: Correctness of Ford and Fulkerson’s algorithm

Ford and Fulkerson’s algorithm returns a maximum s-t flow.

We will now provide a proof of Theorem 4.13.

Proof of Theorem 4.13. In order to prove the three equivalences in Theorem 4.13 we show the
implications

(i) =⇒ (ii) =⇒ (iii) =⇒ (i) .

(i)⇒ (ii): We show the contraposition. The existence of an f -augmenting path P in G implies
that the flow f is not maximum because augmenting f along P leads to a larger s-t flow.

(ii) ⇒ (iii): Let C ⊆ V be the set of all vertices that can be reached in Gf from s via the
arcs b ∈ B = A ∪ AR with uf (b) > 0. Obviously, s ∈ C, and moreover t ̸∈ C because by
assumption there are no f -augmenting paths in Gf . Hence, C is an s-t cut. By definition of
C, there cannot be an arc b in Gf that is leaving C and satisfies uf (b) > 0. By definition of
uf , this is equivalent to all arcs a ∈ δ+G(C) being f -saturated and all arcs a ∈ δ−G(C) satisfying
f(a) = 0. Hence, the value of the s-t cut C satisfies

u(δ+G(C)) = f(δ+G(C)) = f(δ+G(C))− f(δ−G(C))︸ ︷︷ ︸
=0

= ν(f) .

(iii)⇒ (i): By the weak max-flow min-cut theorem (Theorem 4.5), point (iii) implies that f
is a maximum s-t flow and C is a minimum s-t cut.

This proves the desired equivalences. Finally, the construction of a minimum s-t cut C ⊆ V
can be performed by following the approach used in the second part of this proof, i.e., C can
be chosen to be all vertices reachable from s in Gf by using only arcs with strictly positive
f -residual capacity. This can be done in O(m+ n) time via BFS.

4.3 Integrality of s-t flows

The above discussion of Ford and Fulkerson’s maximum s-t flow algorithm has a further impor-
tant implication that is heavily exploited in Combinatorial Optimization, namely that there is a
maximum s-t flow that is integral, and we can find such an s-t flow with Ford and Fulkerson’s
algorithm.

Theorem 4.16: Integral maximum flows

Let G = (V,A) be a directed graph with capacities u : A→ Z≥0, and let s, t ∈ V , s ̸= t.
Ford and Fulkerson’s algorithm finds a maximum s-t flow that is integral.

Proof. The s-t flow f returned by Ford and Fulkerson’s algorithm is maximum by Corol-
lary 4.15. Furthermore, f is integral because each augmentation increases the flow by an integral
amount.

120 Rico Zenklusen 4 Flows and Cuts

The fact that maximum s-t flows can be chosen to be integral allows for using s-t flows
to model a wide variety of combinatorial optimization problems through flow problems. A
crucial advantage of having integral flows lies in the ability to interpret an integral s-t flow
combinatorially. For example, if all capacities are either 0 or 1, then a maximum s-t flow can
be interpreted as a subset of the arcs, namely the ones that carry one unit of flow. We will
give applications of this in the next section. Finally, we want to highlight that the integrality
of s-t flows is one of the main reasons why s-t flows are studied so heavily in Combinatorial
Optimization.

4.4 Applications of s-t flows

There is a very broad set of applications of flows and cuts. As we already mentioned, one reason
for this is the existence of optimal integral flows, but this is by far not the only one. The existence
of extremely fast algorithms to solve even very large flow problems is another key aspect. In
general, state-of-the-art flow algorithms run significantly faster in practice then their worst-case
guarantees, often reaching a roughly linear running time. Due to this, flows and cuts have found
numerous applications in large-scale problems. Additionally, several classical theoretical results
linked to graphs and graph optimization can be elegantly derived via flows, their integrality,
and the strong max-flow min-cut theorem. In the following, we present a selection of several
applications of flows and cuts that reflect their versatility and broad applicability.

4.4.1 Arc-connectivity

We already discussed basic connectivity properties of graphs. Often, one is not only interested
in knowing whether a directed graph is strongly connected, i.e., whether every vertex can be
reached from every other vertex, but also how “well” two vertices are connected. A typical way
to measure this is by checking how many arc-disjoint paths there are between two vertices s and
t. Using this stronger notion of connectivity leads to the notion of k-arc-connected graphs.

Definition 4.17: k-arc-connectivity

A directed graph G = (V,A) is k-arc-connected if for any two vertices s, t ∈ V, s ̸= t,
there are at least k arc-disjoint s-t paths in G.

Notice that a 1-arc-connected graph is simply a strongly connected graph. We can check
whether a graph is strongly connected via breadth-first search. A key question is how to check
whether a graph is k-arc-connected. This can be reduced to the question of computing a max-
imum number of arc-disjoint paths from s to t for two arbitrary distinct vertices s, t ∈ V , by
checking whether each pair of vertices is k-arc-connected. Interestingly, this question can be
solved easily via maximum s-t flows, by introducing unit capacities on all the arcs and com-
puting a maximum s-t flow, as highlighted in Algorithm 4. We will show that the value of this
s-t flow corresponds to the number of arc-disjoint s-t paths.

We show in two steps that Algorithm 4 works correctly. First, we observe that whenever G
contains k arc-disjoint s-t paths, then there is an s-t flow of value k in the flow network used in

4.4 Applications of s-t flows Rico Zenklusen 121

Algorithm 4: Determining maximum number of arc-disjoint s-t paths.

Input: A directed graph G = (V,A) and vertices s, t ∈ V , s ̸= t.
Output: Maximum number of arc-disjoint s-t paths in G.

1. Define unit capacities u : A→ Z≥0, i.e., u(a) = 1 ∀a ∈ A.
2. Compute a maximum s-t flow f in G with capacities given by u.
3. return ν(f), the value of f .

Algorithm 4.

Observation 4.18: From arc-disjoint paths to flows

Let G = (V,A) be a directed graph and s, t ∈ V with s ̸= t. Let u : A → Z≥0 be unit
capacities, i.e., u(a) = 1 ∀a ∈ A. If there are k arc-disjoint s-t paths P1, . . . , Pk ⊆ A in
G, then an s-t flow f of value k is obtained by setting

f(a) :=

{
1 if a ∈

⋃k
i=1 Pi ,

0 otherwise .

Second, we show that if there is an s-t flow of value k in the flow network used in Algorithm 4,
then there exist k arc-disjoint s-t paths. This is implied by the following constructive theorem,
which shows how to convert an integral s-t flow of value k in a unit-capacity graph into k arc-
disjoint s-t paths.

Theorem 4.19: Path decomposition

Let f be an integral s-t flow in G with unit capacities u and let k = ν(f). Then, one can
find in linear time (i.e., O(m + n) time), k arc-disjoint s-t paths P1, . . . , Pk ⊆ A with⋃k

i=1 Pi ⊆ {a ∈ A : f(a) = 1}.

Proof. Let U = {a ∈ A : f(a) = 1}. We will find k arc-disjoint s-t walks within U . The result
then follows by shortcutting the walks into paths, i.e., by deleting directed cycles within a walk.
We use induction on k. The case k = 0 is trivial; hence, we assume k ∈ Z≥1. We construct the
first s-t walk W ⊆ U in our family of arc-disjoint s-t walks by using Algorithm 5.

To show that Algorithm 5 indeed finds an arc-disjoint s-t walk, we have to show that whenever
we are at the beginning of a new iteration of the while-loop and v ̸= t, then ∃(v, w) ∈ U \W .
This then implies that the algorithm will stop with an s-t walk.

When considering a vertex v ∈ V \ {s, t} in Algorithm 5, then, by construction, W ⊆ U is
an s-v walk. The set W contains one more incoming arc into v than outgoing ones. Because U
stems from a {0, 1} s-t flow, the number of arcs in U that enter v is equal to the number of arcs
in U that leave v. Therefore, there must exist an arc (v, w) ∈ U \W , as desired.

We can follow a similar argument for v = s. Whenever the algorithm considers the vertex
v = s, then W ⊆ U is a closed walk containing s. Hence, W contains as many arcs entering s

122 Rico Zenklusen 4 Flows and Cuts

Algorithm 5: Determining an s-t walk W

Input: A directed graph G = (V,U), vertices s, t ∈ V , s ̸= t, and an s-t flow f : U → {0, 1}
with value ν(f) ≥ 1.

Output: An arc-disjoint s-t walk W ⊆ U .

1. Initialization:
v = s.

W = ∅.
2. while v ̸= t do:

Choose an arc (v, w) ∈ U \W.

W = W ∪ {(v, w)}.
v = w.

3. return W.

as there are arcs leaving s. However, because U stems from a {0, 1} s-t flow with value k > 0,
the arc set U contains exactly k arcs more that leave s than arcs entering s. As k > 0, there
exists an arc (s, w) ∈ U \W .

Thus, we can find an s-t walk in G′ = (V,U) through Algorithm 5. The other k−1 required s-
t walks can be found inductively among the remaining arcs U \W because these arcs correspond
to the flow f ′, who is defined as follows:

f ′(a) :=

{
1 if a ∈ U \W ,

0 otherwise ,

and has value k− 1. Hence, the result follows by induction. The bound for the running time ap-
plies because every arc in U occurs at most once as an arc (v, w) in step 2 of a call to Algorithm 5
in the course of the construction of s-t walks according to Algorithm 5.

Combining Observation 4.18, Theorem 4.19, and the fact that there is an integral maximum
s-t flow due to Theorem 4.16, we obtain the following result.

Corollary 4.20: Correctness of Algorithm 4

Algorithm 4 correctly determines the maximum number of arc-disjoint s-t paths. Fur-
thermore, by Theorem 4.19, one can find a maximum set of arc-disjoint s-t paths in linear
time once an integral maximum s-t flow is found.

Notice that we need the existence of an integral maximum s-t flow to be able to invoke The-
orem 4.19. However, this is just part of the proof. If we only want to determine the maximum
number of arc-disjoint s-t paths, then any maximum s-t flow algorithm can be used, even if
a non-integral maximum flow is returned. However, if we want to compute a maximum num-
ber of arc-disjoint s-t paths, then we need to obtain an integral flow to invoke Theorem 4.19
constructively.

4.4 Applications of s-t flows Rico Zenklusen 123

Moreover, notice that Algorithm 4 is an efficient procedure when using Ford and Fulkerson’s
maximum s-t flow procedure. This is despite the fact that for general maximum s-t flow prob-
lems, Ford and Fulkerson’s algorithm is not efficient, as already discussed. The reason for this
is that the maximum flow in a unit-capacity network with m arcs is at most m. Hence, by
Corollary 4.12, the running time of Algorithm 4, when implemented with Ford and Fulkerson’s
maximum flow algorithm, is bounded by O(m(m + n)). Thus, we can answer the question
whether a given directed graph is k-arc-connected in polynomial time.

Notice that Corollary 4.20 states that the arc-connectivity between s and t is equal to the
value of a maximum s-t flow in the unit-capacity graph considered in Algorithm 4. Hence, by
the strong max-flow min-cut theorem, this leads to the following version of Menger’s Theorem.

Theorem 4.21: Menger’s Theorem

Let G = (V,A) be a directed graph with s, t ∈ V, s ̸= t. Then the maximum number of
arc-disjoint s-t paths is equal to the number of arcs in a minimum cardinality s-t cut.

In the above theorem, a minimum cardinality s-t cut refers to a minimum s-t cut with respect
to unit capacities. Hence, its value is min{|δ+(C)| : C ⊆ V, s ∈ C, t ̸∈ C}.

There are many versions of Menger’s Theorem, which can be derived through variations of
the above reasoning. In particular, the analogous theorems can be stated for undirected graphs
and also for vertex-disjoint paths. We will get back to variations of Menger’s Theorem in the
problem sets.

Arc-connectivity can be generalized to undirected graphs. In this case, k-edge-connectivity is
defined as follows.

Definition 4.22: k-edge-connectivity in undirected graphs

An undirected graph G = (V,E) is k-edge-connected if for any two vertices s, t ∈ V
with s ̸= t there exist at least k edge-disjoint s-t paths in G.

Exercise 4.23: Checking k-edge-connectivity in undirected graphs

Reduce the problem of checking k-edge-connectivity in undirected graphs to the problem of
checking k-arc-connectivity in directed graphs.

4.4.2 Maximum cardinality matchings in undirected graphs

Consider the following problem. Assume that there is a set of workers X that have to perform
a set of tasks Y . Not every worker can perform every task, and each task is a one day job for
a worker with the appropriate skill set. We can represent the relation of which workers can
perform which tasks as a graph G = (V,E), where V = X

.
∪ Y and an edge {x, y} ∈ E

between worker x ∈ X and task y ∈ Y means that x has the right skill set to perform task y.
Our goal is to find an assignment of tasks to workers such that a maximum number of tasks is

124 Rico Zenklusen 4 Flows and Cuts

performed within the considered day. This problem can be solved by computing a maximum
s-t flow in an appropriate auxiliary network, as we discuss next.

We start with some basic terminology to highlight some important structure of the problem
and its solution. First, notice that the graph G is not a general undirected graph, but it has an
additional property. Namely, each edge goes from a vertex in X to a vertex in Y , with X∩Y = ∅.
Such graphs are called bipartite, and one can easily check that they cannot have any odd cycles.
It turns out that the non-existence of odd cycles even characterizes them.

Definition 4.24: Bipartite graph

An undirected graph G = (V,E) is called bipartite if there is a bipartition of its vertices
V = X

.
∪ Y such that each edge has one endpoint in X and the other in Y .

Figure 4.4 shows an example of a bipartite graph. If G has several connected components,
then there are several ways to partition V into X

.
∪ Y such that all edges go between X and

Y . For simplicity, we sometimes say that G = (V,E) is a bipartite graph with bipartition
V = X

.
∪ Y to denote an arbitrary bipartition of the vertices such that all edges go between X

and Y .

Exercise 4.25

Show that a graph is bipartite if and only if it does not contain an odd cycle. We recall that a
loop is also considered to be an odd cycle.

Notice that a solution to our assignment problem can be represented by a subset M ⊆ E
of the edges that indicates which tasks are assigned to which workers. More formally, an edge
{x, y} ∈ M is interpreted as an assignment of worker x to task y. Notice that because every
worker can be assigned to at most one task and every task can be performed by at most one
worker, a solution set M must be such that no worker or task has two edges of M incident with
it, i.e., no vertex in the subgraph (V,M) has degree bigger than 1. Such an edge set M is called
a matching.

Definition 4.26: Matching

Let G = (V,E) be an undirected graph. A set M ⊆ E is a matching in G if M does not
contain loops and no two edges of M share a common endpoint.

Hence, finding a maximum assignment of workers to possible jobs can be rephrased as finding
a maximum cardinality matching in the bipartite graph G = (X

.
∪ Y,E). In the following, we

show how to solve such problems efficiently by computing an integral maximum s-t flow. For
completeness, we first give a formal description of the problem.

4.4 Applications of s-t flows Rico Zenklusen 125

Maximum cardinality matching problem in bipartite graphs

Input: An undirected bipartite graph G = (V,E).

Task: Find a maximum cardinality matching M ⊆ E in G.

In the following discussion, where we show how to solve the maximum cardinality bipartite
matching problem, we reuse the notation and terminology that we introduced for the worker-task
assignment problem. Hence, our bipartite graph is G = (V,E) with bipartition V = X

.
∪ Y .

Consider the following auxiliary graph H = (W,F), which is directed. It is obtained from G
by directing all edges of G from X to Y . Furthermore, we introduce two new vertices s and t.
For each vertex x ∈ X we add an arc (s, x), and for each vertex y ∈ Y we add an arc (y, t).
Hence, formally, the graph H is defined as follows:

W = V ∪ {s, t} , and

F = {(x, y) : x ∈ X, y ∈ Y, {x, y} ∈ E} ∪ {(s, x) : x ∈ X} ∪ {(y, t) : y ∈ Y } .

Figure 4.5 shows the graph H that corresponds to the example bipartite graph depicted in
Figure 4.4.

The capacities u : F → Z≥0 are set to u(a) = 1 for all a ∈ F . We now determine a maximum
integral s-t flow f in H . Let

M := {{x, y} ∈ E : x ∈ X, y ∈ Y, f((x, y)) = 1}

be the set of all edges in G whose corresponding arcs in H carry one unit of flow. We prove the
following claim.

Claim 4.27

M is a maximum cardinality bipartite matching in G.

Proof. First notice that M is a matching. For this we show that every vertex of V is incident
with at most one edge of M . Indeed, consider any vertex x ∈ X; the reasoning for y ∈ Y is
analogous. Because x has only one incoming arc in the flow network H , namely the arc (s, x),
which has capacity 1, it is impossible to have two arcs going out of x that both carry a unit of
flow. This would contradict the balance constraint at x. Thus at most one of the outgoing arcs
of x has flow 1., i.e., x has degree at most 1 in M . Thus, M is indeed a matching. Furthermore,
we can compute the value ν(f) of f by using Lemma 4.3 with C = {s} ∪X , i.e.,

ν(f) = f(δ+(C))− f(δ−(C)) = f(δ+(C)) = |M | ,

where the second equality follows from δ−(C) = ∅, and the last one from the definition of M
and the fact that f is a {0, 1}-flow due to its integrality and the unit capacities. In summary, any
integral s-t flow in H of value k corresponds to a matching of cardinality k.

Conversely, every matching M ′ ⊆ E of cardinality k can easily be transformed into an s-
t flow of value k in the graph H . We start with the zero flow f , and for every arc {x, y} ∈ M ′,

126 Rico Zenklusen 4 Flows and Cuts

we set the flow values on the arcs of the path s → x → y → t to one unit. Hence, whenever
there is a matching of cardinality k in G, there is an s-t flow of value k in H .

The above showed that there is a one-to-one correspondence between matchings in G and
integral s-t flows in H with the cardinality of a matching being equal to the value of the cor-
responding s-t flow. Hence, the matching M constructed via the s-t flow problem is indeed a
maximum cardinality matching in G.

Hence, we can solve the matching problem with Ford and Fulkerson’s algorithm. With regard
to the running time, observe that the auxiliary graph H has size polynomially bounded in the
input size. Moreover, all arcs have capacity 1, and thus, the sum of all capacities is a polynomial
upper bound for the value of a maximum flow. By Corollary 4.12, it follows that the proposed
algorithm for finding a maximum cardinality bipartite matching is efficient when using Ford and
Fulkerson’s algorithm to find an integral maximum s-t flow.

Exercise 4.28: Two jobs per day

Consider our worker-task assignment problem. Assume that every worker can perform up to
two tasks within the same day. As before, only one worker can be assigned per job. Show how
this problem can still be solved efficiently, by adapting the approach presented above.

When interpreting the allocation of workers to jobs, it is a natural question under which cir-
cumstances it is possible to simultaneously assign all workers in X . Formally, in a bipartite
graph G = (V,E) with bipartition V = X

.
∪ Y , we are looking for sufficient and necessary

conditions for the existence of a matching M ⊆ E that touches all vertices in X , i.e., matchings
M such that every vertex x is incident with an edge in M . Obviously |Y | ≥ |X| is a necessary
condition, although this condition is certainly not sufficient. It is not hard to see that the follow-
ing restriction is also necessary: For each set of X0 ⊆ X , the number of neighbors that X0 has
in Y must be at least |X0|. If we define N(X0) ⊆ Y as the set of neighbors from X0 in Y , i.e.,

N(X0) := {y ∈ Y : ∃x ∈ X0 with {x, y} ∈ E} ,

then we can write the condition as |N(X0)| ≥ |X0| for all X0 ⊆ X . The condition is neces-
sary because N(X0) contains all jobs that workers in X0 can perform. For everyone to work
simultaneously, N(X0) must have at least as many jobs as there are workers in X0. As it turns
out, this condition, known as Hall’s condition, is also sufficient. This is the statement of Hall’s
Theorem which, as we will see, can be considered as an implication of the (strong) max-flow
min-cut theorem (Corollary 4.14).

Theorem 4.29: Hall’s Theorem

Let G = (V,E) be a bipartite graph with bipartition V = X
.
∪ Y . Then there exists a

matching M ⊆ E in G that touches all vertices in X if and only if

|N(X0)| ≥ |X0| for all X0 ⊆ X .

4.4 Applications of s-t flows Rico Zenklusen 127

Proof. As discussed, Hall’s condition is clearly necessary for the existence of a matching M
that touches all vertices in X . We still have to prove sufficiency of the condition.

To this end, we consider an s-t flow problem in the same auxiliary graph H = (W,F) that
we constructed to solve the bipartite matching problem (see Figure 4.5). As already shown,
the maximum cardinality matching in G is equal to the value of a maximum s-t flow in H . In
order to prove Hall’s Theorem, it suffices to conclude from Hall’s condition that there exists an
s-t flow of value |X| in H . Note that no flow can have a value greater than |X|, because the total
capacity of all arcs leaving s is |X|. The max-flow min-cut theorem (Corollary 4.14) implies
that the value of a maximum s-t flow in H equals the value of a minimum s-t cut in H . In order
to show the result, we thus prove that the value of a minimum s-t cut C ⊆W in H is |X|.

Let C ⊆W be a minimum s-t cut in H , and we define CX := C ∩X and CY := C ∩ Y . We
first show that, without loss of generality, we can assume that C fulfills

N(CX) ⊆ CY . (4.1)

If not, we can replace C by C∪N(CX) without increasing the value of the cut. To show this, we
observe how the value of the s-t cut C changes when we add y ∈ N(CX) \ CY to C to obtain
C ′ = C ∪ {y}. There is one new arc in the cut, namely δ+(C ′) \ δ+(C) = {(y, t)}. However,
there is also at least one arc in δ+(C) \ δ+(C ′), because y is a neighbor of a vertex in CX and
y ̸∈ CY . Consequently, because all arcs have unit capacity, the value of the s-t cut C ′ cannot
be greater than the value of the s-t cut C. By applying this reasoning iteratively to all vertices
y ∈ N(CX) \ CY , we obtain, as claimed, that the value of the s-t cut C ∪N(CX) is no greater
than the value of the s-t cut C. We can thus assume that C fulfills (4.1).

The value of the s-t cut C is given by u(δ+(C)) = |δ+(C)|, because H has unit capacities.
Consider the arcs δ+(C). This set contains no arcs between X and Y , because C satisfies (4.1).
Consequently, δ+(C) consists of all arcs from s to X \ CX and all arcs from CY to t. Thus,

u(δ+(C)) = |δ+(C)|
= |X| − |CX |+ |CY |
≥ |X| − |CX |+ |N(CX)| (because |CY | ≥ |N(CX)| by (4.1))

≥ |X| . (by Hall’s condition |N(CX)| ≥ |CX)|)

In summary, the minimum s-t cut in H has a value of at least |X|, and thus a value of exactly
|X|, because the s-t cut C = {s} has value |X|. According to the strong max-flow min-cut
theorem (Corollary 4.14), the value of a maximum s-t flow is also |X|, and hence, as discussed
above, a maximum cardinality matching M ⊆ E has size |X|, thus touching all vertices in
X .

4.4.3 Multiple sources and sinks with limited supply and demand

So far we have only considered flow problems with a single source s and a single sink t. We
now consider multiple sources and sinks. Here, there are different natural versions one can
consider, many of which can easily be reduced to the single-source single-sink case. We con-
sider a classical setting with multiple sources and sinks with limited supply and demand. More

128 Rico Zenklusen 4 Flows and Cuts

precisely, given is a directed graph G = (V,A) with arc capacities u : A → Z≥0, sources
s1, . . . , sk ∈ V , and sinks t1, . . . , tℓ ∈ V . Suppose that sources and sinks are all distinct.
This assumption is made only to simplify the exposition and can easily be lifted. In addition,
each source has limited supply and each sink has a specific demand, captured by a function
h : {s1, . . . , sk} ∪ {t1, . . . , tℓ} → Z. More precisely, positive values of h represent supplies
whereas negative values capture demands, i.e., the h-value h(si) of a source si is positive and
represents its supply, whereas h(tj) for a sink tj is negative and −h(tj) represents the demand
of tj . The task is to find a flow f in G that simultaneously

(i) respects the capacity constraints,
(ii) has a net outflow of no more than h(si) at source si, and

(iii) has a net inflow of precisely −h(tj) into sink tj .
In other words, the flow f : A→ R≥0 shall satisfy the capacity constraints

f(a) ≤ u(a) ∀a ∈ A ,

and the balance constraints
f(δ+(si))− f(δ−(si)) ≤ h(si) ∀i ∈ [k] ,

f(δ+(v))− f(δ−(v)) = 0 ∀v ∈ V \ {s1, . . . , sk, t1, . . . tℓ} ,

f(δ+(tj))− f(δ−(tj)) = h(tj) ∀j ∈ [ℓ] .

Figure 4.6 shows an example of such a flow problem with four sources and three sinks.
To solve the problem, we construct an auxiliary graph H = (W,B), which is created from G

by adding two vertices s and t and the arcs (s, si) for all i ∈ [k] and (tj , t) for all j ∈ [ℓ], i.e.,

W = V ∪ {s, t} and B = A ∪ {(s, si) : i ∈ [k]} ∪ {(tj , t) : j ∈ [ℓ]} .

We define the capacities u′ : B → Z≥0 in the network H for all b ∈ B by

u′(b) =

u(b) if b ∈ A ,

h(si) if b = (s, si) for i ∈ [k] ,

−h(tj) if b = (tj , t) for j ∈ [ℓ] .

Figure 4.7 shows the auxiliary graph H and the corresponding capacities u′ that we construct to
solve the flow problem from Figure 4.6.

We determine a maximum s-t flow f in the network H . The choice of capacities on the arcs
(s, si) ensures that each source si has a net outflow of no more than h(si) units over the original
arcs. Similarly, the choice of capacities of the arcs (tj , t) guarantees that each sink tj has a
net inflow of at most −h(tj) units over the original arcs. Notice that ν(f) ≤ −

∑ℓ
j=1 h(tj),

because the flow value is upper bounded by the value of the s-t cut W \ {t}. Thus, f has value
−
∑ℓ

j=1 h(tj) if and only if each sink tj has a net inflow of −h(tj) on the arcs of the original
graph. In summary, the original flow problem in G has a solution if and only if the maximum
s-t flow in the auxiliary network H reaches the value −

∑ℓ
j=1 h(tj). In this case we can read

off a solution directly from a maximum s-t flow in H .
Figure 4.8 shows an optimal flow in the network from Figure 4.7, from which we can read off

an optimal solution for the original problem.

4.4 Applications of s-t flows Rico Zenklusen 129

4.4.4 Roster planning

A construction company has a set of workers A, a set of vehicles F grouped into vehicle types,
and a set of projects P . The realization of a project requires a vehicle type suitable for the
project and a worker allowed to operate the vehicle. The task is to simultaneously handle as
many projects as possible.

The following graph G = (V,E) highlights key parts of the available information. It contains
one vertex per worker, one per vehicle type, and one per project. Let A = {a1, . . . , an} by the
set of all workers, let f1, . . . , fℓ be the different vehicle types, where g(fj) ∈ Z≥0 for j ∈ [ℓ]
denotes the number of vehicles of type fj , and let P = {p1, . . . , pm} be the set of all projects.
Hence,

V := A ∪ {f1, . . . , fℓ} ∪ P .

Moreover, the edge set E contains two types of edges:
(i) There is an edge {ai, fj} between a worker ai and vehicle type fj if ai can operate vehicles

of type fj .
(ii) There is an edge {fj , pk} between vehicle type fj and project pk if a vehicle of type fj is

suitable for the project pk.
Figure 4.9 shows a graph with 7 workers, 3 vehicle types, and 8 projects.

The assignment of a worker to a vehicle and a project in the constructed graph G corresponds
to a path of length 2 from a worker ai via a vehicle fj to a project pk. Hence, we are interested
in the maximum number of paths such that no two paths have a worker or a project in common.
Additionally, for each vehicle type fj , no more than g(fj) paths should pass through vertex
fj . To solve this problem, we again construct a directed auxiliary network H = (W,D) with
capacities u : D → Z≥0 in which we will solve a maximum flow problem. We define H by

W := A ∪ {fj : j ∈ [ℓ]} ∪ {f ′
j : j ∈ [ℓ]} ∪ P ∪ {s, t} , and

D := {(s, ai) : i ∈ [n]} ∪ {(ai, fj) : {ai, fj} ∈ E} ∪ {(fj , f ′
j) : j ∈ [ℓ]}

∪ {(f ′
j , pk) : {fj , pk} ∈ E} ∪ {(pk, t) : k ∈ [m]} .

Furthermore, the capacities u : D → Z≥0 are defined as follows: For d ∈ D we set

u(d) =

{
g(fj) if d = (fj , f

′
j) for j ∈ [ℓ] ,

1 otherwise .

The directed auxiliary network H resulting from the graph in Figure 4.9 is shown in Figure 4.10.
In the auxiliary graph H , the assignment of a worker ai to a vehicle fj and a project pk

corresponds to an s-t path s → ai → fj → f ′
j → pk → t. Each assignment, which can be

represented by such a path, is captured in the flow problem by a unit flow along the path. With
this interpretation, it is easy to see that each possible roster corresponds to an integral s-t flow in
H , whose value corresponds to the number of concurrently processed projects. We can simply
add up the flows of the individual assignments. Thereby, no capacity is exceeded, because in
a possible roster each worker and each project occur at most once—thus the unit capacities are
respected—and each vehicle type fj is used at most g(fj) times, that is, the arc (fj , f

′
j) is part

of at most g(fj) single flows and so the total flow over (fj , f ′
j) is at most g(fj) = u((fj , f

′
j)).

130 Rico Zenklusen 4 Flows and Cuts

Conversely, given an integral s-t flow f in H , we can create a roster in which ν(f) projects
can be completed simultaneously. This is done by splitting the flow into ν(f) many s-t paths,
through each of which flows one unit. We can proceed in the same way as we did to determine
a maximum number of arc-disjoint s-t paths in Section 4.4.1: We can iteratively select s-t paths
from the arcs with non-negative flow and reduce the flow over the respective arcs by 1 for each
selected s-t path.

Hence, there is a bijective assignment between the possible rosters and the integral s-t flows
in H , where the value of the flow is equal to the number of simultaneously processed projects. A
maximum number of simultaneously processed projects is therefore reached by a maximum in-
tegral s-t flow in H . By Theorem 4.16, we can use Ford and Fulkerson’s algorithm to determine
a maximum integral s-t flow in H . After transforming this flow into a corresponding optimal
roster, the rostering problem is solved. Notice that Ford and Fulkerson’s algorithm is efficient
for this problem, because the maximum flow value is bounded by the number of workers, as this
corresponds to the value of the singleton s-t cut {s}.

4.4.5 Optimal project selection

A company has a set of projects P = {p1, . . . , pm} to choose from. Each project can either
be selected to be performed or discarded. Each of the projects pi has a profit of g(pi), where
g : P → Z. If g(pi) ≥ 0, then pi is interpreted as a profitable project, whereas g(pi) < 0
indicates that the project is generating a loss. There are precedence constraints between the
available projects, i.e., for each project pi, there is a (possibly empty) set of other projects it
depends on, which have to be completed before project pi can be started. For example, this may
model an investment in infrastructure needed for various projects. The question is which projects
should be realized to maximize the total profit. Figure 4.11 shows an example of projects with
precedence constraints modeled as a directed graph G = (P,A). An arc (pi, pj) indicates that
project pi is a prerequisite for project pj . The project requirements are such that there are no
directed cycles in the graph G = (P,A). Such a cycle would correspond to a set of projects that
are cyclically dependent on each other and therefore could never be started.

To solve the problem, we construct an auxiliary graph H = (V,B) with capacities u : B →
Z≥0. The graph H is obtained by starting from G and adding two vertices s, t and several
arcs. In the previous examples, the auxiliary graph was built in a way that an integral flow
could be interpreted in terms of the decisions that had to be taken. Here, we follow a different
approach, in the sense that we build a graph where the minimum s-t cut will correspond to an
optimal solution. Hence, we want to interpret certain s-t cuts as ways of how decisions can be
taken. Cuts allow us to think about vertices that get selected, which we will interpret as selected
projects. In short, we want to set the capacities so that a minimum s-t cut contains exactly the
vertex s and an optimal selection of projects from the original graph. To do this we define the
auxiliary graph H = (V,B) by setting

V := P ∪ {s, t} and B := A ∪AR ∪ {(s, pi) : g(pi) ≥ 0} ∪ {(pi, t) : g(pi) < 0} ,

where AR := {(pj , pi) : (pi, pj) ∈ A} contains all arcs that are antiparallel to the arcs in A. We

4.4 Applications of s-t flows Rico Zenklusen 131

also define capacities u : B → Z≥0 ∪ {∞} as follows: For b ∈ B we set

u(b) :=

0 if b ∈ A ,

∞ if b ∈ AR ,

g(pi) if b = (s, pi) for pi ∈ P ,

−g(pi) if b = (pi, t) for pi ∈ P .

Figure 4.12 shows the graph resulting from the example in Figure 4.11. Notice that we set some
capacities to∞, which can easily be reduced to finite capacities as discussed in Remark 4.6.

The definition of this network is based on the following ideas.
• We first look at the contribution of the arcs of the form (s, pi) and (pi, t) for pi ∈ P .

Adding a project pi to a given s-t cut C with pi /∈ C changes its value by u((pi, t)) if
g(pi) < 0 or by −u((s, pi)) if g(pi) ≥ 0. By the way how we defined the capacities,
the change in terms of value is −g(pi). Hence, if pi is a project with non-negative profit
g(pi) ≥ 0, then the cut value will decrease by g(pi) units. This is what we want because
we are looking for a minimum s-t cut. Otherwise, if pi incurs costs, then the cut value
will increase.

• A minimum s-t cut C corresponds to a set of projects that fulfill the precedence constraints
due to the arcs AR, which have infinite capacities. Indeed, if C contains a project pj but
does not include some other project pi that is a requirement for pj , i.e., (pi, pj) ∈ A, then
(pj , pi) ∈ δ+(C). Hence, the value of the s-t cut C is thus u(δ+(C)) ≥ u((pj , pi)) =∞.
Because the trivial s-t cut {s} has finite capacity, a minimum s-t cut in H has finite
capacity and, thus, fulfills all precedence constraints.

We are now formalizing these observations. Let

P+ := {pi ∈ P : g(pi) ≥ 0} , and

P− := {pi ∈ P : g(pi) < 0}

be the projects generating profits and losses, respectively. We consider an s-t cut C with finite
cut value and first express its value u(δ+(C)) in terms of project profits and losses. Due to the
second of the above observations, δ+(C) does not contain arcs with capacity∞. Furthermore,
when calculating the value of C we can neglect the arcs with capacity 0. The only remaining
arcs are those of the form (s, pi) with capacities g(pi) ≥ 0 for pi ∈ P+ and those of the form
(pi, t) with capacities −g(pi) > 0 for pi ∈ P−. We therefore have

u(δ+(C)) = u(B({s}, P \ C)) + u(B(P ∩ C, {t}))
= g(P+ \ C)− g(P− ∩ C)

= g(P+)− g(P+ ∩ C)− g(P− ∩ C)

= g(P+)− g(C \ {s}) ,

where B(V1, V2), for two vertex sets V1, V2 ⊆ V , denotes the set of all arcs in B with tail
in V1 and head in V2. The total profit of the selection (C \ {s}) ⊆ P of projects is exactly
g(C \ {s}). Hence, by minimizing the s-t cut value u(δ+(C)), we indeed maximize the total

132 Rico Zenklusen 4 Flows and Cuts

profit of the selected projects C \ {s}. Thus, to determine an optimal project selection, we first
find a maximum s-t flow in the auxiliary graph H and then construct a minimum s-t cut C from
it by Theorem 4.13. The projects C \ {s} correspond to an optimal project selection. Observe
that we do not need to use a maximum s-t flow algorithm that always returns an integral flow,
because we are only interested in the minimum s-t cut, which can be derived in linear time from
any maximum s-t flow (see Theorem 4.13).

In Figure 4.13, the vertices in a minimum s-t cut are marked in gray. The corresponding
optimal selection of projects corresponds to a profit of 4 units for this example.

4.4.6 Open pit mining

In this section, we look at a planning problem inspired by open pit mining. We consider a
fixed mining area and assume that, based on soil investigations, it is known—down to a certain
depth—what mineral resources can be mined together with the costs incurred by mining certain
areas. Figure 4.14 shows a possible soil profile, where the soil is divided into equal parts, which
yield the indicated profit during mining. A negative profit indicates that the excavation costs
exceed the value of the minerals contained in it. A section can only be mined if the two sections
immediately above it have already been excavated. The task is to determine which parts to mine
to maximize profit.

This problem can be rephrased as a special case of the optimal project selection problem
discussed earlier, namely by considering each mining section as a project with the projects
immediately above it as prerequisites. This results in the project dependency graph shown in
Figure 4.15. We can thus solve these problems as described in the previous section.

4.4.7 Image segmentation

Image segmentation is a classical image processing problem. It is about splitting an image into
different content-related parts, e.g., the separation of foreground and background. The version
we consider is a typical problem variation faced by most image processing software. More
precisely, our goal is to segment an image based on a rough manual preselection to outline the
part of the image that should be separated. Figure 4.16 shows the extraction of the foreground
on the example of the Mona Lisa by Leonardo da Vinci.

We discuss an approach for image segmentation that can be modeled and solved as a flow
problem. For this we represent each pixel of the image as a vertex of a graph G = (V,A), add
two vertices s and t as well as arcs with well-defined capacities, and look for a minimum s-t cut
C. Each such cut corresponds to a part of the image. Our goal is to set the arcs and capacities so
that a minimum s-t cut contains exactly the desired part of the image. In the selection of the cut
C we have to find a compromise between the following two goals, which lead us to the formal
definition of our auxiliary graph:

• Not deviating too much from the manual selection. The given manual selection is a set
W ⊆ V of pixels. In terms of s-t cuts, we represent this selection by the s-t cut W ∪{s}.
Any deviation from W ∪ {s} should affect the value of the cut negatively, i.e., the s-t cut
value should increase. We model this by fixing a penalty x ∈ Z≥0 that has to be paid for
every pixel in the returned solution that deviates from W ∪{s}. More precisely, an s-t cut

4.4 Applications of s-t flows Rico Zenklusen 133

C ⊆ V , which corresponds to the segmentation given by the pixels C \ {s}, would be
penalized by x · |W △C| = x · |(W \C) ∪ (C \W)|. To achieve this in terms of s-t cut
values, we add, for each pixel p ∈ W , an arc (s, p) with capacity u((s, p)) = x, and for
each pixel p ∈ V \W , we add an arc (p, t) with u((p, t)) = x. Figure 4.17 shows this
construction schematically. Each vertex in the graph, except for s and t, corresponds to
one pixel.

• Cut along color differences. The primary goal of image segmentation is to separate
different objects, which typically corresponds to areas of different color or color intensity.
Hence, adjacent pixels with very similar colors should typically not be separated through
the segmentation. Conversely, it is normally desirable to split the image between two
adjacent pixels with very different colors. To achieve this behavior for a minimum s-t cut,
we introduce directed arcs (p1, p2) and (p2, p1) for any two adjacent pixels p1 and p2.
The capacities on these arcs should be large if the colors of the two pixels are very similar.
Otherwise, if the colors are very different, the capacities should be small. Hence, this
punishes s-t cuts—in the sense that they have a higher value—that separate very similarly
colored adjacent pixels and rewards the separation of very differently colored pixels.
This can for example be implemented by considering the RGB color values, say with 8 bit
per color. One option is to set the capacity on an arc (p1, p2) depending on the ℓ1-norm of
the difference of the RGB values. Hence, for (r1, g1, b1) and (r2, g2, b2) being the RGB
color values of the neighboring pixels p1 and p2, the corresponding ℓ1-norm is

∥(r1, g1, b1)− (r2, g2, b2)∥1 = |r1 − r2|+ |g1 − g2|+ |b1 − b2| .

This ℓ1-norm is small if the color values are similar and large otherwise. For the capacity
u((p1, p2)), we want to achieve exactly the opposite behavior. Because each color value
is in {0, 1, . . . , 255}, we have ∥(r1, g1, b1) − (r2, g2, b2)∥1 ∈ {0, 1, . . . , 3 · 255 = 765}.
We set

u((p1, p2)) := 765− ∥(r1, g1, b1)− (r2, g2, b2)∥1 .

The above choice makes sure that the capacities are non-negative (and even integral),
which is required in a maximum s-t flow problem, and large capacities correspond to
similar colors, as desired. Figure 4.18 illustrates the capacity calculation for arcs between
neighboring pixels.
The choice of our inter-pixel capacities was mostly to easily illustrate this modeling step.
In practice, the capacities between pixels are typically not set to the ℓ1 RGB distance,
because equal RGB distances in terms of ℓ1 norm are often not visually perceived as
equal color distances.

After the implementation of these two ideas, a parameter, which we can vary, remains, namely
x ∈ Z≥0. The above construction is parameterized by x, which allows for adjusting the weighing
between the two penalizations introduced above, i.e., deviation from the manual selection and
separation of similarly colored neighboring pixels. Through a suitable choice of x, a compromise
between the two goals can be found.

Finally, the image segmentation problem can be approached via a maximum s-t flow algo-
rithm. Again, because we are only interested in a minimum s-t cut, we do not need to find an
integral maximum s-t flow.

134 Rico Zenklusen 4 Flows and Cuts

4.4.8 Theoretical winning possibilities in sports competitions

In the course of a sports championship season it is often discussed which teams can still tech-
nically end up as (sole) leaders at the end of the season. We consider handball as an example
where 2 points are awarded in every game: In case of a win, the winner gets 2 points and the
loser none; in case of a draw, both get one point each. Consider a possible table of the Swiss
Handball Championship shortly before the end of the season, see Table 4.1. We are interested
in determining whether St. Gallen could still theoretically become sole leader of the table at the
end of the season, i.e., whether it can have strictly more points at the end of the season than any
other team.

rank team remaining games points

1. Schaffhausen 3 25

2. Winterthur 3 23

3. Thun 4 22

4. Luzern 3 20

5. St. Gallen 3 20
...

...
...

...

Table 4.1: A possible (partial) handball table.

To simplify the exposition, we restrict ourselves to only the first five teams as listed in Ta-
ble 4.1 and assume that any other team cannot achieve strictly more than 25 points by the
end of the season and, therefore, cannot exceed the currently highest score, which is held by
Schaffhausen. Also, for simplicity’s sake, assume that the remaining matches of the first five
teams are only matches against each other. These restrictions are only assumed to simplify the
exposition, and the presented technique could just as well be applied to the full table.

The remaining matches between the considered teams are given by the graph in Figure 4.19a,
where an edge between two teams indicates that there is a remaining match between these teams.

To check whether St. Gallen can still become sole leader at the end of the season, we assume
that it wins all remaining games. In Figure 4.19b, this is indicated by the orientation of the
corresponding three arcs. In our toy example, St. Gallen then reaches 26 points, one more than
the current leader Schaffhausen has. Whereas this makes it at least plausible that St. Gallen
may still be able to become sole leader, a closer look reveals that this is not possible anymore.
Indeed, the three teams Schaffhausen, Winterthur, and Thun together have 25 + 23 + 22 = 70
points, and the three remaining games between them will increase this count by another 6 points.
Hence, the average number of points that these teams will have at the end of the season is
(70 + 6)/3 = 25 + 1/3 > 25. This implies that at least one of these three teams will have 26 or
more points at the end of the season, thus matching or even surpassing St. Gallen’s score. This
toy example illustrates that such questions are not always trivial to answer and require a careful

4.4 Applications of s-t flows Rico Zenklusen 135

consideration of what games still have to be played.

We now move to the general case. Assume we have n handball teams h1, . . . , hn, where team
hi has pi points currently. Say that we want to decide whether hn can become sole leader at the
end of the season. As we did in our toy example, we assume hn to win all remaining games. If
r is the number of remaining games of hn, then team hn will have pn + 2r points at the end of
the season. Let ℓ be the number of the remaining games g1, . . . , gℓ not involving hn. It remains
to check whether there exist outcomes of these games such that none of the teams h1, . . . , hn−1

exceeds pn + 2r − 1 points at the end of the season. We capture this question in terms of a flow
problem on a graph G = (V,A) with capacities u : A→ Z≥0 as follows:

• G has a vertex for each game g1, . . . , gℓ, a vertex for each team h1, . . . , hn−1, and two
further vertices s and t.

• The arcs A and their capacities u are defined as follows:
– For each game gi, we add an arc (s, gi) with capacity u((s, gi)) = 2.

– For each game gi, say betweens teams hj1 and hj2 , we add arcs (gi, hj1) and (gi, hj2)
with capacities u((gi, hj1)) = u((gi, hj2)) = 2.

– For each team hi with i ∈ [n − 1], we add an arc (hi, t) with capacity u((hi, t)) =
pn +2r− pi− 1. Here we assume without loss of generality that no team hi for i ∈
[n− 1] has strictly more than pn+2r− 1 points; for otherwise, we can immediately
observe that team hn cannot become sole leader anymore because it cannot surpass
the current score pi of team hi.

Figure 4.20 depicts the graph G = (V,A) with capacities u for the toy example shown in
Figure 4.19b.

In this network, s models the source of the game points still to be distributed. The capacities
of 2 on arcs leaving s model that, for each remaining game, 2 points have to be distributed. These
points can be split in any integral way among the two involved teams. This is captured by the
arcs connecting games to teams. Finally, the flow on the arcs from teams to the sink model how
many additional points each team will get out of the remaining games. The capacities on these
arcs is set such that no team can get enough points to match or even exceed the pn + 2r points
that team n will have at the end of the season. In terms of s-t flows, the problem of distributing
the remaining points is the following. We need to find an integral s-t flow that saturates all arcs
leaving s, because we need to assign 2 points per remaining game. This is equivalent to finding
an integral s-t flow f of value ν(f) = 2ℓ, i.e., one that saturates all arcs leaving s. If we only
want to decide whether a corresponding point assignment exists, without actually having to find
the assignment, then the question reduces to checking whether an integral s-t flow of value 2ℓ
exists. (Note that because 2ℓ is the sum of the capacities of all arcs leaving s, there is no flow
of value strictly larger than 2ℓ.) Because, by Theorem 4.16, there always exists an s-t flow of
maximum value that is integral, it suffices to check whether the maximum s-t flow in G, without
any integrality requirement, has value at least 2ℓ. Hence, to perform this check, we do not need
to employ a maximum s-t flow algorithm that returns an integral flow. If the maximum s-t flow
value is 2ℓ, then team hn can still become sole leader by the end of the season, otherwise this is
not possible anymore.

136 Rico Zenklusen 4 Flows and Cuts

4.5 Polynomial-time variations and extensions of Ford and
Fulkerson’s algorithm

We come back to the fact that the maximum s-t flow algorithm of Ford and Fulkerson is not
guaranteed to run in polynomial time. We recall the running time bound of O(α · (m + n)),
where α is the value of a maximum s-t flow and m := |E|, n := |V | (see Corollary 4.12). As
discussed, this is not polynomial time because α may be exponential in the input size. In this
section, we discuss approaches inspired by Ford and Fulkerson’s algorithm that find maximum
s-t flows efficiently. These are procedures that, like Ford and Fulkerson’s algorithm, augment
flow successively until they obtain a maximum s-t flow. We highlight that there are other classes
of efficient flow algorithms, most notably so-called preflow push algorithms.

For simplicity, we assume that n = O(m). This is not really restrictive, because whenever
m < n − 1, then the graph is not even connected. In such a case we could first perform a
BFS to check whether s and t are in the same connected component and then only work on
that connected component. This leads to a graph fulfilling n = O(m) because the graph is
connected.

Hence, under this assumption, the running time of Ford and Fulkerson’s procedure is O(α·m),
or, to avoid the dependence on the unknown quantity α, we can also bound it by O(U ·m), where
we use U := u(A) as a shorthand for the sum of all capacities.

4.5.1 Capacity scaling algorithm

The capacity scaling algorithm is one of the simplest polynomial-time procedures for the maxi-
mum flow problem. It addresses the key issue of the running time bound of Ford and Fulkerson,
namely the dependence on U . Scaling is an important technique with numerous applications
in algorithmics. The capacity scaling algorithm for flows is a nice an instructive example of
a scaling algorithm. In this context, the idea is to make augmentations along paths with large
augmentation volume if possible. For this, we will consider subgraphs of the residual graph that
only contain large capacities. To this end, we introduce the following notation Gf,∆.

Definition 4.30: Gf,∆

Let f be an s-t flow in the directed graph G = (V,A) with capacities u : A → Z≥0

and let ∆ ∈ R≥0. We denote by Gf,∆ the subgraph of the residual graph Gf = (V,B)
containing only the arcs with residual capacity of at least ∆.

Algorithm 6 describes the capacity scaling algorithm for maximum s-t flows. It runs in
phases, defined by the outer while-loop. In each phase, it only considers augmenting paths with
an augmentation volume of at least some value ∆; this is equivalent to looking for augmenting
paths in Gf,∆. Once no more augmentations can be found during a phase, the parameter ∆ is
halved and the next phase begins.

For the running time analysis of Algorithm 6, we have to be specific on how precisely we
find an f -augmenting path in Gf,∆. An easy way to perform this step is as follows. Instead of
explicitly constructing Gf,∆, we construct Gf as in Ford and Fulkerson’s algorithm. However,

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 137

Algorithm 6: Capacity scaling algorithm for maximum s-t flows
Input : Directed graph G = (V,A) with arc capacities u : A→ Z≥0 and s, t ∈ V , s ̸= t.
Output: A maximum s-t flow f .
f(a) = 0 ∀a ∈ A. // We start with the zero flow.

∆ = 2⌊log2(U)⌋.
while ∆ ≥ 1 do // These iterations are called phases.

while ∃f -augmenting path P in Gf,∆ do
Augment f along P and set f to the augmented flow.

∆ = ∆
2 .

return f

to find an augmenting path in Gf,∆, we then perform BFS on Gf where we slightly modify BFS
to ignore arcs with a capacity strictly below ∆. This does not affect the running time of the BFS
procedure.

The correctness of the algorithm follows easily from arguments identical to the ones we used
to show that Ford and Fulkerson’s algorithm returns a maximum s-t flow.

Theorem 4.31

Algorithm 6 returns a maximum s-t flow.

Proof. Because the starting value of ∆ is a power of two, ∆ will always be integral. Conse-
quently, the algorithm will finish after finitely many augmentations because each augmentation
increases the flow value of f by at least one unit. Moreover, for the phase ∆ = 1, we have
that Gf,∆ = Gf,1 is identical to Gf , except that arcs with 0 capacity have been removed. Thus,
a path is f -augmenting in Gf if and only if it is f -augmenting in Gf,1. Because the ∆ = 1
phase finishes with a residual graph Gf,1 without f -augmenting paths from s to t, we obtain an
s-t flow f such that there is no f -augmenting path in Gf . Hence, by Theorem 4.13, the flow f
is a maximum s-t flow.

Notice that the maximum flow returned by the capacity scaling algorithm will be integral
because all augmentations have an integral augmentation volume, as in the case of Ford and
Fulkerson’s algorithm.

We now show the crucial gain of capacity scaling in this context, namely that the running time
dependence on U is only logarithmic.

Theorem 4.32

Algorithm 6 runs in O(m2 logU) time.

Proof. The number of phases is bounded by O(logU). Hence, it suffices to show that each
phase takes O(m2) time. To this end, consider a phase, which is defined by some value of ∆.
Let f be the current flow at the start of the phase. Let C ⊆ V be all vertices that can be reached
from s in Gf,2∆. We claim that t ̸∈ C. Indeed, if the phase we consider is the first one, i.e.,

138 Rico Zenklusen 4 Flows and Cuts

∆ = 2⌊logU⌋ > U/2, then 2∆ > U ; however, there is no arc with capacity strictly larger than
U , implying that an augmentation volume strictly larger than U is not achievable. Otherwise, if
the considered phase is not the first one, then there is no augmenting path in Gf,2∆ due to the
termination criterion of the previous phase. Hence, the set C ⊆ V of all vertices reachable from
s in Gf,2∆ is an s-t cut, which, by definition, fulfills that for each arc a ∈ δ+Gf

(C), we have
uf (a) < 2∆. Hence, the value of the s-t cut C in Gf is upper bounded by

uf (δ
+
Gf

(C)) ≤ 2m · 2∆ . (4.2)

A crucial observation is that uf (δ+Gf
(C)) is an upper bound on how much the value of f can still

be augmented, i.e., the difference between the value of a maximum flow and ν(f). To see this,
we recall that for each a ∈ A we have uf (a) = u(a)− f(a), and for a reverse arc aR of a ∈ A
we have uf (a

R) = f(a). Hence,

uf (δ
+
Gf

(C)) = u(δ+(C))− f(δ+(C)) + f(δ−(C)) = u(δ+(C))− ν(f) ,

implying, as claimed, that future augmentations will increase the value of the flow by at most
uf (δ

+
Gf

(C)), because u(δ+(C)) is an upper bound on the maximum s-t flow value by the weak
max-flow min-cut theorem. Because each augmentation in the current iteration will have an
augmentation volume of at least ∆, this implies, together with (4.2), that we can have at most

uf (δ
+
Gf

(C))

∆
≤ 4m

augmentations in the current phase, as desired. The result follows by observing that each aug-
mentation takes O(m) time.

Notice that the proven running time bound of O(m2 logU) is indeed polynomially bounded
in the input size. For this, observe that to save the arc capacities in binary, the number of bits
needed is

Θ

(
m+

∑
a∈A

log(u(a) + 1)

)
= Θ

(
m+ log

(∏
a∈A

(u(a) + 1)

))
= Ω(m+ logU) .

Hence, the input size is at least Ω(m + logU), and the capacity scaling algorithm is thus an
efficient method. However, note that it is not strongly polynomial, because the number of ele-
mentary operations depends on numbers provided in the input. We next show a method to find a
maximum s-t flow in strongly polynomial time.

4.5.2 Edmonds-Karp algorithm

The Edmonds-Karp algorithm is a particular, strongly polynomial, way to realize Ford and Fulk-
erson’s algorithm. More precisely, the Edmonds-Karp algorithm will always augment on short-
est augmenting paths, i.e., augmenting paths with a minimum number of arcs. Algorithm 7
describes the procedure.

Figure 4.21 shows an example run of the Edmonds-Karp algorithm.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 139

Algorithm 7: Edmonds-Karp algorithm
Input : Directed graph G = (V,A) with arc capacities u : A→ Z≥0 and s, t ∈ V , s ̸= t.
Output: A maximum s-t flow f .
f(a) = 0 ∀a ∈ A.
while ∃f -augmenting path in Gf do

Find an f -augmenting path P in Gf minimizing |P |.
Augment f along P and set f to augmented flow.

return f

As mentioned, the Edmonds-Karp algorithm is a version of Ford and Fulkerson’s algorithm
with a more specific rule of how to choose augmenting paths. Thus, the correctness proof of
Ford and Fulkerson’s method also applies to Algorithm 7. It remains to discuss the running
time. Notice that finding a shortest augmenting path does not take longer than computing any
augmenting path if we use BFS, because BFS automatically identifies a shortest path. Hence,
also the running time bound we derived for Ford and Fulkerson’s algorithm applies to Algo-
rithm 7. We show next that the running time of Algorithm 7 is even strongly polynomial.

We want to measure the progress of Algorithm 7 in terms of the lengths of the augmenting
paths found. Intuitively, we expect that augmenting paths used by the algorithm are short at the
beginning and get longer later on. The following lemma implies that this is indeed the case.

Lemma 4.33

Let G = (V,A) be a directed graph with arc capacities u : A → Z≥0, and let s, t ∈ V
with s ̸= t. Moreover, let f1 be an s-t flow in G, and let f2 be an s-t flow obtained by
augmenting f1 along a shortest augmenting path P in Gf1 . Then,

df1(s, v) ≤ df2(s, v) ∀v ∈ V , and
df1(v, t) ≤ df2(v, t) ∀v ∈ V ,

where df (v, w) denotes, for v, w ∈ V and an s-t flow f , the length (in terms of number
of arcs) of a shortest v-w path in Gf that only uses arcs with strictly positive f -residual
capacity.

Proof. We only prove the first part of the statement, i.e., df1(s, v) ≤ df2(s, v) ∀v ∈ V . The
second part can be reduced to the first one by reversing all arc directions and flows on the arcs,
and applying the first part of the lemma.

Notice that Gf1 and Gf2 have the same vertices and arcs, but they have different residual
capacities uf1 and uf2 . Indeed the vertex set is V and the arc set is B = A∪AR, i.e., it contains
the original arcs A and a reverse arc aR for each original arc a ∈ A. We define

Bi := {b ∈ B : ufi(b) > 0} ∀i ∈ [2] .

Assume with the goal of obtaining a contradiction that there is a vertex v ∈ V such that

df1(s, v) > df2(s, v) . (4.3)

140 Rico Zenklusen 4 Flows and Cuts

Among all such vertices, we choose one where df2(s, v) is smallest. Let P2 be a shortest s-
v path in (V,B2) and let (w, v) ∈ P2 be the last arc in P2. (Notice that P2 cannot be an empty
path because s ̸= v due to (4.3).) By our choice of v we have

df1(s, w) ≤ df2(s, w) . (4.4)

In particular, this implies that (w, v) ∈ B2 \ B1. For otherwise, we could extend a shortest s-
w path in (V,B1) with the arc (w, v), leading to an s-v walk in (V,B1) of length df1(s, w) + 1.
Together with (4.4) this would lead to

df1(s, v) ≤ df1(s, w) + 1 ≤ df2(s, w) + 1 = df2(s, v) ,

thus contradicting (4.3). Observe that (w, v) ∈ B2\B1 implies (v, w) ∈ P , because only reverse
arcs of arcs in P have higher uf2-capacity than uf1-capacity, which is necessary for an arc to be
in B2 \ B1. However, (v, w) ∈ P is impossible because it implies df1(s, v) = df1(s, w) − 1,
which leads to the following contradiction:

df1(s, v) < df1(s, w) ≤ df2(s, w) = df2(s, v)− 1 < df1(s, v)− 1 ,

where the second inequality is due to (4.4), the equality follows from the fact that (w, v) ∈ P2,
and the last inequality is due to (4.3).

Theorem 4.34

Algorithm 7 runs in O(nm2) time.

Proof. We divide the different augmentation steps of Algorithm 7 into phases, where a phase
corresponds to augmentations with augmenting paths of the same length. Because in a graph
with n vertices the longest possible s-t path has length n − 1 and the shortest one has length
1, there are at most n − 1 = O(n) phases. Moreover, notice that Lemma 4.33 implies that the
augmenting paths found in Algorithm 7 are non-decreasing in lengths during the course of the
algorithm. Hence, a phase contains augmentations done in consecutive iterations of the while-
loop of Algorithm 7. We finish the proof by showing that each phase performs at most O(m)
augmentations, which implies the result because each augmentation takes O(m) time.

To this end, consider a single phase, say the one where all augmenting paths have length
k ∈ [n− 1]. We call this phase k. For any s-t flow f and vertices v, w ∈ V , we use the notation

df (v, w) = min {|P | : P ⊆ B is v-w path with uf (b) > 0 ∀b ∈ P}

for the v-w distance (in terms of number of arcs) in Gf = (V,B) after deleting arcs with zero
f -residual capacity.

We first show the following claim.

Claim: If an arc is used in an augmenting path in phase k, then its reverse arc will never be used
in an augmenting path in phase k.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 141

To see this, assume that (v, w) ∈ B is an arc on an augmenting path in phase k, and let
f be the s-t flow right before we perform this augmentation. Because we are in phase k, the
corresponding augmenting path has length k, i.e.,

df (s, v) + 1 + df (w, t) = k . (4.5)

Moreover, because subpaths of a shortest path are shortest paths, we have

df (s, w) = df (s, v) + 1 , and

df (v, t) = 1 + df (w, t) .
(4.6)

For the sake of obtaining a contradiction, assume that a later augmenting path P in phase k uses
the arc (w, v). Hence, P consists of:

(i) An s-w path, which has length at least df (s, w) by Lemma 4.33,
(ii) the arc (w, v), and

(iii) a v-t path, which has length at least df (v, t) by Lemma 4.33.
Thus, P has length

|P | ≥ df (s, w) + 1 + df (v, t) = df (s, v) + df (w, t) + 3 = k + 2 ,

where the first equality follows from (4.6) and the second one from (4.5). However, this contra-
dicts the assumption that P is an augmenting path in phase k, which would require |P | = k, and
thus shows the claim.

The claim implies that whenever an arc b ∈ B gets saturated during an augmentation in phase
k, then neither the reverse arc bR of b nor the arc b itself will be used again during the same
phase. (If b ∈ B is already a reverse arc of an arc a ∈ A, i.e., b = aR, then we denote by bR

the arc a.) Indeed, bR cannot be used due to the claim, and b cannot be used anymore because
its residual capacity is zero and will not increase during the same phase again because no flow
will be sent over bR. Hence, at most m arcs can get saturated in augmentations during phase
k. However, each augmentation does saturate at least one arc. Hence, there are at most O(m)
augmentations in each phase, as desired.

142 Rico Zenklusen 4 Flows and Cuts

s t

v1

v2

v3

3

6

2

2

4

1

7

s t

v1

v2

v3

0 | 3

0 | 6

0 | 2

0 | 2

0 | 4

0 | 1

0 | 7

s t

v1

v2

v3

3

0
6

0

2
0

2

0
4

0
1

0

7

0 γ = 2

s t

v1

v2

v3

2 | 3

0 | 6

2 | 2

0 | 2

2 | 4

0 | 1

2 | 7

s t

v1

v2

v3

1

2
6

0

0
2

2

0
2

2
1

0

5

2 γ = 1

s t

v1

v2

v3

3 | 3

0 | 6

2 | 2

1 | 2

1 | 4

1 | 1

2 | 7

s t

v1

v2

v3

0

3
6

0

0
2

1

1
3

1
0

1

5

2 γ = 1

s t

v1

v2

v3

3 | 3

1 | 6

1 | 2

2 | 2

1 | 4

1 | 1

3 | 7

s t

v1

v2

v3

0

3
5

1

1
1

0

2
3

1
0

1

4

3 γ = 3

s t

v1

v2

v3

3 | 3

4 | 6

1 | 2

2 | 2

4 | 4

1 | 1

6 | 7

s t

v1

v2

v3

0

3
2

4

1
1

0

2
0

4
0

1

1

6 γ = 3

Figure 4.3: Example run of Ford and Fulkerson’s algorithm. On top is the starting graph,
left-hand side pictures show the current flow and right-hand side pictures the
residual network with an augmenting path in red, if there is one.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 143

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

Figure 4.4: Example of a bipartite graph G = (V,E) with bipartition V = X
.
∪ Y , where

X = {x1, . . . , x5} and Y = {y1, . . . , y6}.

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

s t

Figure 4.5: Example of the directed graph H = (W,F) obtained from the bipartite graph
G = (V,E) shown in Figure 4.4.

144 Rico Zenklusen 4 Flows and Cuts

s1

s2

s3

s4

v1

v2

v3

v4

v5

t1

t2

t3

6

4

3

2

3

4

6

6

5

3

2 2

41
1

2

2

2

4

3

2

3

4

2

Figure 4.6: A flow problem with four sources {s1, s2, s3, s4} and three sinks {t1, t2, t3}.
The supply of each source is indicated in blue, the demand of the sinks in red.
The numbers on the arcs correspond to the respective capacities.

s

s1

s2

s3

s4

v1

v2

v3

v4

v5

t

t1

t2

t3

6

5

3

2 2

41

1

2

2

2

4

3

2

3

4

2

6

4

3

2

3

4

6

Figure 4.7: The auxiliary graph H with capacities u′ used to solve the flow problem from
Figure 4.6.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 145

s

s1

s2

s3

s4

v1

v2

v3

v4

v5

t

t1

t2

t3

1 | 6

5 | 5

1 | 3

1 | 2 0 | 2

4 | 40 | 1

0 | 1

2 | 2

1 | 2

2 | 2

4 | 4

2 | 3

2 | 2

2 | 3

4 | 4

2 | 2

6 | 6

2 | 4

3 | 3

2 | 2

3 | 3

4 | 4

6 | 6

Figure 4.8: An optimal flow in the auxiliary graph H from Figure 4.7, given in the form
f(b) | u′(b) for all b ∈ B.

a1

a2

a3

a4

a5

a6

a7

f1

g(f1)=3

f2

g(f2)=4

f3

g(f3)=3

p1

p2

p3

p4

p5

p6

p7

p8

Figure 4.9: The graph G = (V,E) representing a roster planning problem with 7 workers,
3 vehicle types, and 8 projects. The number of available vehicles of each type
is specified in the corresponding vertex.

146 Rico Zenklusen 4 Flows and Cuts

s

a1

a2

a3

a4

a5

a6

a7

f1

f2

f3

f ′
1

f ′
2

f ′
3

p1

p2

p3

p4

p5

p6

p7

p8

t

3

4

3

Figure 4.10: The auxiliary network H for the graph G from Figure 4.9. Arcs without ex-
plicitly specified capacity have capacity 1.

−1

−1

5

−4

−4

−3

2

3

3

−1

−9

11

1

Figure 4.11: A graph G with projects and their precedence constraints. Profits (or costs)
are indicated in the corresponding vertices.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 147

−1

−1

5

−4

−4

−3

2

3

3

−1

−9

11

1

s t

∞
∞

∞

∞

∞

∞

∞

∞

∞
∞

∞

∞

∞
∞

∞

5

3

2

11

3

1

1

1

4

4

3

1

9

Figure 4.12: The auxiliary graph for the example in Figure 4.11. Arcs with no explicitly
specified capacity have capacity 0.

−1

−1

5

−4

−4

−3

2

3

3

−1

−9

11

1

s t

∞
∞

∞

∞

∞

∞

∞

∞

∞
∞

∞

∞

∞
∞

∞

5

3

2

11

3

1

1

1

4

4

3

1

9

Figure 4.13: An optimal solution to the shown project selection problem. The vertices in
a minimum s-t cut C are marked in gray, and the optimal set of projects to
select is C \ {s}.

148 Rico Zenklusen 4 Flows and Cuts

1 −5 −6 −1 −4 1 −2 −1 −9 2 −4 −1
−1 2 2 3 −3 −3 4 3 2 −3 1

7 −2 −4 1 0 1 −4 −4 −3 8

1 −1 10 2 −3 2 5 6 1

Figure 4.14: A possible soil profile with respective profits.

1 −5 −6 −1 −4 1 −2 −1 2 −4 −1−9

−1 2 2 3 −3 4 −3 1−3 3 2

7 −4 1 8−2 0 1 −4 −4 −3

101 −1 2 −3 2 5 6 1

Figure 4.15: Reduction of the open pit mining problem shown in Figure 4.14 to an optimal
project selection problem. The gray vertices correspond to an optimal solu-
tion.

(a) The Mona Lisa of Leonardo da Vinci to-
gether with a manual selection.

(b) The foreground of the Mona Lisa, extracted
due to color differences and manual selec-
tion.

Figure 4.16: Extraction of the foreground from an image.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 149

s t

W

Figure 4.17: Excerpt of an image with manual segmentation W shown in red. The arcs
(s, p) are shown in green and arcs (p, t) are highlighted in blue. Each of these
colored arcs has equal capacity x ∈ Z≥0.

1

2

= (0, 153, 153) = (0, 76, 153)

u((,)) = 765− |0− 0| − |153− 76| − |153− 153|
= 765− 0− 77− 0 = 688 .

= (0, 204, 102) = (153, 51, 255)

u((,)) = 765− |0− 135| − |204− 51| − |102− 255|
= 765− 135− 153− 153 = 324 .

1

2

Figure 4.18: Calculation of color difference of adjacent pixels using two examples. The
greater the color difference, the smaller the capacity u on the corresponding
arcs.

150 Rico Zenklusen 4 Flows and Cuts

25

Schaffhausen (h1)

23
Winterthur

(h2)

22

Thun (h3)

20

Luzern (h4)

20
St. Gallen

(h5)

(a) Remaining matches between teams: Each edge
corresponds to one match.

25

Schaffhausen (h1)

23
Winterthur

(h2)

22

Thun (h3)

20

Luzern (h4)

26
St. Gallen

(h5)

g1

g2

g3 g4

g5

(b) If we assume that St. Gallen wins all its games,
then the 5 games g1, . . . , g5 remain.

Figure 4.19: Remaining games displayed as a graph.

s

g1

g2

g3

g4

g5

h1

h2

h3

h4

t

2

2

2

2

2

2

2
2

2 2

2

2

2

2

2

0

2

3

5

Figure 4.20: The auxiliary s-t flow network G = (V,A) with corresponding capacities for
the example shown in Figure 4.19b.

4.5 Polynomial-time augmentation algorithms Rico Zenklusen 151

s

v1 v2 v3

v4

v5

v6 v7

t

0 | 4

0 | 8 0 | 2

0 | 6
0 | 7 0 | 8 0 | 5

0 | 12

0 | 14

0 | 16

s

v1 v2 v3

v4

v5

v6 v7

t

4 0

8

0

2

0
60

7

0

8

0

5

0
12

0 14

0

16
0

γ = 5

s

v1 v2 v3

v4

v5

v6 v7

t

0 | 4

0 | 8 0 | 2

0 | 6
5 | 7 5 | 8 5 | 5

0 | 12

0 | 14

0 | 16

s

v1 v2 v3

v4

v5

v6 v7

t

4 0

8

0

2

0
60

2

5

3

5

0

5
12

0 14

0

16
0

γ = 2

s

v1 v2 v3

v4

v5

v6 v7

t

0 | 4

0 | 8 0 | 2

0 | 6
7 | 7 5 | 8 5 | 5

2 | 12

2 | 14

2 | 16

s

v1 v2 v3

v4

v5

v6 v7

t

4 0

8

0

2

0
60

0

7

3

5

0

5
10

2 12

2

14
2

γ = 2

s

v1 v2 v3

v4

v5

v6 v7

t

2 | 4

2 | 8 2 | 2

2 | 6
7 | 7 3 | 8 5 | 5

4 | 12

4 | 14

4 | 16

s

v1 v2 v3

v4

v5

v6 v7

t

2 2

6

2

0

2
42

0

7

5

3

0

5
8

4 10

4

12
4

Figure 4.21: Example run of the Edmonds-Karp algorithm to find a maximum s-t flow.
Each row of two figures corresponds to one iteration of the algorithm. The
left-hand side graphs show the current flow values, and the right-hand side
graphs are the corresponding residual graphs with a shortest augmenting path
highlighted in red. The γ-values to the far right are the augmentation volumes
for the highlighted augmenting paths.

5 Polyhedral Approaches in
Combinatorial Optimization

Combinatorial optimization problems can often be described by:
• A finite set N , called ground set,
• a family F ⊆ 2N of feasible sets, also called solutions, and
• an objective function w : N → Z to maximize/minimize.

The corresponding combinatorial optimization problem is then given by:

max /min w(F) :=
∑
e∈F

w(e)

F ∈ F
(5.1)

Some examples:
(i) Maximum weight matchings. Given is an undirected graph G = (V,E) with non-

negative edge weights w : E → Z≥0.
• Ground set: N = E.
• Feasible sets: F is the family of all loopless sets M ⊆ E such that no two edges of
M have a common endpoint. Such a set M is called a matching.

• Objective: maximize w.
Two important special cases of the problem:

• Maximum cardinality matchings: w is given by w(U) = |U | for U ⊆ E, i.e., each
edge has weight equal to one.

• Maximum weight/cardinality bipartite matchings: G = (V,E) is a bipartite graph,
i.e., there is a bipartition V = X

.
∪ Y such that each e ∈ E has one endpoint in X

and one in Y .
(ii) Shortest s-t path problem. Given is an undirected or directed graph G = (V,E), two

vertices s, t ∈ V , and a length function ℓ : E → Z≥0.
• N = E,
• F are all subsets of edges corresponding to s-t paths.
• Objective: minimize w = ℓ.

(iii) Minimum weight spanning tree. Given is an undirected graph G = (V,E) and non-
negative edge weights w : E → Z≥0.

• N = E,
• F are all sets F ⊆ E that correspond to spanning trees.
• Objective: minimize w.

154 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

5.1 Polyhedral descriptions of combinatorial optimization
problems

Consider the family F ⊆ 2N of feasible sets of a combinatorial optimization problem (5.1). We
can describe each solution F ∈ F by its incidence/characteristic vector χF ∈ {0, 1}N , where

χF (e) =

{
1 if e ∈ F ,

0 if e ∈ N \ F .

The polytope that corresponds to F is the polytope PF ⊆ [0, 1]N whose vertices are precisely
incidence vectors of solutions, i.e.,

PF = conv({χF : F ∈ F}) , (5.2)

where we recall that for any set X ⊆ Rn, conv(X) ⊆ Rn is the convex hull of X , i.e., the
unique smallest convex set containing X . Also, remember that for a set X ⊆ Rn, the convex
hull conv(X) of X can be described by all convex combinations of points in X , i.e.,

conv(X) =

{
k∑

i=1

λixi

∣∣∣∣∣ k ∈ Z>0, xi ∈ X and λi ∈ R≥0 ∀i ∈ [k] and
k∑

i=1

λi = 1

}
.

Furthermore, by Carathéodory’s Theorem, one can fix k to be equal to n + 1 in the above
description of conv(X), still obtaining the same set.

Hence, PF is a {0, 1}-polytope, i.e., all its vertices only have coordinates within {0, 1}. No-
tice that solving the original combinatorial optimization problem (5.1) is equivalent to finding
a vertex solution—also called basic feasible solution—to the following LP, where we interpret
w : N → Z as a vector w ∈ ZN :

max /min w⊤x

x ∈ PF
(5.3)

The main challenge with this approach is that the description of PF given by (5.2) refers to all
sets in F , which are typically exponentially (in n := |N |) many. Problems where |F| is small
are often not that interesting. In particular, if |F| = O(poly(n)), then one could try to solve
the combinatorial optimization problem efficiently by simply checking all feasible solutions. Of
course, such an approach would still require the availability of a method to enumerate all feasible
solutions.

Our goal is to get an inequality-description of PF , i.e., write PF as PF = {x ∈ RN : Ax ≤ b}.
This has many advantages:

• Often, PF only has O(poly(n)) facets, even though it has 2Ω(n) vertices, i.e., feasible
solutions. In this case, PF can be described compactly by its facets.

5.2 Meta-recipe for finding inequality-descriptions Rico Zenklusen 155

→ Think about P = [0, 1]n. P has 2n vertices but only 2n facets:

P = {x ∈ Rn : 0 ≤ xi ≤ 1 ∀i ∈ [n]} ,

where [n] := {1, . . . , n}.

• One good inequality description of PF allows for optimizing any linear objective function.

→ Combinatorial algorithms are often less versatile. E.g., Edmonds’ blossom shrinking
algorithm is a very elegant combinatorial algorithm for finding a maximum cardinal-
ity matching. However, it is hard to generalize this approach to the weighted case.

• Even when PF has exponentially many facets, a description of them can often be obtained.
If so, we can often still solve the LP efficiently.

→ For example, this might be possible by employing the Ellipsoid Method. We will
discuss the Ellipsoid Method later in class, when we talk about the “equivalence”
between separation and optimization.

• An inequality-description of PF is often helpful when trying to solve a related combina-
torial optimization problem, e.g., the original one with some additional linear constraints.

• The LP dual of (5.3) can often be interpreted combinatorially. Possible implications:

– Optimality certificates through strong duality. E.g., many classical certificates like
max-flow min-cut can be derived this way.

– Fast algorithms based on dual such as primal-dual algorithms.

• Get a better understanding of the original combinatorial optimization problem. In partic-
ular, one can use elegant polyhedral proof techniques to derive results.

• Leverage general polyhedral techniques to design strong algorithms. E.g., network sim-
plex algorithms are a way to interpret the Simplex Method combinatorially.

5.2 Meta-recipe for finding inequality-descriptions

There is no one-fits-all method. However, one typical high-level approach is to “guess” the
polytope and show that it is the right one, following the recipe below:

(i) Determine (guess) a candidate polytope P ⊆ [0, 1]N defined by some linear inequality
description P = {x ∈ RN : Ax ≤ b}, which we want to prove to be equal to PF .

(ii) Prove that P contains the correct set of integral points, i.e.,

P ∩ {0, 1}N = {χF : F ∈ F} .

This is normally quite easy. Notice that {χF : F ∈ F} = PF ∩ {0, 1}N .
(iii) Show that P is a {0, 1}-polytope. Because P ⊆ [0, 1]N , this is equivalent to showing that

P is integral.

156 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

If one can show (ii) and (iii), then P = PF , because P only contains {0, 1}-vertices by (iii), and
those vertices are the same as the ones of PF due to (ii).

Typically, the most difficult step of the above recipe is point (iii), i.e., to show that P is inte-
gral. Also, we remark that the above recipe can be used iteratively to correct a potentially wrong
guess of the inequality description. More precisely, if we realize that the statement we have to
prove in step (ii) or (iii) is incorrect, then we know that our candidate inequality description that
we established in point (i) is erroneous. Moreover, the insights we gain when thinking about
why point (ii) or (iii) is not correct often help to improve the inequality description coming from
step (i). Iterating this procedure is one way to come up with the correct description.

5.2.1 Example: bipartite vertex cover

To exemplify the above recipe, we consider the bipartite vertex cover problem. We first define
the notion of a vertex cover in a general graph.

Definition 5.1: Vertex cover

Let G = (V,E) be an undirected graph. A vertex cover of G is a subset S ⊆ V such that
for every edge e ∈ E, at least one of its endpoints is in S.

The minimum vertex cover problem, where each vertex has a non-negative cost and the goal
is to find a minimum cost vertex cover, is a classical combinatorial optimization problem. Our
goal here is to describe the vertex cover polytope for a bipartite graph. Hence, let G = (V,E)
be a bipartite graph and let F ⊆ 2V be the family of all vertex covers in G. Our goal is to obtain
an inequality description of the vertex cover polytope PF , i.e.,

PF = conv
(
{χF : F ∈ F}

)
.

We follow the recipe and start with the following natural candidate:

P :=
{
x ∈ [0, 1]V : x(u) + x(v) ≥ 1 ∀{u, v} ∈ E

}
.

Notice that this candidate is essentially a literal translation of the property of being a vertex
cover into linear constraints. This completes point (i) of the recipe. Through step (ii) and (iii)
of the recipe, we now prove that this is a correct inequality description for the bipartite vertex
cover polytope.

Theorem 5.2

The vertex cover polytope of a bipartite graph G = (V,E) can be described by

P =
{
x ∈ [0, 1]V : x(u) + x(v) ≥ 1 ∀{u, v} ∈ E

}
.

Proof. We now show point (ii) of the recipe, i.e., that P contains the correct set of integral
points, which means P ∩ {0, 1}V = {χF : F ∈ F}. Clearly, if S ⊆ V is a vertex cover, then

5.3 Total unimodularity Rico Zenklusen 157

χS ∈ P . Moreover, consider a point y ∈ P ∩ {0, 1}V . Because y is a {0, 1}-point, it can be
written as y = χS , where S := {v ∈ V : y(v) = 1}. Due to the constraints of P , we have

1 ≤ y(u) + y(v) = |S ∩ {u, v}| ∀{u, v} ∈ E .

Hence, at least one of the endpoints of any edge {u, v} ∈ E is in S. Thus, S is a vertex cover
and hence y = χS ∈ {χF : F ∈ F}.

It remains to show point (iii) of the recipe, i.e., that P is integral. For the sake of deriving
a contradiction, assume that P is not integral. Hence, P contains a fractional vertex y, i.e.,
y ∈ P \ {0, 1}V . Let V = A

.
∪ B be a bipartition of the vertices such that every edge has one

endpoint in A and one in B. We define

WA := {u ∈ A : y(u) ∈ (0, 1)} and

WB := {u ∈ B : y(u) ∈ (0, 1)}

to be the vertices in A and B, respectively, with fractional y-value. Because y is not integral by
assumption, we have WA ∪WB ̸= ∅. We will derive a contradiction by showing that y is not an
extreme point of P . Let

ε := min {min{y(u), 1− y(u)} : u ∈WA ∪WB} .

Note that ε > 0. Now define for any δ ∈ R:

yδ := y + δ · (χWA − χWB) .

We claim that yε ∈ P and y−ε ∈ P . Notice that this will lead to the desired contradiction
because y = 1

2 (y
ε + y−ε) and yε ̸= y−ε because χWA − χWB is not the all-zeros vector as

WA ∪WB ̸= ∅. Hence, this implies that y is not an extreme point of P and therefore also not a
vertex of P due to Proposition 1.19. Hence, it remains to show yε, y−ε ∈ P . In fact, it suffices
to show yε ∈ P , which implies y−ε ∈ P by exchanging the roles of A and B.

By our choice of ε, we clearly have yε ∈ [0, 1]V . Hence, it remains to check the constraints of
P induced by the edges. Let {u, v} ∈ E. If either y(u) = 1 or y(v) = 1, then yε(u)+yε(v) ≥ 1
because if a y-value is 1 at a certain entry, then so is the value of yε at the same entry, because yε

only modifies fractional entries of y. Hence, we only have to check whether yε(u)+yε(v) ≥ 1 if
both y(u) and y(v) are fractional. However, in this case one of these two y-values will increase
by ε and the other one decrease by ε, and thus

yε(u) + yε(v) = y(u) + y(v) ≥ 1 ,

where the inequality follows from y ∈ P .

5.3 Total unimodularity

There are various techniques to show integrality of a polyhedron, and we cover many different
approaches here. In the example of the bipartite vertex cover problem, we have already seen

158 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

one method, where we disproved the existence of fractional extreme points (see proof of The-
orem 5.2). One elegant way to prove that certain polyhedra are integral is based on showing
that the constraint matrix A used in the linear inequality description has a very strong structural
property, known as total unimodularity. Even though most constraint matrices of integral poly-
hedra are not totally unimodular, it is still important to understand when we deal with matrices
exhibiting this strong property, as this leads to short and elegant proofs, and allows for deriving
many additional interesting properties.

5.3.1 Definition and basic observations

Definition 5.3

A matrix is totally unimodular (TU) if the determinant of any square submatrix of it is
either 0, 1, or −1.

Remark 5.4

A ∈ Rm×n is TU⇒ A ∈ {−1, 0, 1}m×n.

This follows by observing that each single entry of the matrix A is itself a square submatrix
and its determinant is the entry itself.

Remark 5.5

A is TU⇔ A⊤ is TU.

This follows by the definition of TU matrices and the fact that the determinant of any square
matrix is equal to the determinant of its transpose.

Remark 5.6

If A ∈ Rm×n is TU, then so is [A −A], i.e., the Rm×2n matrix obtained by appending the
columns of −A to the columns of A.

Indeed, [A −A] is TU because any square submatrix of [A −A] either contains a column of A
and its negation in −A, in which case the determinant is zero, or it is a square submatrix of A
with some columns multiplied by −1, in which case we have a determinant within {−1, 0, 1}
due to TU-ness of A.

Remark 5.7

If A ∈ Rm×n is TU, then so is [A I], i.e., the Rm×(n+m) matrix obtained by appending the
columns of an m×m identity matrix I to the columns of A.

Indeed, any determinant of a submatrix of [A I] is a determinant of a submatrix of A, which is
TU by assumption.

5.3 Total unimodularity Rico Zenklusen 159

5.3.2 Integrality of polyhedra with TU constraint matrices

The main algorithmic motivation for studying totally unimodular matrices comes from the fol-
lowing theorem.

Theorem 5.8

Let A ∈ Zm×n. Then,

A is TU ⇔ P = {x ∈ Rn : Ax ≤ b, x ≥ 0} is integral ∀ b ∈ Zm.

Proof. ⇒) Assume that A is TU and b ∈ Zm, and let P = {x ∈ Rn : Ax ≤ b, x ≥ 0}. To
show that P is integral consider a vertex y ∈ vertices(P). By Proposition 1.19, y is the unique
solution to some subsystem Dx = d of the system(

A
−I

)
x ≤

(
b
0

)
, (5.4)

which defines P . Moreover, we can choose D to be a square matrix because any linear system
with a unique solution contains a square subsystem with the same unique solution. Hence,

y = D−1d .

Now observe that D−1 is an integral matrix, because D is a sub-matrix of the matrix in (5.4),
which is TU by Remark 5.6 and 5.7; therefore, because D is full-rank, we have det(D) ∈
{−1, 1} which, together with D ∈ Zn×n, implies integrality of D−1. Moreover, also d ∈ Zn

is an integral vector because its entries are a subset of the entries of the right-hand side of (5.4).
Hence, y = D−1d is integral, as desired.

⇐) We show this direction by proving the contraposition. Hence, assume that A is not TU,
which implies that there is some square submatrix Q of A with det(Q) ̸∈ {−1, 0, 1}. Because
the statement we want to prove is invariant with respect to row and column permutations, we
assume without loss of generality that Q consists of the first k rows and k columns of A. Notice
that this implies k ≤ min{m,n} because A ∈ Rm×n. Consequently, when defining an n × n
submatrix of

(
A

−I

)
consisting of the k first rows and n−k last rows, a square matrix H ∈ Rn×n

is obtained with det(H) ̸∈ {−1, 0, 1}, namely

H =

(
Q W
0 −I

)
,

where I in the matrix above is an (n− k)× (n− k) identity matrix and W ∈ Zk×(n−k). Hence,
we have

H−1 =

(
Q−1 Q−1W
0 −I

)
.

Notice that because det(Q) ̸∈ {−1, 0, 1} we have that Q−1 is not an integral matrix. One
easy way to see this is by observing that det(Q−1) = 1/det(Q) ̸∈ Z and using that a matrix
with a non-integral determinant must have at least one non-integral entry. Let j ∈ [k] be the

160 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

index of a column of Q−1 that is not integral. We now define a vector b ∈ Zm such that
P = {x ∈ Rn : Ax ≤ b, x ≥ 0} is not integral, which will finish the proof. For this we
start by defining the first k coordinates of b, i.e., those that correspond to the rows of Q. Let
ej ∈ {0, 1}k be the j-th canonical unit vector in dimension k, and let 1 ∈ {0, 1}k be the all-ones
vector. Moreover, let p ∈ Z be an integer that is big enough such that

Q−1ej + p · 1 ≥ 0 . (5.5)

We set the first k entries of b to ej + p ·Q1. We will set the remaining coordinates of b such that
the following vector y ∈ Rn is a vertex of P : The first k coordinates of y are Q−1ej + p · 1, all
other coordinates of y are 0. First observe that y is fractional because the j-th column of Q−1 is
fractional. We also have y ≥ 0 due to (5.5). Moreover, y is by construction the unique solution
to the subsystem of Ax ≤ b, x ≥ 0 that was used to define H . This subsystem is of the form
Hx = d, where the first k rows of d are ej + p · Q1, and all the other entries of d are zero.
Hence, by choosing the last m− k entries of b large enough, to make sure that y fulfills Ay ≤ b,
we have by Proposition 1.19 that y is a vertex of P .

Hence, if we have an inequality description of a polyhedron as in Theorem 5.8 with A being
TU and b integral, then the above theorem immediately implies that the polyhedron is integral.
However, we still need techniques to check whether a given matrix is totally unimodular.

5.3.3 The characterization of Ghouila-Houri

The definition of total unimodularity as well as Theorem 5.8 do not provide very useful means
to check that some matrix is totally unimodular. One of the most useful characterization of total
unimodularity is the following theorem by Ghouila and Houri.

Theorem 5.9: Characterization of Ghouila-Houri

A matrix A ∈ Rm×n is TU if and only if for every subset of the rows R ⊆ [m], there is a
partition R = R1

.
∪ R2 such that∑

i∈R1

Aij −
∑
i∈R2

Aij ∈ {−1, 0, 1} ∀j ∈ [n] . (5.6)

Proof. ⇒) We start by assuming that A is TU and show that the stated row-partitioning property
holds. Hence, let R ⊆ [m] be a subset of the rows of A. Let d ∈ Rm be defined by

di =

{
1 if i ∈ R ,

0 if i ∈ [m] \R ,

and we define the polytope

Q :=

{
x ∈ Rm : A⊤x ≤

⌈
1

2
A⊤d

⌉
, A⊤x ≥

⌊
1

2
A⊤d

⌋
, x ≤ d, x ≥ 0

}
.

5.3 Total unimodularity Rico Zenklusen 161

By Theorem 5.8, Q is an integral polytope, because its constraint matrix (without including the
non-negativity constraints) is A⊤

−A⊤

I

 ,

which is TU due to Remark 5.5, 5.6, and 5.7. Furthermore, Q ̸= ∅ because d
2 ∈ Q. Therefore Q

has a vertex, say y, which must be integral. Due to the upper and lower bounds in the definition
of Q, we have y ∈ {0, 1}m. We now define the following partition of R into R1 and R2:

R1 := {i ∈ R : yi = 0} ,

R2 := {i ∈ R : yi = 1} .

This partition indeed fulfills (5.6) because∑
i∈R1

Aij −
∑
i∈R2

Aij = (d− 2y)⊤A·j = (A⊤)j·(d− 2y) ∈ {−1, 0, 1} ∀j ∈ [n] ,

where the fact that the expression (A⊤)j·(d − 2y) is within {−1, 0, 1} follows from integrality
of d− 2y together with y ∈ Q.

⇐) We now show the converse by showing that for any square matrix A, if A fulfills the
row-partition property (5.6), then det(A) ∈ {−1, 0, 1}. Notice that it suffices to consider square
matrices. Indeed, for a general matrix B satisfying the row-partitioning property of Ghouila-
Houri, we need to show that each square submatrix A of B fulfills det(A) ∈ {−1, 0, 1}. If B
satisfies the row-partitioning property of Ghuila-Houri, then so does A. If the implication we
aim at proving holds for square matrices, then this implies det(A) ∈ {−1, 0, 1} as desired.

We show this statement by induction on the size k of the square matrix A ∈ Rk×k. For k = 1,
the statement clearly holds. Hence, we consider a matrix A ∈ R(k+1)×(k+1), for k ∈ Z≥1, that
fulfills the row-partition property (5.6), and we assume that the row-partition property on any
square matrix of size at most k implies that its determinant is within {−1, 0, 1}.

By letting R be a single row of A, we obtain that each entry of A is within {−1, 0, 1}. If A is
the all-zeros matrix, the statement trivially holds; hence, assume that A has some non-zero entry.
Because the statement is invariant with respect to row and column permutations and multiplying
rows and columns by −1, we can assume that Ak+1,k+1 = 1. We denote by

(
r⊤ 1

)
the last

row of A, by (c1) the last column of A, and by Q ∈ Rk×k the submatrix of A consisting of the
first k rows and columns, i.e.,

A =

(
Q c
r⊤ 1

)
.

Through elementary row operations—more precisely, by adding or subtracting the last row to
some of the other rows—we obtain the following matrix:

A =

(
Q− c · r⊤ 0

r⊤ 1

)
.

Because these row operations do not change the determinant of a matrix, we have det(A) =
det(A) = det(Q− c · r⊤). Hence, it suffices to show det(Q− c · r⊤) ∈ {−1, 0, 1}. To this end,

162 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

we show that Q−c·r⊤ fulfills the row-partition condition (5.6), which then implies the statement
by the inductive hypothesis. Thus, let R ⊆ [k] be a subset of the rows of Q−c·r⊤. We distinguish
two cases depending on the parity of |R ∩ supp(c)|, where supp(c) := {i ∈ [k] : ci ̸= 0} is the
support of the vector c.

Case |R ∩ supp(c)| even: By assumption, the Ghuila-Houri criterion holds for the matrix(
Q c

)
, because it is a submatrix of A. Hence, there is a vector d ∈ {−1, 0, 1}k with

(i) supp(d) = R,
(ii) d⊤Q ∈ {−1, 0, 1}k, and

(iii) d⊤c ∈ {−1, 0, 1}.
More precisely, d encodes a partition R = R1

.
∪ R2, where the 1-entries of d correspond to the

rows in R1 and the −1-entries to the rows in R2. We show that this same partition of R can be
used for Q − c · r⊤. Note that because |R ∩ supp(c)| is even and supp(d) = R, we must have
that d⊤c is even. Thus, because d⊤c ∈ {−1, 0, 1}, we have d⊤c = 0. However, this, together
with (ii), implies

d⊤(Q− c · r⊤) = d⊤Q ∈ {−1, 0, 1}k ,

showing that the partition of R defined by d fulfills (5.6), as desired.

Case |R ∩ supp(c)| odd: In this case we use the fact that the matrix A fulfills the row-
partition condition for the rows R ∪ {k+ 1}. Again, we can represent the partition of R ∪ {k+
1} by a vector in {−1, 0, 1}k+1. We can assume that row k + 1 is in the second part of the
partition, because the two parts are exchangeable, i.e., condition (5.6) is invariant with respect to
exchanging R1 and R2. Hence, there is a partition of the rows R ∪ {k + 1} of A fulfilling (5.6)
that can be described by a vector

(
d

−1

)
∈ {−1, 0, 1}k+1, where d ∈ {−1, 0, 1}k. Thus, we have

(i) supp(d) = R,
(ii) d⊤Q− r⊤ ∈ {−1, 0, 1}k, and

(iii) d⊤c− 1 ∈ {−1, 0, 1}.
We claim that d describes a desired partition of the rows R of the matrix Q−c ·r⊤. First observe
that because |R ∩ supp(c)| is odd and supp(d) = R, we have that d⊤c is odd. Due to (iii), this
implies d⊤c = 1. Hence, together with (ii), this leads to

d⊤(Q− c · r⊤) = d⊤Q− r⊤ ∈ {−1, 0, 1}k ,

showing that the partition of R defined by d fulfills (5.6), as desired.

Remark 5.10

Because A is TU if and only if A⊤ is TU, one can exchange the roles of rows and columns in
Theorem 5.9.

Example 5.11: Consecutive-ones matrices

To exemplify how the characterization of Ghuila-Houri can be used, we show that consecutive-
ones matrices are TU. A consecutive-ones matrix is a {0, 1}-matrix A ∈ {0, 1}m×n such
that either in each column all the 1s appear consecutively, or in each row all the 1s appear

5.4 Bipartite matching polytope Rico Zenklusen 163

consecutively. Below are two examples of consecutive-ones matrices.

0 0 1 0 1 0
0 1 1 0 1 0
1 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 0 0

0 0 1 1 1 0
0 1 1 0 0 0
1 1 1 1 0 0
0 0 0 1 1 1
0 0 1 1 0 0
0 0 0 1 1 0

We will show that any consecutive-ones matrix is TU.

Consider a consecutive-ones matrix A ∈ Rm×n, where the 1s are consecutive in each column.
(This covers the general case because a consecutive-ones matrix where the 1s are consecutive in
each row is just the transpose of one where they are consecutive in each column.) Now consider
any subset R ⊆ [m] of the rows of A. We have to find a partitioning of them satisfying (5.6).
Let B ∈ Rr×n be the submatrix of A consisting of the rows in R; hence, r := |R|. Notice
that B is also a consecutive-ones matrix where the 1s appear consecutively in each column.
We partition its rows by alternatingly putting them into R1 and R2. More precisely, all rows
with an odd row index in B are assigned to R1 and the other ones to R2. One can easily check
that this partition fulfills (5.6) because in each column the difference between the number of 1s
assigned to R1 and the number of 1s assigned to R2 is at most one.

5.4 Bipartite matching polytope

Let G = (V,E) be an undirected, bipartite graph with corresponding bipartition V = X
.
∪ Y ,

and let M ⊆ 2E be all matchings of G. Hence, using the notation introduced previously, we
have N = E and F =M.

Theorem 5.12

The bipartite matching polytope PM is given by

PM = {x ∈ RE
≥0 : x(δ(v)) ≤ 1 ∀v ∈ V } . (5.7)

We will prove Theorem 5.12 by first showing (ii), and then presenting two general techniques
that prove (iii). Let P = {x ∈ RE

≥0 : x(δ(v)) ≤ 1 ∀v ∈ V }. Hence, we have to show P = PM.

Proof of point (ii). We prove (ii) by showing that for any F ⊆ E we have

χF ∈ P ∩ {0, 1}N ⇔ F ∈M .

We distinguish between F ∈M and F ∈ 2E \M.
If F ∈M, then, as F is a matching, we have |F ∩δ(v)| ≤ 1 ∀v ∈ V . Notice that |F ∩δ(v)| =

χF (δ(v)). Hence, χF (δ(v)) ≤ 1 ∀v ∈ V , and thus χF ∈ P , as desired.
If F ∈ 2E\M, then, as F is not a matching, there exists a vertex v ∈ V such that |F ∩δ(v)| ≥

2, which can be rephrased as χF (δ(v)) ≥ 2. Hence, χF ̸∈ P .

164 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

It remains to prove (iii).

We will see two proofs of (iii):
one showing that the constraint matrix is totally unimodular,

one showing that P has no fractional extreme points.

5.4.1 Integrality through TU-ness

We can write P in the following form:

P = {x ∈ RE : Ax ≤ b, x ≥ 0} ,

where A and b are defined as follows. First observe that because P contains one constraint for
each vertex, and one variable for each edges, we have A ∈ RV×E and b ∈ RV . The right-hand
side of each constraint of P , that is not a non-negativity constraint, is 1, i.e., b = 1, where
1 ∈ RV is the all-ones vector.

The matrix A is the vertex-edge incidence matrix of G, i.e., for every v ∈ V and e ∈ E,

A(v, e) =

{
1 if v ∈ e ,

0 if v ̸∈ e .

Figure 5.1 shows two example graphs—one bipartite and the other one non-bipartite—with their
corresponding vertex-edge incidence matrices, denoted by A.

v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

e5

e6

e7

v1

v2

v3

v4

v5

v6

A =

1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 1 0

0 0 1 1 1 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 1

e1 e2 e3 e4 e5 e6 e7

v1
v2
v3
v4
v5
v6

v1

v2

v3

v4

e1

e2

e3

e4

e5

A =

1 1 0 0 0

1 0 1 1 0

0 0 1 0 1

0 1 0 1 1

e1 e2 e3 e4 e5

v1
v2
v3
v4

Figure 5.1: Example graphs with corresponding vertex-edge incidence matrices.

5.4 Bipartite matching polytope Rico Zenklusen 165

Theorem 5.13

Let G = (V,E) be an undirected graph with vertex-edge incidence matrix A. Then,

G is bipartite ⇔ A is TU.

Proof. ⇐) Left as an exercise.

⇒) We use the characterization of Ghouila-Houri to show that A is totally unimodular if G =
(V,E) is bipartite with bipartition V = X∪̇Y .

Consider a subset of the rows of A. This subset corresponds to some subset of the vertices
R ⊆ V . We partition R into R1 = R ∩ X and R2 = R ∩ Y . For any column of A, which
corresponds to some edge e ∈ E, we have∑

v∈R1

Av,e︸ ︷︷ ︸
=|e∩R1|≤|e∩X|=1

−
∑
v∈R2

Av,e︸ ︷︷ ︸
=|e∩R2|≤|e∩Y |=1

∈ {−1, 0, 1} .

Notice that the above statement follows by the fact that each of the two sums in the above
expression is either 0 or 1. Thus, their difference is either −1, 0, or 1. This shows that the
criterion of Ghouila and Houri holds for the matrix A, implying that A is totally unimodular.

Combining Theorem 5.13 and Theorem 5.8, we obtain that P = {x ∈ RE : Ax ≤ 1, x ≥ 0}
is integral, and thus P = PM as desired.

5.4.2 Integrality by disproving existence of fractional extreme points

Let x ∈ P be a vertex of P . For sake of contradiction assume x ̸∈ {0, 1}E . Let U ⊆ E be all
edges with fractional values, i.e.,

U = {e ∈ E : 0 < x(e) < 1} .

Since x is not integral, U ̸= ∅. We distinguish two cases, depending on whether U contains a
cycle.

First case: U contains a cycle C ⊆ U .
Hence, C must be even since G is bipartite. Let C = {e1, . . . , ek} ⊆ U with k even be the

edges along C. Let

W1 = {ei : i ∈ [k], i odd} ,

W2 = {ei : i ∈ [k], i even} .

For ε ∈ R, let xε ∈ RE be defined by

xε = x+ ε · χW1 − ε · χW2 .

We will show that there is some ρ > 0 such that xρ, x−ρ ∈ P . This contradicts x being a vertex,
or equivalently, an extreme point; indeed, x would be the midpoint of the two distinct points

166 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

e1

e6

e2

e3 e4

e5
C = {e1, . . . , e6}
U \ CU

Figure 5.2: Example for first case of proof where U contains a cycle C.

xρ ∈ P and x−ρ ∈ P . Without loss of generality we only prove xρ ∈ P ; the statement x−ρ ∈ P
reduces to this case by exchanging the roles of W1 and W2, which can be done by renumbering
the edges on C.

Let
ρ = min

e∈C
{x(e)} .

We clearly have ρ > 0 since x(e) > 0 ∀e ∈ U and C ⊆ U . For any v ∈ V , we have

xρ(δ(v)) = x(δ(v)) ≤ 1 ,

which is true even for any ρ ∈ R. Furthermore, for e ∈ E \ C, we have xρ(e) = x(e) ≥ 0, and
for e ∈ C we have

xρ(e) ≥ x(e)− ρ︸︷︷︸
≤x(e)

≥ 0 .

Thus, xρ, x−ρ ∈ P , leading to a contradiction of x being a vertex.

Second case: U does not contain cycles.

u v

e1

e2

e3 e4

Q = {e1, . . . , e4}
U \QU

Figure 5.3: Example for second case of proof where U is a forest.

Hence U are the edges of a forest. Let Q ⊆ U be any maximal path in U , i.e., Q is the unique
path between some pair of leaf vertices u, v of U . We number the edges in Q = {e1, . . . , ek} in

5.4 Bipartite matching polytope Rico Zenklusen 167

the way they are encountered when traversing Q from u to v. Let

W1 = {ei : i ∈ [k], i odd} ,

W2 = {ei : i ∈ [k], i even} .

Again, we define for ε ∈ R
xε = x+ ε · χW1 − ε · χW2 ,

and this time we set
ρ = min

e∈Q
{min{x(e), 1− x(e)}} .

By definition of ρ, we clearly have ρ > 0 and xρ, x−ρ ∈ [0, 1]E . Consider xρ (reasoning for
x−ρ is identical). For all w ∈ V \ {u, v} we have xρ(δ(w)) = x(δ(w)) ≤ 1. It remains to show
xρ(δ(u)) ≤ 1 and xρ(δ(v)) ≤ 1. W.l.o.g. we only show xρ(δ(u)) ≤ 1, since the roles of u and
v can be exchanged by reversing the path P .

Notice that only one edge of U is adjacent to u since u was chosen to be a leaf vertex of the
forest U . Thus all edges e ∈ δ(u) \U satisfy x(e) ∈ {0, 1}. However, no edge e ∈ δ(u) \U can
satisfy x(e) = 1 since this would imply x ̸∈ P as x(δ(u)) ≥ x(e) + x(e1) = 1 + x(e1) > 1.
Hence, of all edges e ∈ δ(u), e1 is the only edge with x(e) > 0. Thus xρ(δ(u)) = xρ(e1) ≤ 1,
since xρ ∈ [0, 1]E . Hence xρ ∈ P .

Thus x can again be expressed as the midpoint of xρ, x−ρ ∈ P with xρ ̸= x−ρ and therefore
cannot be a vertex of P . Hence, P is integral, and therefore P = PM.

5.4.3 Some implications coming from the inequality description of PM

Often, one can derive interesting results from an inequality description of a polytope. We pro-
vide two examples below linked to the bipartite matching polytope. More precisely, we first
show an example how an inequality description of one polytope can sometimes be used to de-
rive an inequality description of a related one. The second example shows how the polyhedral
description that we derived for the bipartite matching polytope can be used to obtain a very short
and elegant proof of a classical theorem in Graph Theory.

Perfect bipartite matching polytope A matching M ∈ M is called perfect, if it touches
all vertices, i.e., |M | = |V |/2. Of course, a perfect matching can only exist if |V | is even.
Furthermore, for a bipartite graph G = (V,E) with corresponding bipartition V = X∪̇Y , one
needs |X| = |Y | for a perfect matching to exist.

Theorem 5.14

The perfect matching polytope of a bipartite graph G = (V,E) is given by

P =
{
x ∈ RE

≥0 : x(δ(v)) = 1 ∀v ∈ V
}

.

Proof. Again, one can easily check that P contains the correct set of integral points. Its inte-
grality follows by observing that P is a face of the matching polytope PM or the empty set, and
hence an integral polytope.

168 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

A key property we exploit here is that a F face of an integral polyhedron Q is itself integral.
This is a consequence of Corollary 1.14, which states that a face of a face is a face. Indeed, a
vertex y of F is a 0-dimensional face of F . By Corollary 1.14, y is also a face of Q. Because y
is 0-dimensional, it must be a vertex of Q. We now can exploit that Q is integral, which implies
integrality of y.

Perfect matchings in bipartite d-regular graphs A graph is called d-regular for some
d ∈ Z≥0 if every vertex has degree d.

Theorem 5.15

Let d ∈ Z≥1. Every d-regular bipartite graph admits a perfect matching.

Proof. Using Theorem 5.14, let P = {x ∈ RE
≥0 : x(δ(v)) = 1 ∀v ∈ V } be the perfect bipartite

matching polytope of a d-regular bipartite graph. Notice that the point x ∈ RE given by x(e) =
1
d for every e ∈ E satisfies x ∈ P . Hence, P ̸= ∅, and P therefore contains a vertex, which
corresponds to a perfect matching.

5.5 Polyhedral description of shortest s-t paths

Let G = (V,A) be a directed graph, and let s, t ∈ V with s ̸= t. Recall that a path is by
definition vertex-disjoint, i.e., the same vertex is encountered at most once when traversing the
path.

No “good” polyhedral description is known of the s-t path polytope, i.e., one over which we
could optimize any linear function in polynomial time. This is not surprising, because such a
description would imply P = NP since one could solve the longest s-t path problem, which is
well-known to be NP-hard. In particular, one can solve the Hamiltonian path problem if one
can find longest s-t paths: It suffices to find a longest s-t path with unit edge lengths for all
O(n2) pairs of vertices s, t ∈ V, s ̸= t, and check whether one of them is Hamiltonian.

Still, when trying to find shortest paths with respect to any positive length function, it is not
hard to find a polyhedral approach. Consider the polytope

P =

x ∈ [0, 1]A

∣∣∣∣∣∣∣ x(δ+(v))− x(δ−(v)) =

1 if v = s,

−1 if v = t,

0 if v ∈ V \ {s, t},
∀v ∈ V

 .

Notice that P is simply the flow polytope of an s-t flow problem where a unit flow has to be sent
from s to t in a directed graph with all arc capacities being 1. Consider first the integral points
in P . Notice that integral points in P do not correspond one-to-one to s-t paths. More precisely,
each s-t path is an integral point in P , however, some integral points in P are not s-t paths.
More precisely, one can easily prove (and we leave this as an exercise) that integral points in P
correspond precisely to the disjoint union of an s-t path and possibly some additional cycles.

Hence, if we can show integrality of P , then for any positive weights (or lengths) w : A →
Z>0, a basic solution to min{w⊤x : x ∈ P} will correspond to a w-shortest s-t path. Thus, P

5.5 Polyhedral description of shortest s-t paths Rico Zenklusen 169

allows us to efficiently find shortest s-t paths with linear programming techniques. Notice that
even if the weights w are non-negative instead of positive, i.e., w : E → Z≥0, we can still find
a shortest path via linear programming on P . An optimal vertex solution will correspond to a
minimum weight set U ⊆ E that is a disjoint union of an s-t path and cycles, where all cycles
must have zero length by optimality of U . One can easily show that any s-t path P ⊆ U is a
shortest s-t path in G. The same approach works even if the weights are allowed to have negative
values, but have the property of being conservative, which means that no cycle has strictly
negative weight. Conservative weights cover the classical shortest path settings considered by
specialized shortest path algorithms.

To show integrality of P , we will show that its corresponding constraint matrix is TU. First
observe that P can be rewritten as

P =
{
x ∈ RA : Dx = b,1 ≥ x ≥ 0

}
,

where 1 = χA is the all-ones vector, b ∈ {−1, 0, 1}V is defined by

b(v) =

1 if v = s ,

−1 if v = t ,

0 if v ∈ V \ {s, t} ,

and D ∈ {−1, 0, 1}V×A is the vertex-arc incidence matrix of the directed (loopless) graph G,
which is defined as follows: for v ∈ V , a ∈ A:

D(v, a) =

1 if a ∈ δ+(v) ,

−1 if a ∈ δ−(v) ,

0 otherwise .

It thus suffices to show that D is TU to obtain integrality of P .

Theorem 5.16

The vertex-arc incidence matrix D ∈ {−1, 0, 1}V×A of any directed (loopless) graph
G = (V,A) is TU.

Proof. We apply the Ghouila-Houri characterization to the rows of D. For any subset R ⊆ V of
the rows, we choose the partition R1 = R and R2 = ∅. Since each column of D has only zeros
except for precisely one 1 and one −1, summing any subsets of the elements of any column will
lead to a total sum of either −1, 0, or 1. Hence,∑

v∈R1

Dv,a ∈ {−1, 0, 1} ∀a ∈ A ,

as desired. Or, more formally, for a = (u, v) ∈ A, we have∑
w∈R1

Dw,a = 1u∈R1︸ ︷︷ ︸
∈{0,1}

− 1v∈R1︸ ︷︷ ︸
∈{0,1}

∈ {−1, 0, 1} ,

where, for w ∈ V , 1w∈R1 = 1 if w ∈ R1 and 1w∈R1 = 0 otherwise.

170 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

5.6 Spanning trees and r-arborescences

Spanning trees and their directed counterparts, known as arborescences, are among the most ba-
sic combinatorial structures in Graph Theory. Contrary to the polytopes we have seen so far, the
combinatorial polytopes corresponding to spanning trees and arborescences have an exponential
number of facets. In this section, we only provide a brief discussion of their corresponding poly-
topes. We prove the correctness of the presented linear inequality descriptions later on when we
introduce a powerful proof technique known as combinatorial uncrossing.

5.6.1 Spanning tree polytope

Let G = (V,E) be an undirected graph. A spanning tree in G is an edge set T ⊆ E that
connects all vertices and does not contain a cycle.

For any set S ⊆ V , we denote by E[S] ⊆ E all edges with both endpoints in S, i.e.,

E[S] := {e ∈ E : e ⊆ S} .

Theorem 5.17

The spanning tree polytope of an undirected loopless graph G = (V,E) is given by

P =

{
x ∈ RE

≥0

∣∣∣∣ x(E) = |V | − 1
x(E[S]) ≤ |S| − 1 ∀S ⊊ V, |S| ≥ 2

}
.

Again, one can easily check that P contains the correct set of integral points, i.e., the {0, 1}-
points in P are precisely the incidence vectors of spanning trees. To check this, the following
equivalent definition of spanning trees is useful: A set T ⊆ E is a spanning tree if and only if
|T | = |V | − 1 and T does no contain any cycle.

The constraints of the spanning tree polytope are often divided into two groups, namely the
non-negativity constraints x ≥ 0, and all the other constraints which are called spanning tree
constraints.

5.6.2 The r-arborescence polytope

Definition 5.18: Arborescence, r-arborescence

Let G = (V,A) be a directed graph. An arborescence in G is an arc set T ⊆ A such that
(i) T is a spanning tree (when disregarding the arc directions), and

(ii) there is one vertex r from which all arcs are directed away, i.e., every vertex v ∈ V
can be reached from r using a directed path in T .

The vertex r in condition (ii) is called the root of the arborescence, and T is called an
r-arborescence.

Figure 5.4 shows an example of an r-arborescence.
Notice that condition (ii) can equivalently be replaced by

5.6 Spanning trees and r-arborescences Rico Zenklusen 171

r

Figure 5.4: Example of an r-arborescence.

(ii’) Every vertex has at most one incoming arc.

Theorem 5.19

The arborescence polytope of a directed loopless graph G = (V,A) is given by

P =

x ∈ RA
≥0

∣∣∣∣∣∣
x(A) = |V | − 1

x(A[S]) ≤ |S| − 1 ∀S ⊊ V, |S| ≥ 2
x(δ−(v)) ≤ 1 ∀v ∈ V

 ,

where A[S] ⊆ A for S ⊆ V denotes all arcs with both endpoints in S.

A polyhedron that is closely related to the arborescence polytope and has a very elegant de-
scription is the dominant of the r-arborescence polytope. The dominant of the r-arborescence
polytope will also provide an excellent example to show how integrality of a polyhedron can be
proven using a technique called combinatorial uncrossing.

Apart from sometimes having a simpler description, the dominant of a polytope can also often
be used for optimization. For example, consider the problem of finding a minimum weight r-
arborescence with respect to some positive arc weights w ∈ ZA

>0. Let P be the r-arborescence
polytope. Then this problem corresponds to minimizing w⊤x over all x ∈ P . However, this
is equivalent to minimizing w⊤x over x ∈ dom(P). Indeed, any x ∈ dom(P) can be written
as x = y + z, where y ∈ P and z ∈ RA

≥0. Therefore for x ∈ dom(P) to be a minimizer of
w⊤x, we must have z = 0; for otherwise, w⊤y < w⊤x and y ∈ P ⊆ dom(P), violating that
x ∈ dom(P) minimizes w⊤x.

Theorem 5.20

The dominant of the r-arborescence polytope is given by

P =
{
x ∈ RA

≥0 : x(δ
−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ̸= ∅

}
.

We will prove integrality of this polyhedron in the next section, when talking about combina-
torial uncrossing. This particular inequality description of the dominant of the r-arborescence
polytope will turn out to be useful later, when we design a separation oracle for it.

172 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

5.7 Non-bipartite matchings

We will start by introducing the perfect matching polytope and then derive therefrom the de-
scription of the matching polytope.

5.7.1 Perfect matching polytope

Theorem 5.21

The perfect matching polytope of an undirected graph G = (V,E) is given by

P =

{
x ∈ RE

≥0

∣∣∣∣ x(δ(v)) = 1 ∀v ∈ V
x(δ(S)) ≥ 1 ∀S ⊆ V, |S| odd

}
.

Proof. It is easy to check that P contains the correct set of integral points. Thus, it remains to
show integrality of P .

For the sake of contradiction assume that there are graphs G = (V,E) for which P is not
integral. Among all such graphs let G = (V,E) be a one that minimizes |V |+ |E|, i.e., we look
at a smallest bad example, and let P be the corresponding polytope as defined in Theorem 5.21.
Notice that we must have that |V | is even. For otherwise the polytope P is indeed the perfect
matching polytope because it is empty, which follows from the constraint x(δ(V)) ≥ 1, which
is impossible to satisfy since δ(V) = ∅.

Let y ∈ P be a vertex of P that is fractional. We start by observing some basic properties
following from the fact that we chose a smallest bad example. In particular, G is connected.
For otherwise, a smaller bad example is obtained by only considering one of its connected com-
ponents containing a y-fractional edge, which violates minimality of G. Moreover, there is no
0-edge, i.e., an edge e ∈ E such that y(e) = 0, because such an edge could be deleted leading
to a smaller bad example. Similarly, there is no 1-edge e = {u, v} ∈ E, because in this case
there can be no other edge f except for e that is incident with either u or v, since we would have
y(f) = 0 due to y(δ(u)) = 1 and y(δ(v)) = 1, and we already know that there is no 0-edge.
Finally, δ({u, v}) = ∅ implies that G is not connected, because G must contain at least one edge
besides e because there is an edge with fractional y-value. Hence, y is fractional on all edges,
i.e., y(e) ∈ (0, 1) ∀e ∈ E.

Since y is a vertex of P it can be defined as the unique solution to |E| linearly independent
constraints of P that are y-tight, i.e., tight for the point y. If it is clear from the context, we
also often just talk about tight constraints. P has three types of constraints: degree constraints
(x(δ(v)) = 1 for v ∈ V), cut constraints (x(δ(S)) ≥ 1 for S ⊆ V, |S| odd), and non-negativity
constraints (x(e) ≥ 0 for e ∈ E). Notice that none of the non-negativity constraints are tight
since y > 0. Hence, y is the unique solution to a full-rank linear system of the following type:

x(δ(v)) = 1 ∀v ∈W ,

x(δ(S)) = 1 ∀S ∈ F ,
(5.8)

where W ⊆ V , F ⊆ {S ⊆ V : |S| odd}, and |W |+ |F| = |E| because the system is full-rank.
Without loss of generality, we assume that F only contains sets S ⊆ V such that |S| ̸= 1 and

5.7 Non-bipartite matchings Rico Zenklusen 173

|S| ̸= |V | − 1. Indeed, if |S| = 1, then the constraint x(δ(S)) = 1 can be handled as a tight
degree constraints. The same holds for |S| = |V | − 1, in which case the constraint x(δ(S)) = 1
is identical to x(δ(V \ S)) = 1, which is a degree constraint.

We now distinguish between two cases depending on whether F = ∅ or not.

Case F = ∅: We start with an observation that is independent of this case. Namely, each
vertex must have degree at least two, since a degree-one vertex v would need to be adjacent to
a 1-edge to satisfy the degree constraint y(δ(v)) = 1. This implies |E| ≥ |V |. Furthermore,
since (5.8) is full-rank, we have |W | = |E|. Finally, W ⊆ V implies |W | ≤ |V |, and by
combining all above inequalities we get |V | ≤ |E| = |W | ≤ |V |. Hence, |E| = |W | = |V |,
i.e., the system (5.8) contains all degree constraints, and G is a graph where each vertex has
degree precisely 2. Since G is connected, it must be a single cycle containing all vertices.
Moreover, because |V | is even, it is an even cycle. Let V = {v1, . . . , vn} be a consecutive
numbering of the vertices when going along the cycle. We now get a contradiction by showing
that the system (5.8) is not full-rank. Indeed, we have∑

i∈[n],i even

χδ(vi) =
∑

i∈[n],i odd

χδ(vi) ,

which shows that there is a linear dependence within the degree constraints.

Case F ≠ ∅: Let S ∈ F . As discussed, we have |S| > 1 and |V \ S| > 1. We consider
two graphs, G1 = G/S and G2 = G/(V \ S), which are obtained from G by contracting S and
V \S, respectively. Contracting S means that we replace all vertices in S by a single new vertex
vS . Furthermore, all edges with both endpoints in S are deleted, and any edge with one endpoint
in S and the other one v ∈ V \ S outside of S is replaced by an edge between vS and v. Let y1
and y2 be the restriction of y to all non-deleted edges in G1 and G2, respectively. One can easily
observe that yi ∈ PGi for i ∈ {1, 2}, where PGi is the polytope as defined by Theorem 5.21 for
the graph Gi. Notice that both graphs G1 and G2 are strictly smaller than G in terms of the sum
of their number of vertices and edges. Since G was a smallest bad example, the two polytopes
PG1 and PG2 are therefore the perfect matching polytopes of G1 and G2. Hence, we can write
yi for i ∈ {1, 2} as a convex combination of perfect matchings in Gi. In particular, there is some
N ∈ Z>0 such that for i ∈ {1, 2}

yi =
1

N

N∑
j=1

χMj
i , (5.9)

where M j
i is a perfect matching in Gi for i ∈ {1, 2} and j ∈ [N]. Notice that both graphs G1

and G2 contain the edges δ(S). More precisely, for both graphs G1, G2, the set δ(S) consists of
all edges incident with the vertex representing the contracted set S or V \S. Hence, each perfect
matching M j

i contains precisely one edge of δ(S). Furthermore, for i ∈ {1, 2}, each edge
e ∈ δ(S) must be contained in precisely N · yi(e) matchings of the family {M j

i }j∈[N] for (5.9)
to be true. Additionally, since both y1 and y2 are just restrictions of y, they coincide on the edges
δ(S). Hence, y(e) = y1(e) = y2(e) for each e ∈ δ(S). Thus, for every e ∈ δ(S), there is the
same number of perfect matchings in {M j

1}j∈[N] that contain e as there are perfect matchings in

174 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

{M j
2}j∈[N] containing e. We can therefore choose the numberings of those matchings, i.e., the

indices j, such that
M j

1 ∩ δ(S) = M j
2 ∩ δ(S) ∀j ∈ [N] .

This implies that M j
1 ∪M j

2 is a perfect matching in G. Hence, we have

y =
1

N

N∑
j=1

χMj
1∪M

j
2 ,

which implies that y is a convex combination of perfect matchings in G. This violates the fact
that y is a fractional vertex of P , because we were able to write y as a convex combination of
{0, 1}-points of P , thus finding a non-trivial convex combination that expresses y.

5.7.2 Matching polytope

As we show in the proof of the theorem below, the description of the perfect matching polytope
can now be used to prove integrality of the matching poytope.

Theorem 5.22

The matching polytope of an undirected graph G = (V,E) is given by

P =

{
x ∈ RE

≥0

∣∣∣∣ x(δ(v)) ≤ 1 ∀v ∈ V

x(E[S]) ≤ |S|−1
2 ∀S ⊆ V, |S| odd

}
.

Proof. As usual, it is easy to check that P contains the correct set of integral points, i.e., P ∩
{0, 1}E are all incidence vectors of matchings in G. Let x ∈ P . We have to show that x is a
convex combination of matchings. We use the following proof plan. We will define an auxiliary
graph H = (W,F) that extends G, and we will also extend x to a point in y ∈ [0, 1]F , which
we can show to be in the perfect matching polytope of H using Theorem 5.21. Hence, y can be
written as a convex combination of perfect matchings of H . From this convex decomposition
we then derive that x is a convex combination of matchings of G.

We start by constructing the auxiliary graph H = (W,F). Let G′ = (V ′, E′) be a copy
of G = (V,E), i.e., for every vertex v ∈ V there is a vertex v′ ∈ V ′ and for every edge
e = {u, v} ∈ E there is an edge e′ = {u′, v′} ∈ E′. We define H = (W,F) to be the disjoint
union of G and G′, where we add all edges of the type {v, v′} for v ∈ V . More formally,

W = V ∪ V ′ ,

F = E ∪ E′ ∪ {{v, v′} : v ∈ V } .

Furthermore, we define y ∈ [0, 1]F by

y(e) = x(e) ∀e ∈ E ,
y(e′) = x(e) ∀e ∈ E ,

y({v, v′}) = 1− x(δ(v)) ∀v ∈ V .

5.7 Non-bipartite matchings Rico Zenklusen 175

We now show that y is in the perfect matching polytope of H , which is described by Theo-
rem 5.21. First, we clearly have y ≥ 0 and y(δH(w)) = 1 for w ∈W . Let Q ⊆W be a set with
|Q| odd. It remains to show y(δH(Q)) ≥ 1 for y to be in the perfect matching polytope of H .
Let A = Q ∩ V , and B′ = Q ∩ V ′. Furthermore, we define B = {v ∈ V : v′ ∈ B′}. We have

y(δH(Q)) = y(δH(Q) ∩ E)︸ ︷︷ ︸
=I

+ y(δH(Q) ∩ E′)︸ ︷︷ ︸
=II

+ y(δH(Q) ∩ {{v, v′} : v ∈ V })︸ ︷︷ ︸
=III

.

Now observe that

I = x(δ(A)) ,

II = x(δ(B)) ,

III =
∑

v∈A\B

(1− x(δ(v))) +
∑

v∈B\A

(1− x(δ(v)))

= |A \B| − 2x(E[A \B])− x(δ(A \B)) + |B \A| − 2x(E[B \A])− x(δ(B \A)) .

Furthermore,

x(δ(A)) + x(δ(B)) = x(δ(A \B)) + x(δ(B \A)) + 2x(E(A ∩B, V \ (A ∪B)))

≥ x(δ(A \B)) + x(δ(B \A)) ,

where for S1, S2 ⊆ V , the set E(S1, S2) ⊆ E consists of all edges in G with one endpoint in
S1 and the other in S2. Combining the above, we obtain

y(δH(Q)) ≥ |A \B| − 2x(E[A \B]) + |B \A| − 2x(E[B \A]) . (5.10)

Now, notice that for any set S ⊆ V , we have

2x(E[S]) ≤
∑
v∈S

x(δ(v)) ≤ |S| , (5.11)

where the first inequality follows by observing that every edge {u, v} ∈ E[S] appears twice in
the middle term: once in δ(u) and once in δ(v). Furthermore, the second inequality follows by
x(δ(v)) ≤ 1 ∀v ∈ V , which holds since x ∈ P .

Notice that
|Q| = |A \B|+ |B \A|+ 2|A ∩B| .

Hence, since |Q| is odd, either |A\B| or |B \A|must be odd. Without loss of generality assume
that |A \B| is odd. As x ∈ P , we have

x(E[A \B]) ≤ |A \B| − 1

2
. (5.12)

We finally obtain

y(δH(Q)) ≥ |A \B| − 2x(E[A \B]) + |B \A| − 2x(E[B \A]) (by (5.10))

≥ |A \B| − 2x(E[A \B]) (by (5.11))

≥ 1 (by (5.12)),

176 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

thus implying that y is in the perfect matching polytope of H . Hence, y can be written as a
convex combination of perfect matchings in H , i.e.,

y =
k∑

i=1

λi χMi︸︷︷︸
∈{0,1}F

,

where k ∈ Z>0, λi ≥ 0 for i ∈ [k],
∑k

i=1 λi = 1, and Mi ⊆ F for i ∈ [k] is a perfect matching
in H = (W,F). Since x is the restriction of y to the edges in E, we get

x = y|E =

k∑
i=1

λi χ
Mi∩E︸ ︷︷ ︸

∈{0,1}E

,

where we use the characteristic vector notation χ in the equation above with respect to the
ground set E instead of F , i.e., χMi∩E ∈ {0, 1}E . Thus, x is a convex combination of the
matchings M1∩E, . . . ,Mk ∩E in the graph G. This proves that P is contained in the matching
polytope. Furthermore, since P contains the correct integral points, it contains the matching
polytope. Hence, P is the matching polytope.

5.8 Combinatorial uncrossing

Combinatorial uncrossing is a technique to extract a well-structured set system out of a large
family of sets. It can be used in various contexts, one of which is to show the integrality of
polyhedra. Here, the main goal of combinatorial uncrossing can be summarized as follows:

Given a heavily overdetermined linear system that uniquely de-
fines a point, find a well-structured full-rank subsystem.

5.8.1 Integrality of spanning tree polytope

We recall the description of the spanning tree polytope claimed by Theorem 5.17.

P =

{
x ∈ RE

≥0

∣∣∣∣ x(E) = |V | − 1
x(E[S]) ≤ |S| − 1 ∀S ⊊ V, |S| ≥ 2

}
.

As it is common for many combinatorial optimization problems, the spanning tree polytope is
highly degenerate. Figure 5.5 shows a degenerate vertex of the spanning tree polytope together
with the tight constraints.

Notice that the constraint matrix corresponding to the spanning tree polytope is not TU. More-
over, even if we only consider tight constraints, the resulting linear subsystem may not be TU.
A submatrix of the tight constraints having a determinant not within {−1, 0, 1} is highlighted in
blue in Figure 5.5.

However, it turns out that for any vertex y of the spanning tree polytope, there is always a
full-rank linear subsystem among the y-tight constraints that is TU and thus implies integrality
of y. We will prove the existence of such a subsystem using combinatorial uncrossing.

5.8 Combinatorial uncrossing Rico Zenklusen 177

v1 v2

v3

v4

e1 e3

e5e2 e4

y = (1, 0, 1, 0, 1)

spanning tree constraints:

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 1

1 1 1 1 1

e1 e2 e3 e4 e5

{v1, v2}
{v1, v3}
{v1, v4}
{v2, v3}
{v2, v4}
{v3, v4}

{v1, v2, v3}
{v1, v2, v4}
{v1, v3, v4}
{v2, v3, v4}

{v1, v2, v3, v4}

y
=
≤

1

1

1

1

1

1

2

2

2

2

3

non-negativity constraints:

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

e1 e2 e3 e4 e5

y
=
≥

0

0

0

0

0

Figure 5.5: The vector y is the incidence vector of the spanning tree {e1, e3, e5}. Tight

spanning tree constraints (with respect to y) and tight non-negativity con-
straints are highlighted in red. There are 7 tight spanning tree constraints and
2 tight non-negativity constraints. Hence, the vertex y of the spanning tree
polytope is degenerate because the total number of tight constraints, which
is 9, is strictly larger then the dimension in which y lives, i.e., 5. Further-
more, the constraint matrix that corresponds to only the tight constraints is
not TU. This can be verified by considering the subsystem of the tight span-
ning tree constraints that correspond to the columns e1, e3, e5 and the rows
{v1, v2, v3}, {v1, v3, v4}, {v2, v3, v4}, as highlighted in blue in the above fig-
ure. The determinant of this 3× 3 subsystem is −2.

Proof of integrality of P Let y ∈ P be a vertex of P . Without loss of generality, we delete
from G = (V,E) all edges e ∈ E with y(e) = 0, to obtain a smaller graph such that y restricted
to {e ∈ E | y(e) > 0} is still a vertex of the polytope P in the reduced graph. Hence, we
assume from now on that G is this reduced graph and therefore supp(y) = E.

Consider all y-tight, or simply tight, spanning tree (ST) constraints. Each tight ST constraint

178 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

x(E[S]) = |S|−1 corresponds to some set S ⊆ V, |S| ≥ 2. We represent all tight ST constraints
by their corresponding set S, thus obtaining the family of tight sets F given by

F = {S ⊆ V : |S| ≥ 1, y(E[S]) = |S| − 1} .

For technical reasons that will become clear later, we also include sets of size 1 in F . Notice
that they correspond to constraints that are trivially fulfilled.

LetH ⊆ F be a maximal laminar subfamily of F , and consider the system:

x(E[S]) = |S| − 1 ∀S ∈ H . (5.13)

We will show that y is the unique solution to (5.13). Notice that this will imply integrality of y
since (5.13) is a TU system with integral right-hand side, as it has the consecutive-ones property
with respect to the rows.

As the set of all tight spanning tree constraints uniquely defines y, it suffices to show that any
tight spanning tree constraint is implied by (5.13), i.e.,

χE[S] is a linear combination of {χE[H] | H ∈ H} ∀S ∈ F . (5.14)

We showed in the problem sets in a very general context that (5.14) is indeed equivalent to
showing that every tight spanning tree constraint is implied by (5.13).

To this end, we need a better understanding of the structure of y-tight constraints, because we
need to show that H contains a rich enough family of y-tight constraints such that (5.14) holds.
The lemma below states an elementary yet crucial structural property that will allow us to make
a concrete statement about the laminar familyH.

Lemma 5.23

For any sets A,B ⊆ V , we have

χE[A] + χE[B] + χE(A\B,B\A) = χE[A∪B] + χE[A∩B] ,

which implies
χE[A] + χE[B] ≤ χE[A∪B] + χE[A∩B] .

Proof. In words, the equality in the lemma states that any edge e ∈ E appears the same number
of times in the edge sets E[A], E[B], E(A\B,B\A) as it appears in the sets E[A∪B], E[A∩B].
One can easily check that Lemma 5.23 holds by verifying the equality for each coordinate, i.e.,
each edge, where the edges can be grouped into the following edge types. The type of an edge
is determined by where its endpoints lie among the four sets A \B,B \A,A∩B,E \ (A∪B).
Figure 5.6 shows the 10 different edge types. Clearly, two edges of the same edge type have
the same contribution to the left-hand side and right-hand side of the equality in Lemma 5.23.
Hence, it suffices to check whether each edge type has the same contribution on each side of the
equality, which is easy to observe.

Lemma 5.23 allows for deriving relations about tight sets. In particular, if two sets with non-
empty intersection are tight, then so are their union and intersection.

5.8 Combinatorial uncrossing Rico Zenklusen 179

A \B B \AA ∩B

V \ (A ∪B)

Figure 5.6: There are 10 types of edges in terms of where their endpoints lie with respect to
the sets A and B, as shown above. One can easily check that each type appears
precisely the same number of times in E[A∪B] and E[A∩B] as it appears in
E[A], E[B], and E(A \B,B \A).

Lemma 5.24

If S1, S2 ∈ F with S1∩S2 ̸= ∅, then S1∩S2, S1∪S2 ∈ F and E(S1 \S2, S2 \S1) = ∅.
In particular, this implies by Lemma 5.23

χE[S1] + χE[S2] = χE[S1∪S2] + χE[S1∩S2] .

Proof. By Lemma 5.23 we have

y(E[S1]) + y(E[S2]) + y(E(S1 \ S2, S2 \ S1)) = y(E[S1 ∪ S2]) + y(E[S1 ∩ S2]) . (5.15)

Using (5.15), we obtain

|S1|+ |S2| − 2 = |S1 ∪ S2| − 1︸ ︷︷ ︸
≥y(E[S1∪S2])

+ |S1 ∩ S2| − 1︸ ︷︷ ︸
≥y(E[S1∩S2])

≥ y(E[S1 ∪ S2]) + y(E[S1 ∩ S2]) (using y ∈ P)

= y(E[S1])︸ ︷︷ ︸
=|S1|−1

+ y(E[S2])︸ ︷︷ ︸
=|S2|−1

+y(E(S1 \ S2, S2 \ S1)) (by (5.15))

= |S1|+ |S2| − 2 + y(E(S1 \ S2, S2 \ S1))︸ ︷︷ ︸
≥0

(because S1, S2 ∈ F)

≥ |S1|+ |S2| − 2 .

Hence, all inequalities above must be satisfied with equality, thus implying S1∪S2, S1∩S2 ∈ F
and y(E(S1 \ S2, S2 \ S1)) = 0. Finally, since y > 0, we have that y(E(S1 \ S2, S2 \ S1)) = 0
implies E(S1 \ S2, S2 \ S1) = ∅, as desired.

180 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

Notice that for Lemma 5.24 we need F to contain singleton sets to cover the case S1, S2 ∈ F
with |S1 ∩ S2| = 1.

Definition 5.25: Intersecting sets

Two sets S1, S2 ⊆ V are called intersecting if S1∩S2 ̸= ∅, S1 \S2 ̸= ∅, and S2 \S1 ̸= ∅.

Notice that a family of sets is laminar if and only if no two of its sets are intersecting.

Lemma 5.26

The statement (5.14) holds and y is thus uniquely defined by the TU system (5.13). There-
fore, y is integral.

Proof. Assume for the sake of contradiction that (5.14) does not hold. Let

Q = span({χE[H] : H ∈ H}) ⊆ RE .

Assuming (5.14) not to hold is thus equivalent to the existence of S ∈ F with χE[S] ̸∈ Q.
Among all tight spanning tree constraints that violate (5.14), let S ∈ F be one such that

HS = {H ∈ H : S and H are intersecting}

has smallest size. Notice that HS ̸= ∅, for otherwise we could have added S to H without
destroying laminarity ofH, thus contradicting maximality ofH. Let H ∈ HS . By Lemma 5.24
we have S ∩H,S ∪H ∈ F and

χE[S] + χE[H] = χE[S∩H] + χE[S∪H] .

Notice that χE[S] ̸∈ Q and χE[H] ∈ Q. Hence, at least one of χE[S∩H], χE[S∪H] is not in Q.
However, we have

|HS∩H | < |HS | and

|HS∪H | < |HS | ,

because there is no set inH that is intersecting with any of the two sets S ∩H or S ∪H but not
S. Furthermore, the set H is intersecting with S but not with S ∩ H or S ∪ H . (See problem
sets.) This contradicts the choice of S.

5.8.2 Integrality of dominant of r-arborescence polytope

We recall the description of the dominant of the r-arborescence polytope:

P =
{
x ∈ RA

≥0 : x(δ
−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ̸= ∅

}
.

To show its integrality, we provide an analogous proof to the case of the spanning tree polytope.

5.8 Combinatorial uncrossing Rico Zenklusen 181

Proof of integrality of P Let y ∈ P be a vertex of P . As for the spanning tree case, we
can assume that the underlying graph G = (V,A) has no arcs a ∈ A with y(a) = 0, since those
arcs can be removed and the restriction of y to its support is still a vertex in the polyhedron P
that corresponds to the reduced graph. We denote by F ⊆ 2V the set of all y-tight constraints:

F = {S ⊆ V \ {r} : y(δ−(S)) = 1} .

Hence, y is the unique solution to the linear system

x(δ−(S)) = 1 ∀S ∈ F . (5.16)

LetH ⊆ F be a maximal laminar subfamily of F . As in the spanning tree case, we show that
the following system implies all constraints of (5.16):

x(δ−(S)) = 1 ∀S ∈ H . (5.17)

Again, the linear system (5.17) is TU, which can be seen by applying the Ghouila-Houri
criterion with respect to the rows as follows. Consider any subset of the rows, which can be
represented by a laminar subfamily F ′ ⊆ H. We partition this subfamily F ′ into a ‘+’ and
‘−’ group as follows. The topmost sets of F ′, i.e., the ones not contained in any other set of
F ′ are in the ‘+’ group, their children are in the ‘−’ group, and we continue alternating that
way (see Figure 5.7). One can easily verify that this partition leads to a vector with entries
{−1, 0, 1} as desired. TU-ness of (5.17) also follows from results shown in the problem sets,
where we considered a system x(δ+(S)) for S being part of an arbitrary laminar family. The
system (5.17) easily reduces to this case by reversing the directions of the arcs.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

− −− −+
+ +

Figure 5.7: Illustration of how we apply the Ghouila-Houri criterion to the subfamily F ′,
which is the laminar family depicted in the figure.

Hence, it remains to show that every constraint of (5.16) is implied by (5.17). Similar to the
spanning tree case, we need to get a better understanding of directed cuts to deduce that H is a
family rich enough to ensure that (5.17) implies (5.16). For this, we start with a basic property
on directed cuts.

182 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

Lemma 5.27

For any two sets S1, S2 ⊆ V , we have

χδ−(S1) + χδ−(S2) = χδ−(S1∩S2) + χδ−(S1∪S2) + χA(S1\S2,S2\S1) + χA(S2\S1,S1\S2) ,

which implies in particular

χδ−(S1) + χδ−(S2) ≥ χδ−(S1∩S2) + χδ−(S1∪S2) .

Proof. This proof can be done analogously to the proof of Lemma 5.23, by considering all
different arc types.

From Lemma 5.27, we can derive properties on tight cuts.

Lemma 5.28

If S1, S2 ∈ F with S1∩S2 ̸= ∅, then S1∪S2, S1∩S2 ∈ F and A(S1 \S2, S2 \S1) = ∅,
A(S2 \ S1, S1 \ S2) = ∅. In particular, this implies by Lemma 5.27

χδ−(S1) + χδ−(S2) = χδ−(S1∪S2) + χδ−(S1∩S2) .

Proof. By Lemma 5.27 and non-negativity of y we have

y(δ−(S1)) + y(δ−(S2)) =

y(δ−(S1 ∪ S2)) + y(δ−(S1 ∩ S2)) + y(A(S1 \ S2, S2 \ S1)) + y(A(S2 \ S1, S1 \ S2)) .
(5.18)

Using (5.18), we obtain

2 = y(δ−(S1)) + y(δ−(S2))

= y(δ−(S1 ∪ S2)) + y(δ−(S1 ∩ S2)) (by (5.18))

+ y(A(S1 \ S2, S2 \ S1))︸ ︷︷ ︸
≥0

+ y(A(S2 \ S1, S1 \ S2))︸ ︷︷ ︸
≥0

≥ y(δ−(S1 ∪ S2))︸ ︷︷ ︸
≥1

+ y(δ−(S1 ∩ S2))︸ ︷︷ ︸
≥1

≥ 2 . (because y ∈ P)

Hence, all inequalities above must be satisfied with equality, thus implying S1∪S2, S1∩S2 ∈ F
and y(A(S1 \ S2, S2 \ S1)) = y(A(S2 \ S1, S1 \ S2)) = 0. Finally, because y > 0, we have
A(S1 \ S2, S2 \ S1) = A(S2 \ S1, S1 \ S2) = ∅, as desired.

We are now ready to show that every constraint of (5.16) is implied by (5.17). Again, for sake
of contradiction assume that this is not the case. Let S ∈ F be a set such that the constraint

5.8 Combinatorial uncrossing Rico Zenklusen 183

x(δ−(S)) = 1 is not implied by (5.17), and among all such sets we choose one such that the
number of sets inH that are intersecting with S is minimum. We define

Q = span({χδ−(H) : H ∈ H}) .

Hence, S ∈ F satisfies χδ−(S) ̸∈ Q. Let H ∈ H be a set such that S and H are intersecting. By
Lemma 5.28 we have

χδ−(S)︸ ︷︷ ︸
̸∈Q

+χδ−(H)︸ ︷︷ ︸
∈Q

= χδ−(S∪H) + χδ−(S∩H) .

Hence, at least one of χδ−(S∪H) and χδ−(S∩H) is not in Q. Since both S ∪ H and S ∩ H are
intersecting with a strictly smaller number of sets in H than S, this contradicts the choice of S
and finishes the proof, implying that each constraint of (5.16) is implied by (5.17).

5.8.3 Upper bound on number of edges of minimally k-edge-connected
graphs

So far, we used combinatorial uncrossing to prove that certain polyhedra are integral. More
precisely, we had inequality descriptions of the polyhedra where constraints where defined by
sets, and we considered a maximal laminar family of sets that corresponded to tight constraints.
Laminarity of the set system allowed us to show that the corresponding constraint matrix is
TU, and combinatorial uncrossing arguments were employed to argue that they are a full-rank
system. We now consider a quite different setting, not immediately related to polyhedra, where
combinatorial uncrossing can be applied. This highlights nicely the versatility of combinatorial
uncrossing, which goes far beyond the study of polyhedra.

Let G = (V,E) be an undirected graph on n vertices. We recall that G is k-edge-connected
for k ∈ Z≥0 if there are k edge-disjoint paths between any pair of vertices. By Menger’s
Theorem—a special case of the max-flow min-cut theorem—this is equivalent to the property
that every cut S ⊊ V, S ̸= ∅ has size at least k, i.e., |δ(S)| ≥ k. A k-edge-connected graph G
is called minimally k-edge-connected if removing any edge from G leads to a graph that is not
k-edge-connected anymore. Hence, a graph is minimally k-edge-connected if and only if each
edge is in a cut of size k, which is the size of a minimum cut because G is k-edge-connected. We
are interested in determining the maximum number of edges that a minimally k-edge-connected
graph on n vertices can have.

Figure 5.8 shows an example of a minimally k-edge-connected graph with k · (n− 1) edges.
We will show that this number is tight using combinatorial uncrossing. The notion of crossing
sets is key in the proof.

Definition 5.29: Crossing sets

Two sets S1, S2 ⊆ V are called crossing if none of the following sets is empty: S1 ∩ S2,
S1 \ S2, S2 \ S1, and V \ (S1 ∪ S2).

184 Rico Zenklusen 5 Polyhedral Approaches in Combinatorial Optimization

v1 v2 v3 vn−1 vn

k parallel edges

Figure 5.8: Example of a minimally k-edge-connected graph with n vertices and k · (n−1)
edges.

In other words, two sets S1, S2 ⊆ V are crossing if they are intersecting and S1 ∪ S2 ̸= V .
One key property of crossing sets is that their intersection and union can be interpreted as cuts.
(We recall that S ⊆ V is a cut if ∅ ≠ S ̸= V .)

Using combinatorial uncrossing, we now show a tight upper bound on the number of edges of
a minimally k-edge-connected graph.

Theorem 5.30

Let G = (V,E) be a minimally k-edge-connected graph. Then |E| ≤ k · (|V | − 1).

Proof. We call a family H ⊆ 2V of minimum cuts in G a certifying family if each edge is in at
least one of them, i.e., for every e ∈ E there is a cut S ∈ H such that e ∈ δ(S) and for each
S ∈ H we have |δ(S)| = k. We choose the name certifying family because H certifies that the
graph is minimally k-edge-connected. Our goal is to construct a small certifying family H of
size |H| ≤ n − 1, where n := |V |. Notice that the existence of such a small certifying family
proves the lemma since E ⊆

⋃
S∈H δ(S), and thus |E| ≤ (n− 1) · k, because all cuts inH have

size k since they are minimum.
Notice that for each cut S ⊆ V , also the set V \ S is a cut containing the same edges. We can

therefore choose an arbitrary vertex r ∈ V and focus only on minimum cuts not containing r.
An advantage of doing so is that whenever two cuts not containing r are intersecting, then they
are also crossing.

To obtain H, we start with an arbitrary certifying family F ⊆ 2V , which can be obtained as
follows. For each e ∈ E, let

Ce = {S ⊆ V \ {r} : e ∈ δ(S), |δ(S)| = k} .

By minimality of G we have Ce ̸= ∅ for every e ∈ E; for otherwise, e could be removed without
destroying k-edge-connectivity. For each e ∈ E, let Se ∈ Ce be an arbitrary cut in Ce. We define

F = {Se : e ∈ E} .

Hence, F may contain up to |E| sets, but possibly fewer, since we may have Se = Se′ for two
different edges e, e′ ∈ E.

5.8 Combinatorial uncrossing Rico Zenklusen 185

In the same way we proved Lemma 5.28 one can show that for any two minimum cuts S1, S2

in G that are crossing, also S1 ∪ S2 and S1 ∩ S2 are minimum cuts, and furthermore E(S1 \
S2, S2 \ S1) = ∅. Since all cuts in F are minimum, we can apply this reasoning to any two cuts
in F . We first want to turn F into a laminar certifying family. Assume that F is not laminar.
Hence, there are two intersecting cuts S1, S2 ∈ F , which are also crossing because r ̸∈ S1∪S2.

Let
F ′ = (F \ {S1, S2}) ∪ {S1 ∪ S2, S1 ∩ S2} .

Thus, F ′ is still a family of minimum cuts. Furthermore, since E(S1 \S2, S2 \S1) = ∅, we have

δ(S1) ∪ δ(S2) = δ(S1 ∪ S2) ∪ δ(S1 ∩ S2) .

Hence, F ′ remains a certifying family. We claim that if we repeat this uncrossing procedure as
long as there are at least two intersecting cuts in our certifying family, we will eventually end
up with a laminar family of cuts. To see that this uncrossing procedure will stop, we introduce a
potential function ϕ for certifying families:

ϕ(F) =
∑
S∈F
|S| · |S| ,

where S = V \ S. Notice that for any two intersecting sets S1, S2 ∈ F , we have

|S1||S1|+ |S2||S2| > |S1 ∪ S2||S1 ∪ S2|+ |S1 ∩ S2||S1 ∩ S2| . (5.19)

Hence, whenever we do uncrossing to go from a certifying family F to another one F ′, we
have ϕ(F) > ϕ(F ′). Notice that the potential may even decrease more than by the slack in
the inequality (5.19), because the uncrossing may lead to sets that already exist in the family, in
which case also the size of the family decreases. In any case, the potential strictly decreases after
each uncrossing step. Since the potential is by definition non-negative for any certifying family
and decreases by at least one unit at each step, the uncrossing procedure must stop. Hence, there
are no two intersecting sets in the final certifying family L, and thus, L is laminar. Recall from
the problem sets that a laminar family (not containing the empty set) on a ground set of size n
may still have up to 2n − 1 sets. Notice, however, that since L is a laminar family over the set
V \ {r}, which has size n − 1, we actually have |L| ≤ 2n − 3. We further purge the family
L to obtain H as follows. As long as there is a set L ∈ L such that the children L1, . . . , Lq

of L in the family L form a partition of L, then we remove the set L from L. We call this
constellation of sets L, L1, . . . , Lq an obstruction. The resulting family will still be a certifying
family since any edge contained in δ(L) is also contained in precisely one of the cuts L1, . . . , Lq,
i.e., δ(L) ⊆

⋃q
i=1 δ(Li). LetH be the resulting family, which does not contain any obstructions

anymore. Notice that H is a laminar family over V \ {r}. Every laminar family H′ on n − 1
elements without obstructions and not containing the empty set satisfies |H′| ≤ n− 1, since for
each set H ′ ∈ H′, there is an element of the ground set such that H ′ is the smallest set containing
this element. Thus, H can have at most as many sets as there are elements in V \ {r}, which
implies |H| ≤ n− 1 and completes the proof.

6 Ellipsoid Method

The Ellipsoid Method is a procedure that can be used to solve in particular linear and, more
generally, convex optimization problems. We will focus on linear optimization problems with
a bounded feasible region, i.e., the feasible region is a polytope P , as this covers the most
important use cases of the Ellipsoid Method in the context of Combinatorial Optimization.

A crucial advantage of the Ellipsoid Method compared to other approaches for linear program-
ming, like the Simplex Method or interior-point methods, is that one does not need to process
an explicit inequality description of P to solve the linear program. More precisely, the way the
Ellipsoid Method gains information about P is through a method that solves an arguably simpler
sub-problem, known as the separation problem.

6.1 Separation problem

The separation problem for a polyhedron P ⊆ Rn is defined as follows.

Definition 6.1: Separation problem & separation oracle

Given a point y ∈ Rn:
• Decide whether y ∈ P , and if this is not the case,
• find c ∈ Rn such that P ⊆ {x ∈ Rn : c⊤x < c⊤y}.

A procedure that solves the separation problem (for P) is often called a separation oracle
(for P).

The second point in the above definition, where a vector c ∈ Rn has to be returned, is often
called separating y from p.

In the context of the Ellipsoid Method, we call a hyperplane H = {x ∈ Rn : c⊤x = α} a
separating hyperplane, or more precisely a y-separating hyperplane, if the following holds: Let

H≤ := {x ∈ Rn : c⊤x ≤ α}, and

H≥ := {x ∈ Rn : c⊤x ≥ α}

be the two closed half-spaces defined by H; then H is separating if P is contained in one of the
above half-spaces, y in the other one, and H does not simultaneously contain y and is touching
P , i.e., either y ̸∈ H or P ∩ H = ∅. Hence, if H = {x ∈ Rn : c⊤x = α} is a separating
hyperplane, then c is a vector that solves the separation problem for y. Vice-versa, if c ∈ Rn

is a vector solving the separation problem for y, then there exists a separating hyperplane with
normal vector c, for example, H = {x ∈ Rn : c⊤x ≤ cT y}.

188 Rico Zenklusen 6 Ellipsoid Method

The fact that the Ellipsoid Method is based on a separation oracle and does not need to pro-
cess an explicit inequality description of P , allows it to solve in polynomial time many linear
programs with an exponential number of constraints. For example, one can use the Ellipsoid
Method to optimize any linear function over the matching polytope, and thus, in particular, one
can efficiently compute a maximum weight matching via the Ellipsoid Method. The reason for
this is that even though the matching polytope has an exponential number of constraints, one can
construct a polynomial time separation oracle for it.

6.2 Optimization results based on Ellipsoid Method

Before formally introducing the Ellipsoid Method, we first highlight what kind of results can
be obtained through it. The Ellipsoid Method is a very general and versatile technique, and a
thorough coverage of its implications is beyond the scope of this course. We therefore restrict
ourselves to a statement about optimizing over {0, 1}-polytopes, which is of particular interest
in the context of Combinatorial Optimization, where we often deal with {0, 1}-polytopes.

Theorem 6.2

Let P ⊆ Rn be a {0, 1}-polytope for which we are given a separation oracle. Fur-
thermore, let w ∈ Zn. Then the Ellipsoid Method allows for finding an optimal vertex
solution to the linear program max{w⊤x : x ∈ P} using a polynomial number (in n) of
elementary operations and calls to the separation oracle for P .

Hence, Theorem 6.2 implies that an efficient separation oracle for a {0, 1}-polytope P is all
we need to efficiently solve any linear program over P .

6.3 Example applications

We showcase the construction of a separation oracle on the example of the dominant of the r-
arborescence polytope, which has an exponential number of facets. Hence, the Simplex Method,
as we have discussed it, is not suitable for such a problem, because even just reading in the
constraints to construct the simplex tableau would take exponential time, before we even start to
do any computations.

In the problem sets, we will see further applications of how the Ellipsoid Method can be used
to solve non-trivial problems through the construction of an appropriate separation oracle.

Minimum weight r-arborescence

Consider the problem of finding a minimum weight r-arborescence in a directed graph G =
(V,A) with non-negative arc weights w : A → Z≥0. Clearly, this problem is equivalent to
minimizing the linear function w over the dominant P of the r-arborescence polytope which, by
Theorem 5.20, is described by

P =
{
x ∈ RA

≥0 : x(δ
−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ̸= ∅

}
.

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 189

Strictly seen, we cannot apply Theorem 6.2 to P , because P is not a {0, 1}-polytope. More
precisely, although P is integral, it is unbounded. This can easily be remedied by intersecting P
with the hypercube to obtain

Q = P ∩ [0, 1]A .

In the problem sets we show that the intersection of the dominant of any {0, 1}-polytope with the
unit hypercube results in a {0, 1}-polytope. Hence, Q is a {0, 1}-polytope. Moreover, because
P is the dominant of a {0, 1}-polytope and we are minimizing a non-negative linear function
over it, there is an optimal solution x∗ to min{w⊤x : x ∈ P}with x∗ ∈ {0, 1}n. Hence, x∗ ∈ Q.
Thus, a minimum r-arborescence can be found by finding a vertex solution to

min{w⊤x : x ∈ Q} . (6.1)

By Theorem 6.2, it suffices to find a polynomial-time separation oracle for Q to find an optimal
vertex solution to (6.1). It therefore remains to design a polynomial-time separation oracle for
Q. Here we can exploit the simple description of P provided by Theorem 5.20.

So, let y ∈ RA. We first check whether y ∈ [0, 1]A. This is easy to check since the unit hyper-
cube is defined by 2|A| constraints. If one of these constraints is violated, then it immediately
leads to a separating hyperplane. Hence, assume y ∈ [0, 1]A. It remains to check whether one
of the constraints x(δ−(S)) ≥ 1 for some S ⊆ V \ {r}, S ̸= ∅ is violated. This can be checked
via minimum s-t cut computations. For each v ∈ V \ {r}, we compute a minimum r-v cut
Sv ⊆ V , where we use y as the capacities on the arcs. If one of these cuts Sv has a value strictly
less than 1, then the constraint corresponding to V \ Sv is violated and leads to a separating
hyperplane. Otherwise, if y(δ+(Sv)) ≥ 1 for all v ∈ V , then y satisfies all constraints of P
and therefore y ∈ Q, because of the following. Assume that there was a violated constraint, i.e.,
y(δ−(S)) < 1 for some S ⊆ V \ {r}, S ̸= ∅. Then, for any v ∈ S we have

y(δ+(Sv)) ≤ y(δ+(V \ S)) = y(δ−(S)) < 1 ,

where the first inequality follows from the fact that V \ S is an r-v cut, and its cut value is thus
at least as large as the value of the cut Sv, which is by definition a minimum r-v cut.

This shows that we can solve the separation problem over Q, and thus, by Theorem 6.2, we
can find an optimal vertex solution to (6.1) in polynomial time through the Ellipsoid Method.
Furthermore, as discussed above, such a vertex solution corresponds to a minimum weight r-
arborescence.

6.4 Ellipsoid Method for finding point in full-dimensional
{0, 1}-polytope

Our final goal is to show how to do linear optimization via the Ellipsoid Method. However, to
approach this goal, we start with the following simpler problem, which will lead us to linear
optimization later on.

Given a full-dimensional polytope P ⊆ Rn, find a point x ∈ P . (6.2)

190 Rico Zenklusen 6 Ellipsoid Method

As we will discuss later, a linear programming problem over some (full-dimensional) polytope
Q, i.e.,

max w⊤x
x ∈ Q ,

(6.3)

can be reduced to finding points in Pb = Q ∩ {w⊤x ≥ b} for varying right-hand sides b ∈ R.
For the time being, we do not assume that P is a {0, 1}-polytope. We will add further conditions
later on when we need them.

As the name suggests, the Ellipsoid Method works with ellipsoids. To be precise, additional
to a separation oracle for P , it needs an ellipsoid E0 that contains P , which is often called the
starting ellipsoid. (In turns out that in case of a {0, 1}-polytope P , one can choose a trivial
ellipsoid, namely the smallest ball containing [0, 1]n. This is the reason why Theorem 6.2 does
not require a starting ellipsoid to be given.)

We recall that an ellipsoid is the image of the unit ball under an affine bijection, which can be
defined as follows.

Definition 6.3: Ellipsoid

An ellipsoid in Rn is a set

E(a,A) := {x ∈ Rn : (x− a)⊤A−1(x− a) ≤ 1} ,

where a ∈ Rn and A ∈ Rn×n is a positive definite matrix. The point a is called the
center of the ellipsoid E(a,A).a

aWe use the common convention that a positive definite matrix is by definition symmetric.

In particular, an ellipsoid is always full-dimensional. Notice that the above definition of el-
lipsoid indeed corresponds to the image of the unit ball under an affine bijection. This can be
seen as follows. A matrix A ∈ Rn×n is positive definite if and only if there is a full-rank matrix
Q ∈ Rn×n such that A = QQ⊤. Hence, A−1 = (Q⊤)−1(Q−1) = (Q−1)⊤Q−1, and therefore

E(a,A) = {x ∈ Rn : ∥Q−1(x− a)∥2 ≤ 1}
= {y + a : y ∈ Rn, ∥Q−1y∥2 ≤ 1} (Substitution with y = x− a.)

= {Qz + a : z ∈ Rn, ∥z∥2 ≤ 1} . (Substitution with z = Q−1y.)

Figure 6.1 shows an example of an ellipsoid for n = 2.
The separation oracle for P and the ellipsoid E0 ⊇ P is all that is needed to run the Ellipsoid

Method and obtain a point x ∈ P . However, to make sure that the Ellipsoid Method runs in
polynomial, time we need a further condition. One sufficient condition for the Ellipsoid Method
to run in polynomial time is that log (vol(E0)/vol(P)) is polynomially bounded by the input. We
will see later that this holds for most cases we are interested in.

6.4.1 Description of Ellipsoid Method

The Ellipsoid Method to solve (6.2) is described in Algorithm 8.

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 191

0 1 2 3 4 5
0

1

2

3

a = (32)

E(a,A) = E((32) , (
4 0
0 1))

Figure 6.1: An example of an axis-parallel ellipsoid E(a,A) in two dimensions. Notice
that the eigenvectors of A correspond to the axes of the ellipsoid, and the square
roots of the eigenvalues correspond to the radii of the corresponding axes.

c

ai

ai+1

P

{x ∈ Rn : c⊤x = c⊤ai}

E(ai, Ai)

E(ai+1, Ai+1)

Figure 6.2: Illustration of a single iteration of the Ellipsoid Method. The polytope P is
inside each ellipsoid considered by the Ellipsoid Method.

Algorithm 8: Ellipsoid Method
Input : Separation oracle for a polytope P ⊆ Rn with dim(P) = n, and an ellipsoid

E0 = E(a0, A0) with P ⊆ E0.
Output: A point y ∈ P .
i = 0.
while ai ̸∈ P (checked with separation oracle) do

Get c ∈ Rn such that P ⊆ {x ∈ Rn : c⊤x < c⊤ai}, using separation oracle.
Find min. volume ellipsoid Ei+1 = E(ai+1, Ai+1) containing Ei ∩ {x ∈ Rn : c⊤x ≤ c⊤ai}.
i = i+ 1.

return ai.

We will soon give some more details on how to compute Ei+1. It turns out that there is a
relatively simple way to describe Ei+1 in terms of Ei and c. Unfortunately, as we will see
soon, this description of Ei+1 involves taking a square root, which is an operation that we
cannot perform up to arbitrary precision under the typical computational assumptions. Hence,

192 Rico Zenklusen 6 Ellipsoid Method

in practice, one only computes an ellipsoid E′
i+1 that approximates Ei+1 and has a polynomial-

size description. To simplify the exposition we will not go into these numerical details and
assume that we use an exact description of Ei+1.

Figure 6.2 illustrates one iteration of the Ellipsoid Method. Notice that we have P ⊆ Ei

for each ellipsoid considered in the Ellipsoid Method. This can easily be verified by induction.
The first ellipsoid E0 contains P by assumption. Furthermore, for each iteration i, P ⊆ {x ∈
Rn : c⊤x ≤ c⊤ai}, and hence P ⊆ Ei ∩ {x ∈ Rn : c⊤x ≤ c⊤ai}, as P ⊆ Ei. We thus obtain
P ⊆ Ei+1 because Ei ∩ {x ∈ Rn : c⊤x ≤ c⊤ai} ⊆ Ei+1 by definition of Ei+1.

6.4.2 Getting a bound on the number of iterations

The key property of the constructed ellipsoids, besides the fact that they contain P , is that they
shrink in terms of volume. More precisely, we have the following.

Lemma 6.4

vol(Ei+1)

vol(Ei)
< e

− 1
2(n+1) .

Before proving Lemma 6.4, we observe that it immediately implies an upper bound on the
number of iterations that the Ellipsoid Method performs.

Lemma 6.5

The Ellipsoid Method will stop after at most 2(n+ 1) ln
(
vol(E0)
vol(P)

)
iterations.

Proof. Let L ∈ Z≥0 be the last iteration of the Ellipsoid Method, i.e., the value of the variable
i in Algorithm 8 when it terminates. Since EL contains P , we must have vol(P) ≤ vol(EL),
which, combined with Lemma 6.4, leads to

vol(P) ≤ vol(EL) ≤ vol(E0)e
− L

2(n+1) ,

and thus

L ≤ 2(n+ 1) ln

(
vol(E0)

vol(P)

)
.

In what follows, we will prove Lemma 6.4 and give an explicit description of the ellipsoid
Ei+1 based on c and Ei = E(ai, Ai). Later, we will show how the bound on the number of
iterations given by Lemma 6.5 can be used to prove that the Ellipsoid Method runs in polynomial
time for any full-dimensional {0, 1}-polytope. To this end, we will first make the link between
checking feasibility of a polytope and optimizing an LP more explicit.

Proof of Lemma 6.4 and explicit description for Ei+1

A key simplification for proving Lemma 6.4 is to observe that it suffices to consider the special
case where Ei = E(0, I) is the unit ball and Hi = {x ∈ Rn : x1 ≥ 0}. As we show next, one

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 193

can reduce to this case by an appropriate affine transformation.

Lemma 6.6

Let Ei = E(ai, Ai) be an ellipsoid and Hi = {x ∈ Rn : c⊤x ≤ c⊤ai} with c⊤Aic = 1
(this property of c can be achieved without loss of generality by scaling c). Let HB =
{x ∈ Rn : x1 ≥ 0}, and let EB be a minimum volume ellipsoid containing E(0, I)∩HB .
Let ρ : Rn → Rn be an affine bijection defined as follows:

ρ(x) = QiRx+ ai ,

where Qi ∈ Rn×n is any matrix such that Ai = QiQ
⊤
i , and R is any orthogonal matrix

satisfying R⊤Q⊤
i c = −e1, where e1 = (1, 0, . . . , 0) ∈ {0, 1}n is the vector with a single

one in the first coordinate and zeros everywhere else.
Then, ρ(E(0, I)) = Ei, ρ(HB) = Hi, and ρ(EB) is a minimum volume ellipsoid con-
taining Ei ∩Hi.

Hence, Lemma 6.6 shows that to prove Lemma 6.4, it suffices to consider the unit ball case cut
by the hyperplane HB . Indeed, the ratio between a minimum volume ellipsoid Ei+1 containing
Ei ∩Hi, and vol(Ei) = vol(ρ(E(0, I))) is equal to

vol(Ei+1)

vol(Ei)
=

vol(ρ(EB))

vol(ρ(E(0, I)))
=

vol(EB)

vol(E(0, I))
, (6.4)

where the second equality follows by the fact that ρ scales the volumes of all measurable sets by
the same factor.

Also, the lemma provides an explicit transformation ρ that allows for transforming a minimum
volume ellipsoid for this special case into a minimum volume ellipsoid for the general case.
Later, we will use this transformation to give an explicit description of the center ai+1 and
defining matrix Ai+1 for the next ellipsoid Ei+1 = E(ai+1, Ai+1) in the Ellipsoid Method.

Notice that c⊤Aic = 1 implies ∥Q⊤
i c∥2 = 1, and hence, there is an orthogonal matrix R that

maps Q⊤
i c to−e1. (Because an orthogonal transformation does not change lengths, ∥Q⊤

i c∥2 = 1
is necessary for R to exist.)

Proof of Lemma 6.6. The proof plan is as follows. We start by observing that ρ is a bijection,
ρ(E(0, I)) = Ei, and ρ(Hi) = HB . Furthermore, applying ρ to any measurable set changes its
volume by a factor that only depends on ρ (a property that is well-known for affine transforma-
tions). From these properties we can interpret the special case with ball E(0, I) and half-space
HB as the preimage with respect to ρ of the original problem. Because all volumes are scaled by
the same factor, a minimum volume ellipsoid in the special case thus corresponds to a minimum
volume ellipsoid for the original problem.

The transformation ρ is indeed a bijection since R is full-rank and Qi is full-rank because

194 Rico Zenklusen 6 Ellipsoid Method

Ai = QiQ
⊤
i and Ai is full-rank. Furthermore,

ρ(E(0, I)) = {ρ(x) : x ∈ Rn, x⊤x ≤ 1}
= {QiRx+ ai : x ∈ Rn, x⊤x ≤ 1}

=
{
y ∈ Rn : (y − ai)

⊤(Q−1
i)⊤RR−1Q−1

i (y − ai) ≤ 1
}

(y = QiRx+ ai)

=
{
y ∈ Rn : (y − ai)

⊤A−1
i (y − ai) ≤ 1

}
(QiQ

⊤
i = Ai)

= Ei .

Similarly, the hyperplane HB gets mapped to Hi:

ρ(HB) = {ρ(x) : x ∈ Rn, x1 ≥ 0}
= {QiRx+ ai : x ∈ Rn, x1 ≥ 0}
= {y ∈ Rn : (R−1Q−1

i (y − ai))
⊤e1 ≥ 0} (y = QiRx+ ai)

= {y ∈ Rn : (y − ai)
⊤(Q−1

i)⊤Re1 ≥ 0} (R−1 = R⊤ by orthogonality of R)

= {y ∈ Rn : − (y − ai)
⊤c ≥ 0} (R⊤Q⊤

i c = −e1)

= {y ∈ Rn : c⊤y ≤ c⊤ai}
= Hi .

Notice that the above relations combined with EB ⊇ E(0, I)∩HB imply that ρ(EB) is indeed
an ellipsoid that contains ρ(E(0, I)) ∩ ρ(HB) = Ei ∩ Hi. It remains to show that ρ(EB) has
minimum volume among all ellipsoid containing Ei∩Hi. To prove this, let Ei+1 be a minimum
volume ellipsoid containing Ei ∩ Hi and we will show vol(Ei+1) ≥ vol(ρ(EB)) to finish the
proof.

We recall a well-known property of affine functions x 7→ Ax+ v, namely that they scale any
volume by the same factor | detA|. For ρ this implies that for any measurable set U ⊆ Rn we
have

vol(ρ(U)) = vol(U) · | det(QiR)| = vol(U) · | detQi||detR| = vol(U) · | detQi| . (6.5)

Notice that ρ−1(Ei+1) is an ellipsoid containing ρ−1(Ei) ∩ ρ−1(Hi) = E(0, I) ∩ HB , and
hence

vol(ρ−1(Ei+1)) ≥ vol(EB) , (6.6)

because EB has minimum volume among all ellipsoid containing E(0, I)∩HB . We thus obtain

vol(Ei+1) = vol(ρ−1(Ei+1)) · | detQi| (by 6.5)

≥ vol(EB) · | detQi| (by 6.6)

= vol(ρ(EB)) , (by 6.5)

thus completing the proof.

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 195

Lemma 6.7

Let HB = {x ∈ Rn : x1 ≥ 0}. Then the ellipsoid

EB =

x ∈ Rn

∣∣∣∣∣∣
(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑
j=2

x2j ≤ 1

 (6.7)

contains E(0, I) ∩HB .

The ellipsoid EB is actually even the minimum volume ellipsoid containing E(0, I)∩HB . We
do not show this fact in these notes. (We will prove this in one of the problem sets.) However,
we will show that the ratio vol(EB)/vol(E(0, I)) satisfies the inequality of Lemma 6.4. Of course,
even without accepting that EB is the smallest ellipsoid containing E(0, I) ∩ HB , this shows
Lemma 6.4. Furthermore, also in the analysis that follows, we never need to prove that EB

is the smallest ellipsoid containing E(0, I) ∩ HB , because we can simply assume that, in the
Ellipsoid Method, we work with the description of EB given by (6.7) without assuming that
it has minimum volume. We will later generalize the description of EB given in (6.7) to the
general case when Ei is not necessarily the unit ball and HB is replaced by a general half-space
going through the center of Ei.

Proof of Lemma 6.7. Let x ∈ E(0, I) ∩HB . We have(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑
j=2

x2j

=
n2 + 2n+ 1

n2
x21 −

(
n+ 1

n

)2 2x1
n+ 1

+
1

n2
+

n2 − 1

n2

n∑
j=2

x2j

=
2n+ 2

n2
x21 −

2n+ 2

n2
x1 +

1

n2
+

n2 − 1

n2

n∑
j=1

x2j︸ ︷︷ ︸
≤1

(x ∈ E(0, I))

≤ 2n+ 2

n2
x1(x1 − 1)︸ ︷︷ ︸

≤0

+1 (0 ≤ x1 ≤ 1)

≤ 1 ,

and thus x ∈ EB .

Proof of Lemma 6.4. As discussed, we can assume due to Lemma 6.6 that Ei = E(0, I) is the
unit ball, and the separating hyperplane used in the Ellipsoid Method at iteration i, which goes
through the center of Ei, is given by HB = {x ∈ Rn : x1 ≥ 0}. From (6.7) we can read off the
matrix Ai+1 and the center point ai+1, which define the ellipsoid Ei+1, i.e.,

Ei+1 = {x ∈ Rn : (x− ai+1)
⊤A−1

i+1(x− ai+1) ≤ 1} .

196 Rico Zenklusen 6 Ellipsoid Method

We have

ai+1 =

(
1

n+ 1
, 0, 0, . . . , 0

)⊤
,

A−1
i+1 =

(n+1
n)2 0 0 . . . 0

0 n2−1
n2 0 . . . 0

...
...
0

0 . . . 0 n2−1
n2

,

and thus

Ai+1 =

(n
n+1)

2 0 0 . . . 0

0 n2

n2−1
0 . . . 0

...
...
0

0 . . . 0 n2

n2−1

.

As discussed, an ellipsoid E(a,A) is the image of the unit ball with respect to the affine trans-
formation ϕ(x) = Qx+ a, where Q ∈ Rn×n is such that A = QQ⊤. Thus

vol(E(a,A)) = vol(E(0, I)) · | det(Q)| = vol(E(0, I)) ·
√
det(A) .

Hence,

vol(Ei+1)

vol(Ei)
=

√
det(Ai+1)√
det(I)

=
√
det(Ai+1)

=
n

n+ 1

(
n2

n2 − 1

)n−1
2

=

(
1− 1

n+ 1

)(
1 +

1

n2 − 1

)n−1
2

< e−
1

n+1 e
n−1

2(n2−1) = e−
1

n+1 e
1

2(n+1) = e
− 1

2(n+1) , (1 + x < ex ∀x ∈ R \ {0})

as desired.

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 197

6.4.3 From the unit ball to the general case

In this section we discuss briefly how to derive an explicit description of the ellipsoid Ei+1 in the
general case, where Ei is not necessarily the unit ball and the half-space cutting Ei is a general
half-space going through the origin ai of Ei. Having such a description of Ei+1 allows us to
make the step of computing Ei+1 in Algorithm 8 explicit.

We perform the generalization in two steps. First, we still assume that Ei is the unit ball.
However, we consider an arbitrary half-space cutting it. Then, we extend this case to the general
case.

An alternative way to get a description of Ei+1 and ai+1 is to derive an explicit affine trans-
formation that directly transforms the unit ball and half-space {x ∈ Rn : x1 ≥ 0} to a general
ellipsoid and general half-space going through its center.

General half-space cutting E(0, I)

Assume that Ei = E(0, I) is still the unit ball, and consider a general half-space Hi = {x ∈
Rn : c⊤x ≤ 0}, where ∥c∥2 = 1, which can easily be achieved by scaling c. One can use an
orthogonal transformation to transform this case to the one where the half-space is given by
{x ∈ Rn : x1 ≥ 0}. One can verify (and we do this in the problem sets) that this leads to an
ellipsoid

Ei+1 = E(ai+1, Ai+1) , where

ai+1 = −
1

n+ 1
c , and

Ai+1 =
n2

n2 − 1

(
I − 2

n+ 1
cc⊤
)

.

General case

Now let Ei = E(ai, Ai) be a general ellipsoid, and let Hi = {x ∈ Rn : c⊤x ≤ c⊤ai} be
a general hyperplane going through the center ai of Ei. Since Ai is positive definite, there
is a matrix Qi ∈ Rn×n such that Ai = QiQ

⊤
i . Consider the affine bijective transformation

ϕ(x) = Qix + ai and its inverse ϕ−1(x) = Q−1
i (x − ai). The function ϕ transforms E(0, I)

to Ei = E(ai, Ai). Hence, we can first apply ϕ−1 to Ei and Hi to obtain E′
i = E(0, I) and

H ′
i, then we can use our description of Ei+1 for the unit ball case, and finally, we transform the

found ellipsoid back using ϕ.
We start by describing the image of Hi under ϕ−1 to obtain H ′

i.

H ′
i = ϕ−1(Hi) = {Q−1

i (x− ai) : x ∈ Rn, c⊤x ≤ c⊤ai}
= {y ∈ Rn : c⊤(Qiy + ai) ≤ c⊤ai} (y = Q−1

i (x− ai))

= {y ∈ Rn : c⊤Qiy ≤ 0} .

198 Rico Zenklusen 6 Ellipsoid Method

Hence, we have

H ′
i = {x ∈ Rn : d⊤x ≤ 0} , where

d =
Q⊤

i c√
c⊤QiQ⊤

i c
=

Q⊤
i c√

c⊤Aic
.

By the unit ball case discussed previously, the minimum volume ellipsoid E′
i+1 that contains

E(0, I) ∩H ′
i is given by

E′
i+1 = E(a′i+1, A

′
i+1) , where

a′i+1 = −
1

n+ 1
d , and

A′
i+1 =

n2

n2 − 1

(
I − 2

n+ 1
dd⊤

)
.

Hence, the ellipsoid Ei+1 is given by

Ei+1 = ϕ(E′
i+1) = {ϕ(x) : x ∈ Rn, (x− a′i+1)

⊤A′−1
i+1(x− a′i+1) ≤ 1}

= {y ∈ Rn : (Q−1
i (y − ai)− a′i+1)

⊤A′−1
i+1(Q

−1
i (y − ai)− a′i+1) ≤ 1}

= {y ∈ Rn : (y − ai −Qia
′
i+1)

⊤(Q−1
i)⊤A′−1

i+1Q
−1
i (y − ai −Qia

′
i+1) ≤ 1} .

where the second equality follows by using the substitution y = ϕ(x) = Qix+ ai.
From this description we can derive a description of the center ai+1 and defining positive

definite matrix Ai+1 of Ei+1 = E(ai+1, Ai+1). For simplicity of notation we define

b =
Aic√
c⊤Aic

= Qid .

We obtain,

ai+1 = ai +Qia
′
i+1 = ai −

1

n+ 1
Qid = ai −

1

n+ 1
b ,

and

A−1
i+1 = (Q−1

i)⊤A′−1
i+1Q

−1
i ,

which implies

Ai+1 = QiA
′
i+1Q

⊤
i =

n2

n2 − 1

(
Ai −

2

n+ 1
bb⊤
)

.

We can now restate the Ellipsoid Method as described in Algorithm 8 in a more explicit form,
by giving explicit formulas for how to compute Ei+1. Notice that there is no need to compute a
Cholesky factorization Ai = QiQ

⊤
i of Ai.

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 199

Algorithm 9: Ellipsoid Method
Input : Separation oracle for a polytope P ⊆ Rn with dim(P) = n, and an ellipsoid

E0 = E(a0, A0) with P ⊆ E0.
Output: A point y ∈ P .
i = 0.
while ai ̸∈ P (checked with separation oracle) do

Get c ∈ Rn such that P ⊆ {x ∈ Rn : c⊤x < c⊤ai}, using separation oracle.
Let b = Aic√

c⊤Aic
.

Let ai+1 = ai − 1
n+1b.

Let Ai+1 = n2

n2−1 (Ai − 2
n+1bb

⊤).
i = i+ 1.

return ai.

We recall that the square root that has to be taken for the calculation of b is an operation that
we cannot perform exactly under the usual computational assumptions. Therefore, to obtain
a working polynomial time version of the Ellipsoid Method, one typically only computes an
approximate version of Ei+1 that still contains Ei ∩Hi but is slightly bigger than the minimum
volume ellipsoid containing Ei ∩Hi.

6.4.4 From checking feasibility to optimization over {0, 1}-polytopes

Even though the Ellipsoid Method works in a much more general context, we focus from now
on on the problem of maximizing a linear function w over a {0, 1}-polytope P . This case is
highly relevant in combinatorial optimization, and allows us to show nicely how one can derive
that the Ellipsoid Method runs in polynomial time on an interesting class of LPs.

Without loss of generality we can assume w ∈ Zn, since any w ∈ Qn can be transformed
into an integral vector through scaling. We start by discussing how to obtain the optimal value
ν∗ = max{w⊤x : x ∈ P} of the LP in polynomial time, before we provide details of how this
procedure can be used to also obtain an optimal vertex solution x∗ ∈ P .

Again, we assume that P is full-dimensional.

Getting the optimal LP value ν∗

Let wmax = max{|wk| : k ∈ [n]}. Since P ⊆ Rn is a {0, 1}-polytope, there is an optimal
solution x∗ ∈ {0, 1}n, and since ν∗ = w⊤x∗, we have

ν∗ ∈ [−nwmax, nwmax] ∩ Z .

To determine ν∗, we check the non-emptiness of a series of polytopes of the form

P (ν) = P ∩
{
x ∈ Rn : w⊤x ≥ ν − 1

2

}
,

where ν ∈ [−nwmax, nwmax] ∩ Z. Notice that ν∗ is the largest ν ∈ [−nwmax, nwmax] ∩ Z
for which P (ν) is non-empty. Hence, we can find ν∗ by performing a binary search over ν ∈

200 Rico Zenklusen 6 Ellipsoid Method

[−nwmax, nwmax] ∩ Z and checking non-emptiness of P (ν). This takes O(log(nwmax)) =
O(log n+ logwmax) iterations, which is polynomial in the input.

Notice that in the definition of P (ν), we are looking for solutions of value at least ν − 1
2 ,

instead of simply looking for solutions of value ν. Adding the −1
2 term guarantees that P (ν)

is either empty or full-dimensional. If we drop the −1
2 term, then the polytope P (ν∗) is not

full-dimensional anymore.
To show that ν∗ can be computed in polynomial time via the Ellipsoid Method we still

need to prove that we can check non-emptiness of P (ν) in polynomial time for any ν ∈
[−nwmax, nwmax] ∩ Z. For this we have to specify what starting ellipsoid E0 we choose, and
we need to show that the Ellipsoid Method finds a point in P (ν) in a polynomial number of
iterations if P (ν) ̸= ∅.

Starting ellipsoid E0 As the starting ellipsoid E0, we choose the ball centered at (12 , . . . ,
1
2)

of radius 1
2

√
n, which is the smallest ball that contains [0, 1]n. Hence, P (ν) ⊆ [0, 1]n ⊆ E0.

The volume of E0 is

vol(E0) =
1

2n
(
√
n)n vol(E(0, I)) .

We recall that the volume of the unit ball E(0, I) is given by

vol(E(0, I)) =
πn/2

Γ(n2 + 1)
≤ πn/2 ≤ 2n ,

where Γ is the gamma function, which extends factorials to non-integers. It is given by Γ(z) =∫∞
0 tz−1e−tdt. However, the crude upper bound vol(E(0, I)) ≤ 2n also immediately follows

by observing that E(0, I) ⊆ [−1, 1]n, and hence vol(E(0, I)) ≤ vol([−1, 1]n) = 2n. Thus,

log(vol(E0)) = O(n log n) .

Bounding the number of iterations To bound the number of iterations of the Ellipsoid
Method when applied to P (ν) for ν ∈ Z we leverage Lemma 6.5, for which we need to show that
if P (ν) ̸= ∅, then its volume is not too small. Hence, assume P (ν) ̸= ∅, which implies ∃y0 ∈
P (ν) ∩ {0, 1}n. (Actually, any optimal vertex solution to max{w⊤x : x ∈ P} can be chosen as
y0.) Since P is assumed to be a full-dimensional {0, 1}-polytope, there are furthermore points
y1, . . . , yn ∈ P ∩ {0, 1}n such that the simplex ∆ = conv({y0, . . . , yn}) is full-dimensional.
The points y1, . . . , yn are not necessarily contained in P (ν). Therefore we shrink the simplex ∆
towards the vertex y0, to obtain a scaled-down simplex ∆′ which is fully contained in P (ν). We
will then use vol(∆′) as a lower bound for vol(P (ν)). More precisely, we show that it suffices
to shrink ∆ by a factor of

α =
1

2nwmax
.

The simplex ∆′ has as vertices y0, and the following points z1, . . . , zn:

zi = y0 + α(yi − y0) ∀i ∈ [n] .

6.4 Ellipsoid for full-dimensional {0, 1}-polytopes Rico Zenklusen 201

To show ∆′ = conv({y0, z1, . . . , zn}) ⊆ P (ν), we have to show that zi ∈ P (ν) for i ∈ [n],
which reduces to checking w⊤zi ≥ ν − 1

2 because zi ∈ P . This indeed holds:

w⊤zi = w⊤y0︸ ︷︷ ︸
≥ν

+αw⊤(yi − y0) ≥ ν + αw⊤(yi − y0) (since w⊤y0 ≥ ν − 1/2 and w⊤y0 ∈ Z)

≥ ν − αnwmax = ν − 1

2
.

Hence, ∆′ ⊆ P (ν). Furthermore, since ∆′ is a scaled-down version of ∆, with scaling factor α,
we obtain

vol(∆′) = αn vol(∆) .

Recall that the volume of a simplex in Rn is 1
n! times the volume of the corresponding paral-

lelepiped. In particular, we obtain

vol(∆) =
1

n!
· | det(y1 − y0, . . . , yn − y0)| ≥

1

n!
,

since the matrix with columns yi−y0 is integral and non-singular because ∆ is full-dimensional.
Hence,

vol(∆′) = αn vol(∆) ≥
(

1

2nwmax

)n 1

n!
,

and therefore

− log(vol(P (ν))) ≤ − log(vol(∆′)) = O(n log n+ n logwmax) .

Thus, by Lemma 6.5 the number of iterations needed by the Ellipsoid Method to find a point in
P (ν) is at most

2(n+ 1) ln

(
vol(E0)

vol(P (ν))

)
= O

(
n · [log(vol(E0))− log(vol(P (ν))]

)
= O(n · (n log n+ n logwmax))

= O(n2 · (log n+ logwmax)) ,

which is polynomial.
Consequently, to check non-emptiness of P (ν) for an arbitrary ν ∈ Z, it suffices to run the

Ellipsoid Method for O(n2 · (log n + logwmax)) iterations. It will either find a point in P (ν),
which obviously shows non-emptiness of P (ν), or if no point in P (ν) is found over this many
iterations, then P (ν) = ∅.

Determining an optimal {0, 1}-solution x∗

The above discussion shows that we can find with the Ellipsoid Method the optimal value ν∗ of
any LP over a full-dimensional {0, 1}-polytope P . Furthermore, we also get a point y ∈ P with
w⊤y ≥ ν∗ − 1

2 . However, especially in Combinatorial Optimization settings we are interested
in getting an optimal vertex solution x∗ ∈ P ∩ {0, 1}n, which typically corresponds to some
underlying discrete structure we are interested in. There are several ways how this can be done.

202 Rico Zenklusen 6 Ellipsoid Method

One procedure that often works very efficiently is to start with y and do local operations to
obtain a vertex x with w⊤x ≥ w⊤y, which implies that x is an optimal vertex solution. We do
not go into details of this procedure, and present a conceptually simpler, though often slower,
approach that works in our setting and is efficient.

The idea of this approach is to reduce the problem of finding an optimal vertex solution to a
sequence of problems that ask to find only the optimal value of an LP. Let S ⊆ [n]. Consider a
modified objective function wS defined by

wS
i =

{
wi + 1 if i ∈ S ,

wi if i ∈ [n] \ S .

Optimizing with respect to wS allows for obtaining insights into an optimal solution using the
following result.

Lemma 6.8

Let S ⊆ [n]. The following two statements are equivalent.
(i) There is an optimal solution x∗ to max{w⊤x : x ∈ P} with x∗i = 1 for i ∈ S.

(ii) ν∗ + |S| = max{(wS)⊤x : x ∈ P}.

Proof. By definition of wS , we have for any point y ∈ {0, 1}n,

(wS)⊤y = w⊤y + |{i ∈ S : yi = 1}| .

Clearly, for any vertex y ∈ P , we have w⊤y ≤ ν∗ with equality if and only if y∗ is a
maximizer of max{w⊤x : x ∈ P}. Furthermore, we also have |{i ∈ S : yi = 1}| ≤ |S|. This
shows that max{(wS)⊤x : x ∈ P} ≤ ν∗ + |S|, with equality if and only if there is a vertex
y ∈ P that maximizes max{w⊤x : x ∈ P} and satisfies yi = 1 for i ∈ S, thus proving the
lemma.

Based on Lemma 6.8, we can construct an optimal vertex solution coordinate by coordinate.
More precisely, we will determine among all optimal vertex solutions of max{w⊤x : x ∈ P}
the lexicographically largest one x∗ = (x∗1, . . . , x

∗
n), i.e., for any other optimal vertex solution

y, there exists k = k(y) ∈ {0, . . . , n− 1} such that yi = x∗i for i ∈ [k], and x∗k+1 = 1 whereas
yk+1 = 0.

We construct x∗ iteratively. In the ith iteration we determine the value of x∗i . Assume that
we know the values of x∗1, . . . , x

∗
i−1 for some i ∈ [n]. Let U = {j ∈ [i − 1] : x∗j = 1}, and

define S = U ∪ {i}. Using Lemma 6.8 we can decide whether there is an optimal solution z∗ to
max{w⊤x : x ∈ P} with z∗j = 1 for j ∈ S. If this is the case, then x∗i = 1, otherwise, x∗i = 0.
Hence, after n iterations we obtain x∗.

In summary, we obtain the following theorem.

6.5 Comments on the non-full-dimensional case Rico Zenklusen 203

Theorem 6.9

Let P ⊆ Rn be a full-dimensional {0, 1}-polytope for which we are given a separation
oracle. Furthermore, let w ∈ Zn. Then the Ellipsoid Method allows for finding an
optimal vertex solution to the linear program max{w⊤x : x ∈ P} using a polynomial
number of elementary operations and calls to the separation oracle for P .

6.5 Comments on the non-full-dimensional case

As stated in Theorem 6.2 we can also apply the Ellipsoid Method to optimize a linear function
over a {0, 1}-polytope P that is not full-dimensional. We only give a rough outline how this
generalization can be achieved, without providing full details.

To simplify the explanation, assume that P is n − 1 dimensional. Hence, there is a unique
hyperplane H = {x ∈ Rn : g⊤x = b} such that P ⊆ H .

The ellipsoids constructed during the Ellipsoid Method become more and more flat over the it-
erations, because all of them contain P and their volumes shrink. After a well-chosen number of
iterations k = O(poly(n)) of the Ellipsoid Method, we consider the shortest axis of the current
ellipsoid Ek = E(ak, Ak), which we denote by d ∈ Rn. Hence, d is the eigenvector of Ak that
corresponds to the smallest eigenvalue. Consider the hyperplane F = {x ∈ Rn : d⊤x = d⊤ak}.
Intuitively, we expect F to be “close” to H . Indeed, if k is chosen well, one can round the coeffi-
cients of the hyperplane F to obtain the hyperplane H . However, this rounding procedure is not
straightforward, and is based on an approximation algorithm to solve Simultaneous Diophantine
Approximations. Once H is obtained, one can reduce the problem to the affine subspace defined
by H by eliminating one of the coordinates using the equation provided by H . We therefore con-
sider P to be a polytope in the affine subspace defined by H . Since P is (n− 1)-dimensional in
its original description in Rn, we thereby obtain a full-dimensional polytope when removing one
variable of P . A similar argument as above, applied repeatedly, works when P has dimension
that is smaller than n− 1.

Formalizing these arguments leads to a proof of Theorem 6.2.

7 Equivalence Between Optimization and
Separation

The Ellipsoid Method provides a way to do (linear) optimization using a separation oracle, i.e.,
we can do optimization through separation. Interestingly, there are also approaches to solve the
separation problem given an oracle for the optimization problem. In this section we highlight
some main ideas that underlie this relation. As in the Ellipsoid Method, there are some technical
requirements that need to be fulfilled for this approach to work. Still, this very strong relation
between optimization and separation is often simply referred to as the “equivalence between
optimization and separation”.

Assume we want to solve the separation problem over a polytope P ⊆ Rn, and the only way
how we can access P is via an optimization oracle, which, for any c ∈ Rn, returns an optimal
solution to max{c⊤x : x ∈ P}. To do separation through optimization, we define the so-called
polar P ◦ of P , which is a polyhedron over which we can separate if we can optimize over P .
More formally, for any set X ⊆ Rn, we define its polar to be

X◦ = {y ∈ Rn : x⊤y ≤ 1 ∀x ∈ X} .

Figure 7.1 shows the polar of a polytope P ⊆ R2.
Given an optimization oracle for P , the following is a separation oracle for its polar P ◦.

Let y ∈ Rn be the input of the separation problem over P ◦. We obtain a maximizer z ∈
argmax{y⊤x : x ∈ P} using the optimization oracle for P . If y⊤z ≤ 1, then y ∈ P ◦, because
for any x ∈ P we have x⊤y ≤ z⊤y ≤ 1. Otherwise, {x ∈ Rn : z⊤x ≤ 1} is a half-space
separating y from P ◦.

This simple observation together with some additional properties of the polar can be used to
separate also over P , in many natural settings. For this we first state some properties of the polar.

Lemma 7.1

Let X ⊆ Rn be a compact (i.e., closed and bounded) convex set, containing the origin in
its interior. Then

(a) X◦ is a compact convex set with the origin in its interior.
(b) (X◦)◦ = X .

Proof. (a) We start by showing that X◦ is convex and compact. X◦ is clearly convex and
closed since it is the intersection of half-spaces. To show boundedness of X◦, notice that
since the origin is in the interior of X , there exists δ > 0 such that B(0, δ) ⊆ X , where
B(0, δ) is the closed ball of radius δ that is centered at the origin. We show boundedness

206 Rico Zenklusen 7 Equivalence Between Optimization and Separation

1

1

P

P ◦

Figure 7.1: A polytope P and its polar P ◦.

of X◦ by showing that X◦ ⊆ B(0, 1/δ). Indeed, for any y ∈ Rn with ∥y∥2 > 1
δ , we

obtain x⊤y > 1 where x = δ · y
∥y∥2 ∈ B(0, δ) ⊆ X; hence, y ̸∈ X◦.

It remains to show that the origin is in the interior of X◦. Since X is bounded, there exists
some M > 0 such that X ⊆ B(0,M). We complete this part of the proof by showing
B(0, 1

M) ⊆ X◦. Let y ∈ B(0, 1
M). We will show that y does not violate any constraint in

the description of X◦. Indeed, for any x ∈ X ⊆ B(0,M), we obtain

y⊤x ≤ ∥y∥2︸︷︷︸
≤1/M

∥x∥2︸︷︷︸
≤M

≤ 1 ,

and hence y ∈ X◦.
(b) We clearly have X ⊆ (X◦)◦, because for any x ∈ X and y ∈ X◦ we have x⊤y ≤ 1.

Thus, x fulfills all the constrains of (X◦)◦.
To show (X◦)◦ ⊆ X , assume by contradiction that ∃z ∈ (X◦)◦ \ X . Because X is
convex and closed, there is a hyperplane separating z from X , i.e., there is c ∈ Rn \ {0}
and b ∈ R such that c⊤x ≤ b ∀x ∈ X and c⊤z > b. Notice that b > 0 since the origin is
in the interior of X . Let y = 1

b c. We have y ∈ X◦, because for any x ∈ X ,

x⊤y =
1

b
x⊤c ≤ 1 .

Rico Zenklusen 207

However, y ∈ X◦ implies z ̸∈ (X◦)◦ because

y⊤z =
1

b
c⊤z > 1 ,

which contradicts the assumption z ∈ (X◦)◦.

Lemma 7.2

Let P ⊆ Rn be a polytope containing the origin in its interior. Then P ◦ is a polytope.
Moreover, for any x ∈ Rn, we have

x is a vertex of P ⇔ {y ∈ Rn : x⊤y ≤ 1} is facet-defining for P ◦.

Proof. Let
Q = {y ∈ Rn : x⊤y ≤ 1 ∀x ∈ vertices(P)} . (7.1)

We first show P ◦ = Q. Notice that this implies that P ◦ is a polytope (boundedness follows
from Lemma 7.1).

We clearly have P ◦ ⊆ Q. To show Q ⊆ P ◦, consider a point y ∈ Q. We will show y ∈ P ◦

by showing that x⊤y ≤ 1 for all x ∈ P . Hence, let x ∈ P . Since P is a polytope, x can be
written as a convex combination of its vertices, i.e., x =

∑k
i=1 λixi, where xi is a vertex of P

for i ∈ [k],
∑k

i=1 λi = 1, and λi ≥ 0 ∀i ∈ [k]. Thus,

x⊤y =
k∑

i=1

λix
⊤
i y ≤

k∑
i=1

λi = 1 ,

as desired, where the inequality follows from x⊤i y ≤ 1 ∀i ∈ [k] since y ∈ Q.
⇐) Notice that P ◦ = Q also implies the ‘⇐’ implication of the statement, because the de-

scription (7.1) of Q = P ◦ contains facet-defining inequalities for each facet of P ◦. Hence, if
for some x ∈ Rn we have that {y ∈ Rn : x⊤y ≤ 1} is facet-defining, then it has to be a pos-
sibly scaled version of one of the constraints in (7.1). However, because all right-hand sides of
the considered constraints are one, this implies that the constraint x⊤y ≤ 1 must be one of the
constraints in the description (7.1), thus implying x ∈ vertices(P).

⇒) Let x1, . . . , xk be the vertices of P . We will show that {y ∈ Rn : x⊤k y ≤ 1} is facet-
defining for P ◦. As shown in the first part, we have P ◦ = Q := {y ∈ Rn : x⊤i y ≤ 1 ∀i ∈ [k]}.
Hence, we have to show that {y ∈ Rn : x⊤k y ≤ 1} is facet-defining for Q.

Assume for the sake of deriving a contradiction that {y ∈ Rn : x⊤k y ≤ 1} is not facet-defining
for Q. Notice that Q = P ◦ is full-dimensional because it contains the origin in its interior due
to Lemma 7.1. Together with Lemma 1.20, this implies that the non-facet-defining constraint
x⊤k y ≤ 1 in (7.1) is redundant. Hence, the constraint x⊤k y ≤ 1 is implied by the constraints
x⊤i y ≤ 1 for i ∈ [k − 1], i.e., a conic combination of the constraints x⊤i y ≤ 1 for i ∈ [k − 1]
leads to the constraint x⊤k y ≤ α for some α ≤ 1. Formally, this means that there are multipliers

208 Rico Zenklusen 7 Equivalence Between Optimization and Separation

λi ≥ 0 for i ∈ [k − 1] such that

k−1∑
i=1

λixi = xk , and

k−1∑
i=1

λi ≤ 1 .

However, this implies that xk is a convex combination of x1, . . . , xk−1 and the origin. Moreover,
notice that xk is different from x1, . . . , xk−1, and xk is not the origin, because xk is a vertex of
P and the origin is in the interior of P and thus cannot be a vertex of P . In other words, xk is a
non-trivial convex combination of other points in P , namely x1, . . . , xk−1 and the origin. This
contradicts the fact of xk being a vertex of P .

Based on the above results, there is a natural strategy to construct a separation oracle for a
polytope P ⊆ Rn that contains the origin in its interior. Notice that if P is full-dimensional,
there is always a way to translate P such that it contains the origin in its interior. As discussed, an
optimization oracle for P implies a separation oracle for P ◦. Now, if the technical requirements
to apply the Ellipsoid Method to P ◦ are fulfilled, we can use this separation oracle to optimize
over P ◦. Finally, an optimization oracle for P ◦ implies a separation oracle for (P ◦)◦ = P .
Furthermore, Lemma 7.2 implies that if the optimization oracle always returns a vertex solu-
tion, then the separation oracle constructed with the above approach does not just return any
separating hyperplane, but even one that is facet-defining.

Figure 7.2 summarizes this interplay between optimization and separation through the polar.

Optimization over P

Separation over P ◦ Optimization over P ◦

Separation over P

polarity

ellipsoid

polarity and
(P ◦)◦ = P

ellipsoid

Figure 7.2: A graphical representation of the relation between optimization and separation
via the Ellipsoid Method and polar polytopes.

8 Integer Programming

In short, integer programming is linear programming with the additional requirement that all
variables need to take integral values. Integer programs (IPs) allow for modeling a very large
class of discrete mathematical optimization problems. In particular, most classical combinatorial
optimization problems can easily be modeled as IPs. However, this comes at a price. IPs are an
NP-hard problem class and, depending on the problem type at hand, finding optimal (or even
feasible) solutions may take excessive time. Nevertheless, strong methods have been developed
to deal with many IPs that we face in real-world applications. In this chapter, we provide a brief
introduction to some of the key techniques used to solve IPs in practice. This exposition is less
focussed on specific theoretical properties, but rather provides a glimpse into a broadly used and
highly influential toolbox to solve IPs.

8.1 Introduction to integer programming

As mentioned, integer programs are defined analogously to linear programs with the only differ-
ence that all variables are required to take integer values, for example,

max c⊤x
Ax ≤ b
x ∈ Zn ,

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. As with linear programming, the above form is just one
way to write integer programs. More generally, one can also use equalities or ‘≥’ constraints.

Figure 8.1 shows an example integer program in two dimensions. When forgetting about
the integrality constraints, one obtains a linear program, which is called the linear relaxation
of the IP. Unfortunately, the linear relaxation of an IP often does not shed much light on the
integer program. Still, many methods for solving IPs repeatedly use linear relaxations of certain
well-defined sub-problems. In particular branch & bound procedures and also branch & cut
procedures heavily rely on linear relaxations, because they can be solved very quickly and can
be used as upper bounds on underlying IPs.

We start with a recreational application of IPs, by showing how they can be used to solve the
eight queens puzzle.

IP example: the eight queens puzzle

The eight queens puzzle is a famous problem linked to chess. The goal of the puzzle is to place
eight chess queens on a standard 8×8 chessboard so that no two queens threaten each other, i.e.,
there is no more than one queen in each row, column, and diagonal. Figure 8.2 shows the squares

210 Rico Zenklusen 8 Integer Programming

x1

x2 c =

(
1
2

)

max x1 + 2x2
s.t. 2x1 + 9x2 ≤ 54

−2x1 + 2x2 ≤ 5
4x1 + 4x2 ≥ 15
x1 − 2x2 ≤ 1
8x1 − 3x2 ≤ 34

Figure 8.1: Example of an integer program in two dimensions. The blue area shows the
linear relaxation of the IP, i.e., the feasible solutions if one disregards the in-
tegrality constraints. The IP only optimizes over the integer points inside the
relaxation, which are highlighted in red. The blue point shows the unique op-
timal solution of the linear relaxation, and the large red one shows the unique
optimal solution of the IP.

threatened by a queen and Figure 8.3 shows an example placement of seven queens where there
are no unthreatened squares left for an eighth queen.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0L0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 8.2: The squares in red are those where the shown queen can move to. Any other
queen on one of those squares is said to be threatened by the shown queen.

To reformulate this combinatorial problem in terms of an integer program, we introduce a
binary variable xij ∈ {0, 1} for each square of the board, which is indexed by a pair (i, j) ∈ [8]×
[8]. Hence, each such binary variable will simply be an integer variable with linear constraints

8.1 Introduction to integer programming Rico Zenklusen 211

8 0Z0ZQZ0Z
7 Z0L0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0L0
4 0L0Z0Z0Z
3 Z0ZQZ0Z0
2 0Z0Z0L0Z
1 L0Z0Z0Z0

a b c d e f g h

Figure 8.3: Example of a placement of seven queens on the board. Note that there is a
queen in each of the files a-g and every square in the h file is threatened, so
there is no valid square to place the eighth queen.

0 ≤ xij ≤ 1. Moreover, we think of xij = 1 as placing a queen on square (i, j), and of xij = 0
as not doing so.

The constraints now follow in a straightforward way from the statement of the puzzle: For
each row, column, and diagonal of the chessboard, the sum of the corresponding variables is at
most 1. The objective of the optimization problem is to maximize the sum of all components of
the vector x, i.e., the number of queens placed on the board. Thus, we arrive at the following IP:

max

8∑
i=1

8∑
j=1

xij

8∑
j=1

xij ≤ 1 ∀i ∈ [8]

8∑
i=1

xij ≤ 1 ∀j ∈ [8]∑
i,j∈[8] :
i+j=k

xij ≤ 1 ∀k ∈ {2, 3, . . . , 16}

∑
i,j∈[8] :
i−j=k

xij ≤ 1 ∀k ∈ {−7,−6, . . . , 7}

x ∈ {0, 1}8×8 .

(8.1)

Let us check that the optimal solutions of the IP (8.1) correspond one-to-one to the solutions
of the eight queens puzzle. On the one hand, the optimal value does not exceed 8 because a

212 Rico Zenklusen 8 Integer Programming

chessboard has 8 rows and there can be at most one queen per row. On the other hand, every
solution of the puzzle corresponds to a feasible solution of the integer program attaining the
value 8, which is the upper bound. Therefore, the optimal solutions of the integer program are
precisely the solutions of the eight queens puzzle.

Figure 8.4 shows an optimal solution to the problem.

8 0Z0L0Z0Z
7 Z0Z0Z0L0
6 0ZQZ0Z0Z
5 Z0Z0Z0ZQ
4 0L0Z0Z0Z
3 Z0Z0L0Z0
2 QZ0Z0Z0Z
1 Z0Z0ZQZ0

a b c d e f g h

Figure 8.4: A solution to the eight queens puzzle.

It turns out that the eight queens puzzle has 12 distinct solutions that are not related by rota-
tions or reflections, and 92 solutions in total.

Exercise 8.1

Construct an IP to find a solution to the eight queens puzzle that cannot be obtained from the
one shown in Figure 8.4 through rotations and reflections.

8.2 Branch & bound

Branch & bound, and various variations thereof, is one of the most common solution approaches
for integer programs. The principal idea is to intelligently explore the solution space and to try
to cut off large parts of the solution space as soon as one can be sure that there is no optimal
solution in them.

To illustrate the approach we consider the following IP with binary variables. The approach
can easily be extended to integer variables with larger ranges.

max 75x1 + 6x2 + 3x3 + 33x4
774x1 + 76x2 + 22x3 + 42x4 ≤ 875
67x1 + 27x2 + 794x3 + 53x4 ≤ 875

x ∈ {0, 1}4

8.2 Branch & bound Rico Zenklusen 213

We start by replacing the integrality constraints x ∈ {0, 1}4 by x ∈ [0, 1]4 and solve the
resulting linear relaxation. This leads to the solution shown in box 1 of Figure 8.5 (the number
of the box is highlighted with a gray background), i.e.,

(x1, x2, x3, x4) = (1, 0.506, 0.934, 1) ,

with objective value z = 113.837. If this LP solution had been integral, we could have stopped
right-away and return it as optimal solution. Indeed, the LP we solved optimized over a bigger
solution set, obtained from the original IP by ignoring the integrality requirement on the vari-
ables. However, the values of x2 and x3 are not integral. We choose one of these variables, say
x2, and branch on this variable. More precisely, we create two sub-problems, one in which we
force x2 to be equal to 0 (box 9 in Figure 8.5) and one with x2 = 1 (box 2). (If x2 had been an
integer variable with a larger range instead of a binary one, then we could have branched into
two problems where one requires x2 ≤ 0 and the other one x2 ≥ 1.)

The optimal solution to the original problem is the better of the optimal solutions to the two
newly created problems through branching. Branch & bound now recurses on the sub-problems,
leading to a so-called branch & bound tree as shown in Figure 8.5. However, this tree is typically
constructed in a depth-first order. Actually, the numbering of the boxes in Figure 8.5 highlights
a depth-first order in which the sub-problems may be constructed and explored in a branch &
bound procedure.

Let us start with the first 5 boxes. Here we successively branch on a fractional variable. In this
case only the 5th box, where all variables are set to integral values, leads to a feasible integral
solution. If it had happened that already an earlier sub-problem, say the one corresponding to
box 4, had been integral, then we would not have branched further. Box 5 is the first feasible
solution we found and we save it together with its value. We backtrack to the previous problem,
the one corresponding to box 4, and go into the branch x3 = 1. This leads to an infeasible linear
program, which we ignore. We backtrack to the closest box above box 6 for which one of the
two branches has not been explored yet. This is box 3, and we explore the other branch, i.e.,
x4 = 1. In this case, the resulting LP is infeasible, and we can therefore stop exploring this
branch further. Clearly, if the LP is infeasible, then the IP, which has integrality constraints on
top of the LP, is infeasible, too.

A new important step happens at the next box we explore after backtracking. This is box 8,
for which the optimal LP value is 42. Because this value is strictly smaller than the value of the
best solution we found so far, which was found in box 5 and has value 81, we can stop exploring
this box any further. Notice that coincidentally, the optimal solution to the LP of box 8 happens
to be integral. However, this is irrelevant for this reasoning. Indeed, if even the linear relaxation
cannot improve on the currently best solution, then there is no reason to branch further to obtain
an integral solution. This step is called the bounding step of the branch & bound procedure, and
explains the second part of its name.

We proceed as explained, and find the problem in box 10, whose optimal LP solution happens
to be integral and improves on the best solution found previously. The last sub-problem we
consider is the one in box 11, where we have an optimal LP value of only 86.72, which is less
than the value of 108 of our best solution found so far, coming from box 10. Hence, no further
exploration of problems stemming from box 11 is necessary. At this point, the branch & bound
tree has been fully explored, and we return the best solution found, which is the one from box 10.

214 Rico Zenklusen 8 Integer Programming

1 z = 113.837
x1 = 1.0
x2 = 0.506
x3 = 0.934
x4 = 1.0

2 x2 = 1

z = 113.15
x1 = 0.95
x3 = 0.92
x4 = 1.0

3 x2 = 1
x1 = 1

z = 100.64
x3 = 0.0
x4 = 0.595

4 x2 = 1
x1 = 1
x4 = 0

z = 83.95
x3 = 0.984

5 x2 = 1
x1 = 1
x4 = 0
x3 = 0

z = 81.0

6 x2 = 1
x1 = 1
x4 = 0
x3 = 1

infeasible

7 x2 = 1
x1 = 1
x4 = 1

infeasibe

8 x2 = 1
x1 = 0

z = 42.0
x3 = 1.0
x4 = 1.0

9 x2 = 0

z = 110.85
x1 = 1.0
x3 = 0.95
x4 = 1.0

10 x2 = 0
x3 = 0

z = 108.0
x1 = 1.0
x4 = 1.0

11 x2 = 0
x3 = 1

z = 86.72
x1 = 1.0
x4 = 0.264

Figure 8.5: A branch & bound tree. Box 1 shows the optimal solution to the linear relax-
ation of the original problem. This solution is fractional, and we branch on the
variable x2 to obtain two new LP solutions shown in boxes 9 and 2, and so on.
The lower part of each box shows the optimal LP solution to the problem when
fixing variables as shown in the upper part of the box.

8.3 Branch & cut Rico Zenklusen 215

Remark 8.2: Incumbent

The best solution found so far is often called the incumbent.

Remark 8.3: Non-uniqueness of branch & bound tree

The tree constructed in this way is not unique, because there are various orders in which the
branchings can be performed. First, one can choose the variable on which to branch, and
second one can choose on which of the two children to continue first when doing a branching.

Remark 8.4: Speed-ups via strong incumbents

For a branch & bound procedure to be fast, it is crucial that a strong feasible solution is found
quickly, because this can be used for the bounding step in the future, i.e., to discard certain
sub-problems because even their linear relaxation has a worse objective than the value of the
incumbent. This explains why we applied depth-first search to explore the branch & bound tree,
with the hope to quickly find a feasible solution. Moreover, branch & bound procedures are
typically combined with various heuristics to quickly obtain strong feasible solutions, which
then helps to speed up the exploration of the solution space through branch & bound.

Remark 8.5: Speed-ups via strong relaxations

As we discussed, the reason why branch & bound procedures do not need to enumerate over
all possible solutions, but can sometimes discard large parts of the solution space, is due to
bounding. The bounding step is based on comparing solutions to LP relaxations with the
value of the incumbent. For this to be effective, we do not only need strong incumbents,
but it is also paramount to use a strong linear relaxation to start with. Our discussions on
polyhedral relaxations of problems provides important ingredients and intuition on how to
build such relaxations for various problems. The focus in Chapter 5 on polyhedral approaches
for combinatorial optimization problems was on efficiently solvable problems, where we were
able to describe the corresponding combinatorial polytope. For hard problems, there is little
hope that we can get a good inequality description of their combinatorial polytope, because it
is unlikely that they can be solved efficiently. Nevertheless, similar techniques and reasonings
allow for obtaining descriptions that are good approximations of the convex hull of the solutions
of the IP we are interested in.

8.3 Branch & cut

Branch & cut is an enhancement of branch & bound procedures through so-called cutting planes.
More precisely, consider a sub-problem in the branch & bound procedure where we would nor-
mally branch, i.e., the sub-problem

(i) is not infeasible,
(ii) the value of its LP relaxation is strictly better than the value of the incumbent,

(iii) its LP solution is not integral.

216 Rico Zenklusen 8 Integer Programming

Hence, for the example considered in the previous section, this could be a sub-problem corre-
sponding to any of the boxes 1, 2, 3, 4, or 9 in Figure 8.5. Instead of branching at such a node, a
branch & cut procedure may first add so-called cutting planes. These are linear inequalities that
cut off the current optimal LP solution, but do not cut off any integral solution. Figure 8.6 shows
again the feasible solutions to our introductory IP for branch & bound together with a cutting
plane (in green) that cuts off the current optimal LP solution. By adding a cutting plane, the LP
relaxation is strengthened. One then solves the strengthened LP relaxation, and continues with
that one.

x1

x2

c =

(
1
2

)

cutting plane

Figure 8.6: Example of a cutting plane. The cutting plane should cut off the current optimal
solution to the linear relaxation but must not cut off any integral solutions.

The stronger LP, obtained after adding a cutting plane, leads to a better upper bound and
makes it easier to use bounding, because the optimal value of the LP may have decreased after
adding a cutting plane. Also, it is possible that the strengthened LP has an LP relaxation with
an integral optimal solution, or one that is infeasible; in both cases, no further branching is
necessary. In short, the goal of adding cutting planes is to speed up the procedure by reducing
the total number of branchings, and hence sub-problems to be solved.

The study of cutting planes is a research area in its own. A detailed discussion of cutting
planes is beyond the scope of this script. Still, to provide a glimpse into how cutting planes can
be generated, we show how so-called Chvátal-Gomory cuts can be found through the simplex
tableau.

8.3.1 Generating a Chvátal-Gomory cut through the simplex tableau

Chvátal-Gomory cuts are obtained by rounding the coefficients of linear inequalities that are
valid for the linear relaxation. To exemplify how they can be constructed, consider again our
introductory IP example for branch & bound, which we repeat below for convenience.

8.3 Branch & cut Rico Zenklusen 217

max 75x1 + 6x2 + 3x3 + 33x4
774x1 + 76x2 + 22x3 + 42x4 ≤ 875
67x1 + 27x2 + 794x3 + 53x4 ≤ 875

x ∈ {0, 1}4

We show how to add a cutting plane to the linear relaxation of this problem, i.e., this corre-
sponds to box 1 in Figure 8.5. For this we solve the linear relaxation of the above problem with
the Simplex Method. We first write the relaxation in canonical form:

max 75x1 + 6x2 + 3x3 + 33x4
774x1 + 76x2 + 22x3 + 42x4 ≤ 875
67x1 + 27x2 + 794x3 + 53x4 ≤ 875
x1 ≤ 1

x2 ≤ 1
x3 ≤ 1

x4 ≤ 1
x ∈ R4

≥0 .

By adding slack variables y1, . . . , y6 to the above inequalities, where the i-th inequality from
top down gets the slack variable yi, we obtain the problem in standard form, with the following
corresponding tableau.

x1 x2 x3 x4 1

z −75 −6 −3 −33 0

y1 774 76 22 42 875

y2 67 27 794 53 875

y3 1 0 0 0 1

y4 0 1 0 0 1

y5 0 0 1 0 1

y6 0 0 0 1 1

By applying phase II of the Simplex Method, we obtained the following optimal tableau.

y3 y1 y2 y6 1

z 14.2289 0.0784 0.0016 29.623 113.8373

x2 −10.2608 0.0133 −0.0004 −0.5386 0.506

x3 0.2645 −0.0005 0.0013 −0.0484 0.9337

x1 1 0 0 0 1

y4 10.2608 −0.0133 0.0004 0.5386 0.494

y5 −0.2645 0.0005 −0.0013 0.0484 0.0663

x4 0 0 0 1 1

218 Rico Zenklusen 8 Integer Programming

Hence, an optimal LP solution is

(x1, x2, x3, x4) = (1, 0.506, 0.9337, 1) ,

which corresponds to the solution that is shown in box 1 of Figure 8.5. This solution is fractional
because x2 and x3 have fractional values. In particular, this implies that these two variables are
basic; for otherwise, they would have value zero in the basic solution that corresponds to the
tableau. Consider one of the two variables, say x2. Its corresponding constraint in the optimal
tableau reads

x2 − 10.2608y3 + 0.0133y1 − 0.0004y2 − 0.5386y6 = 0.506 .

By rounding down the coefficients of the left-hand side to the next integer, we obtain the follow-
ing weaker constraint with integral coefficients:

x2 + ⌊−10.2608⌋y3 + ⌊0.0133⌋y1 + ⌊−0.0004⌋y2 + ⌊−0.5386⌋y6 ≤ 0.506 ,

i.e.,
x2 − 11y3 − y2 − y6 ≤ 0.506 .

We now observe that in an integral solution, not just the variables x1, x2, x3, x4 need to be
integral, but also the slack variables y1, . . . , y6, because all the coefficients and right-hand sides
of our problem are integral. (Note that this can be achieved for any rational LP/IP by scaling
the constraints.) Because the above inequality has integral coefficients on the left-hand side,
any integral solution will lead to an integral left-hand side value. Hence, we can round down
the right-hand side coefficient to the next integer and obtain an inequality that is valid for any
feasible integral solution to the original problem. The resulting inequality is

x2 − 11y3 − y2 − y6 ≤ ⌊0.506⌋ = 0 . (8.2)

Moreover, the basic optimal solution we computed must violate this constraint, because it sets
the non-basic variables to 0. Hence, even after rounding its coefficients, the constraint remains
tight for this solution. Moreover, we strictly decrease the right-hand side through the rounding
step, because we assumed it to be fractional. Consequently, the constraint must be violated by
the basic optimal solution corresponding to the tableau. Thus, the cutting plane we found, given
by (8.2), indeed cuts off the computed basic optimal LP solution, and we can add it to the LP.

	Linear Programming and Polyhedra
	Introduction to linear programming
	Different types of LPs and goal of LP algorithms
	Example applications

	Polyhedra and basic convex geometry
	Basic notions
	Representation of polyhedra
	Convex separation theorems

	Simplex Method
	Geometric idea
	From canonical to standard form
	Equivalent linear systems
	Exchange step/pivoting
	Short tableau
	Exchange step in short tableau
	Simplex Method: phase II
	Cycling and Bland's rule
	Simplex Method: phase I

	Linear duality
	Motivation: finding bounds on optimal value
	Dual of a linear program
	Weak and strong linear duality
	Dual interpretation of simplex tableau
	Complementary slackness

	Brief Introduction to Computational Complexity
	Basics on Graphs
	Some motivational examples
	Basic terminology and notation
	Data structures for graphs
	Breadth-first search (BFS): shortest paths and more

	Flows and Cuts
	Basic notions and relations
	Ford-Fulkerson's algorithm and max-flow min-cut theorem
	Integrality of s-t flows
	Applications of s-t flows
	Arc-connectivity
	Maximum cardinality matchings in undirected graphs
	Multiple sources and sinks with limited supply and demand
	Roster planning
	Optimal project selection
	Open pit mining
	Image segmentation
	Theoretical winning possibilities in sports competitions

	Polynomial-time augmentation algorithms
	Capacity scaling algorithm
	Edmonds-Karp algorithm

	Polyhedral Approaches in Combinatorial Optimization
	Polyhedral descriptions of combinatorial optimization problems
	Meta-recipe for finding inequality-descriptions
	Example: bipartite vertex cover

	Total unimodularity
	Definition and basic observations
	Integrality of polyhedra with TU constraint matrices
	The characterization of Ghouila-Houri

	Bipartite matching polytope
	Integrality through TU-ness
	Integrality by disproving existence of fractional extreme points
	Some implications coming from the inequality description of PM

	Polyhedral description of shortest s-t paths
	Spanning trees and r-arborescences
	Spanning tree polytope
	The r-arborescence polytope

	Non-bipartite matchings
	Perfect matching polytope
	Matching polytope

	Combinatorial uncrossing
	Integrality of spanning tree polytope
	Integrality of dominant of r-arborescence polytope
	Upper bound on edge number of minimally k-edge-connected graphs

	Ellipsoid Method
	Separation problem
	Optimization results based on Ellipsoid Method
	Example applications
	Ellipsoid for full-dimensional {0,1}-polytopes
	Description of Ellipsoid Method
	Getting a bound on the number of iterations
	From the unit ball to the general case
	From checking feasibility to optimization over {0,1}-polytopes

	Comments on the non-full-dimensional case

	Equivalence Between Optimization and Separation
	Integer Programming
	Introduction to integer programming
	Branch & bound
	Branch & cut
	Generating a Chvátal-Gomory cut through the simplex tableau

