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What is this lecture about?

• Financial decision making

• Consumption of wealth

• Price formation at markets

• Investments, returns and interest

B This lecture focuses on the mathematical modeling of these questions.
B These questions are also answered in similar lectures in economics.
B We focus on the mathematical theory behind these economic questions.

• Prerequisites:
Good knowledge in Probability Theory, Statistics, Analysis and Linear Algebra.
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• Introductory Example
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Introductory example

Basic setup: Two period problem under certainty.

• Choose two periods t = 0, 1 (today and tomorrow).

• A single good is traded that cannot be stored, i.e., that needs to be consumed
immediately. This good is available at both times t = 0, 1.

• Participants in this economy may exchange this good and consume it either today
t = 0 or tomorrow t = 1.

t = 0 t = 1
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Individual demand for savings (1/2)

• Consider an individual financial agent:

? he/she has an endowment w0 of this good at time t = 0;
? he/she has an endowment w1 of this good at time t = 1.

w0

t = 0

w1

t = 1

• Since the good cannot be stored it needs to be consumed immediately.

• However, there is a market that allows to lend and borrow this good with other
financial agents (market participants).

• Lending and borrowing is done at fixed interest rate r > −1.
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Individual demand for savings (2/2)

• Consider an individual financial agent with endowment w = (w0, w1)
> ∈ R2.

w0 − y

y

t = 0

w1

(1 + r)y

t = 1

• Assume that the financial agent decides to save a fixed amount of y ∈ R at time
t = 0 of his endowment (y < 0 means borrowing).

• This gives consumptions ct at times t = 0, 1 for interest rate r > −1

c0 = w0 − y,
c1 = w1 + (1 + r)y.
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Optimal consumption stream

• This financial agent has consumption stream c = (c0, c1)
> ∈ R with

c0 = w0 − y,
c1 = w1 + (1 + r)y.

• Question: How much should he/she save at time t = 0?

B Each financial may have a different answer to this question.
B The level of interest rate r is crucial.
B How does the market fix the interest rate r?

• Microeconomy considers individual decision making (saving y), and macroeconomy
considers the development of the market/economy as a whole (interest rate r).

• This, here, is a problem under certainty because there is no uncertainty involved in
endowment w and interest rate r, i.e., for the moment they are perfectly known.
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• Utility Theory
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Budget constraint

• This financial agent has consumption stream c = (c0, c1)
> ∈ R with

c0 = w0 − y,
c1 = w1 + (1 + r)y.

• Solve the above system for y. This gives

y = w0 − c0, and hence c1 = w1 + (1 + r)(w0 − c0).

• The latter provides us with the intertemporal budget constraint (bc)

c0 +
c1

1 + r
= w0 +

w1

1 + r
. (1)

• The budget constraint gives the (maximal) consumption c in terms of the
endowment w, respecting time-values (modeled by interest rate r).
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Preferences through utility functions

• Main Question: How do individuals take financial decisions?

• We model their preferences (happiness) about decisions by utility functions.

• A utility function is a map

U : R2 → R

c 7→ U(c) = u0(c0) +
1

1 + δ
u1(c1),

with

? u0(c0) happiness contribution of consumption c0 at time t = 0,
? u1(c1) happiness contribution of consumption c1 at time t = 1,
? (1 + δ)−1 impatience factor for waiting for a later consumption.
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Optimal consumption

• Assume that the financial agent is characterized by utility function

U : R2 → R

c 7→ U(c) = u0(c0) +
1

1 + δ
u1(c1).

• His/her optimal consumption c∗ is determined by maximizing the utility

c∗ = argmax
c∈R2

U(c) subject to budget constraint (1).

• Existence and uniqueness of optimal consumption c∗ remains to be checked; in
fact, this is one of the main questions, here.
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Graphical solution of optimal consumption

• The optimal consumption c∗ is given by

c∗ = argmax
c∈R2

U(c) subject to budget constraint (1).

• Plot level curves {c ∈ R2; U(c) = const}, this gives the black lines:

level curves

consumption c0
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●

level sets of U
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• c∗ is determined by the level curve that is tangential to budget constraint (1).
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Mathematical solution of optimal consumption (1/2)

• Graphical solution is illustrative but it is not possible to derive mathematical
properties of this solution.

• Mathematical solution: rewrite the utility function by using budget constraint (1)

U(c) = U
(
(c0, c1)

>) (1)
= U

(
(c0, c1(c0))

>)
= u0(c0) +

1

1 + δ
u1(c1(c0))

def.
= U(c0),

using budget constraint c1 = c1(c0) = w1 + (1 + r)(w0 − c0).

• This provides optimization problem

c∗0 = argmax
c0∈R

U(c0),

subject to existence and uniqueness, and c∗ = (c∗0, c1(c
∗
0))
>.
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Mathematical solution of optimal consumption (2/2)

• Consider optimization problem

c∗0 = argmax
c0∈R

U(c0).

• Under suitable regularity conditions the (global) maximum c∗0 of U is found by
solving U ′(c) = 0 and U ′′(c) < 0.

• Typically, we assume U is concave. This implies existence of at most 1 maximum.
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Power utility example

• Assume only positive consumptions are allowed c ∈ R2
+.

• Define power utility function

u(c) =

{
c1−γ

1−γ for γ > 0 and γ 6= 1,

log(c) for γ = 1.

• u is concave on R+ with u′(c) = c−γ > 0 and u′′(c) = −γc−γ−1 < 0.
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Solution to the optimal consumption problem

Choosing power utility for u0 and u1, we have (we choose γ 6= 1)

U(c) = u0(c) +
1

1 + δ
u1(c1(c))

=
c1−γ

1− γ
+

1

1 + δ

(w1 + (1 + r)(w0 − c))1−γ

1− γ
.

We calculate the score equation

∂U(c)

∂c
= c−γ − 1 + r

1 + δ
(w1 + (1 + r)(w0 − c))−γ

!
= 0.

This provides

c =

(
1 + r

1 + δ

)−1/γ
(w1 + (1 + r)(w0 − c)) .

Bringing all c’s to the same side[(
1 + r

1 + δ

)1/γ

+ (1 + r)

]
c = w1 + (1 + r)w0.
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Finally, solving this for c provides us with optimal consumption c∗ for endowment
w0 + w1/(1 + r) > 0

c∗0 = α(r; δ, γ)

[
w0 +

w1

1 + r

]
> 0,

c∗1 = (1 + r) (1− α(r; δ, γ))
[
w0 +

w1

1 + r

]
> 0,

with

α(r; δ, γ) =

[
1 +

1

1 + r

(
1 + r

1 + δ

)1/γ
]−1

∈ (0, 1).

This mathematical solution has many advantages over the graphical solution
because we can study the properties of the solution.
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Properties of the optimal consumption

• The optimal consumption c is

c∗0 = α(r; δ, γ)

[
w0 +

w1

1 + r

]
,

with α(r; δ, γ) =
(1 + r)(1 + δ)1/γ

(1 + r)(1 + δ)1/γ + (1 + r)1/γ
,

c∗1 = (1 + r) (1− α(r; δ, γ))
[
w0 +

w1

1 + r

]
,

with (1 + r) (1− α(r; δ, γ)) = (1 + r)(1 + r)1/γ

(1 + r)(1 + δ)1/γ + (1 + r)1/γ
.

• This, for instance, immediately implies that c∗0 is increasing in δ and

δ > r ⇐⇒ c∗0 > c∗1.

M.V. Wüthrich, ETH Zurich 20



• Market Equilibrium
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Interest rate and markets

• Where does the interest rate r > −1 come from?

• Assume we have N financial agents with

? each agent 1 ≤ i ≤ N has an endowment w(i) = (w
(i)
0 , w

(i)
1 )> ∈ R2;

? each agent 1 ≤ i ≤ N takes an optimal consumption c(i) w.r.t. his/her utility
function

c(i) = argmax
c∈R2

U (i)(c) = argmax
c∈R2

{
u
(i)
0 (c0) +

1

1 + δ(i)
u
(i)
1 (c1)

}
,

subject to the agent’s budget constraint

c0 +
c1

1 + r
= w

(i)
0 +

w
(i)
1

1 + r
. (2)

? For simplicity, assume existence of unique solutions for all interest rates r > −1.
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Arreu–Debreu equilibrium (special case)

An equilibrium is given by an interest rate r > −1 and consumption streams c(i) of
each agent 1 ≤ i ≤ N if the following two conditions hold:

1. c(i) maximizes the utility U (i) of each agent 1 ≤ i ≤ N subject to his budget
constraint (2) for interest rate r;

2. we have market clearing at times t = 0, 1

N∑
i=1

c
(i)
t =

N∑
i=1

w
(i)
t .

• Remarks:

? If such a market equilibrium exists, the resulting interest rate r∗ > −1 is called
equilibrium rate.

? We may have multiple solutions or no solution to the equilibrium problem.
? Equilibrium is an economic principle that explains price formation.
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Interpretation of equilibrium

• There is a supply and a demand for savings, i.e., carry forward part of endowments.

• Size of savings is steered by the size of interest rate r.

• In an equilibrium everyone is happy w.r.t. the given interest rate r, because there
is an equality between supply and demand resulting in a full consumption of the
endowments in each period t = 0, 1

N∑
i=1

c
(i)
t =

N∑
i=1

w
(i)
t .

• Remark that market clearing at t = 0 is sufficient (due to budget constraints (2))

N∑
i=1

c
(i)
1

(2)
=

N∑
i=1

w
(i)
1 + (1 + r)

(
w

(i)
0 − c

(i)
0

)
clearing t=0

=

N∑
i=1

w
(i)
1 .
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Coming back to the power utility example (1/2)

• Assume homogeneity among financial agents w.r.t. utility function U (i) ≡ U .

• Assume power utility function

U(c) =
c1−γ0

1− γ
+

1

1 + δ

c1−γ1

1− γ
,

with optimal consumptions of agents 1 ≤ i ≤ N

c
(i)
0 = α(r; δ, γ)

[
w

(i)
0 +

w
(i)
1

1 + r

]
,

c
(i)
1 = (1 + r) (1− α(r; δ, γ))

[
w

(i)
0 +

w
(i)
1

1 + r

]
,

with α(r; δ, γ) =
(1 + r)(1 + δ)1/γ

(1 + r)(1 + δ)1/γ + (1 + r)1/γ
.
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Coming back to the power utility example (2/2)

• The market clearing condition implies for t = 0

N∑
i=1

w
(i)
0 =

N∑
i=1

c
(i)
0 = α(r; δ, γ)

N∑
i=1

[
w

(i)
0 +

w
(i)
1

1 + r

]
.

• We isolate all terms involving the interest rate

(1 + r)
1− α(r; δ, γ)
α(r; δ, γ)

=

∑N
i=1w

(i)
1∑N

i=1w
(i)
0

def.
= 1 + g,

where g is the growth rate of the aggregate endowment (supply).

• We receive a unique equilibrium rate r∗ in this example given by

r∗ = (1 + δ) (1 + g)
γ − 1 > − 1,

for impatience rate δ > −1, growth rate g > −1 and γ > 0.
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Summary of this introduction

• In the toy example of homogeneous power utilities, a single non-storable good and
under certainty we receive a unique equilibrium rate.

• What about the general case:

? heterogeneity between different financial agents in terms of utility functions;
? other utility functions;

? uncertainty in the second endowments w
(i)
1 , 1 ≤ i ≤ N , i.e., if we need to

model these with random variables;
? multi-period models t ≥ 2;
? multiple goods and investment vehicles;
? exogenous factors that may change markets over time (physical capital, human

capital, technological progress, regulation, etc.);
? other economic principles besides market clearing.
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