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• Recall the Tangential Portfolio
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MV boundary: with vs. without riskless asset
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Recall the tangential portfolio

Definition. The mean-variance portfolio x̃ρ ∈ Rn+1 with x>ρ e = 1 is called
tangential portfolio and its return is denoted by ρtan.

Proposition. Assume ρgmv = b/a 6= µ0. There exists a unique tangential portfolio
x̃tan = x̃ρtan given by

ρtan = µ0 +
(µe)>Σ−1µe

(µe)>Σ−1e
and xtan =

ρetan

(µe)>Σ−1µe
Σ−1µe.

Note that ρetan 6= 0 because x>tane = 1.

Proof. See last chapter.
�
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Herding effect of mean-variance portfolios

Proposition. Assume ρgmv = b/a 6= µ0. Every mean-variance portfolio x̃ρ, ρ ∈ R,
is a linear combination of the tangential portfolio x̃tan and the riskless portfolio
x̃0 = (1, 0, . . . , 0)> ∈ Rn+1.

Proof. We decouple a mean-variance portfolio as follows: the risky assets are given by

xρ =
ρe

(µe)>Σ−1µe
Σ
−1
µ
e

=
ρe

ρetan

ρetan

(µe)>Σ−1µe
Σ
−1
µ
e

=
ρe

ρetan

xtan.

The investment in the riskless asset satisfies

(x̃ρ)0 = 1− x>ρ e = 1−
ρe

ρetan

x
>
tane = 1−

ρe

ρetan

.

This implies

x̃ρ =
ρe

ρetan

x̃tan +

(
1−

ρe

ρetan

)
x̃0.

This proves the claim.
�
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• Financial Market Model
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Financial market model and economic assumption

Assumptions.

• Supply. We have n + 1 financial assets fulfilling assumptions (A1)-(A2) from
above. Moreover, we assume ρgmv 6= µ0. The total value at time 0 of asset
0 ≤ j ≤ n is given by Mj > 0, and the total market capitalization at time 0 of
risky assets is given by M =

∑n
j=1Mj.

• Demand. We have N financial agents each holding a mean-variance portfolio
x̃(i) ∈ Rn+1 with expected return ρi, and having initial wealth wi, 1 ≤ i ≤ N .

Economic principle. We assume market clearing, saying Supply=Demand.

Question. What does this imply for the expected returns µ̃?
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Analysis of supply and demand

• Supply. The total market capitalization of risky assets is at time 0 given by

(M1, . . . ,Mn)> = M

(
M1

M
, . . . ,

Mn

M

)>
def.
= Mx(M),

with weights x(M) ∈ Rn satisfying
∑n
j=1 x

(M)
j = 1.

• Demand. Each financial agent 1 ≤ i ≤ N is a mean-variance optimizer and,
henceforth, holds assets

wix̃
(i) = wi

(
ρei
ρetan

x̃tan +

(
1− ρei

ρetan

)
x̃0

)
.
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Market clearing

• Supply equal to demand implies for the risky assets

Mx(M) =

N∑
i=1

wi
ρei
ρetan

xtan =

(
N∑
i=1

wi
ρei
ρetan

)
xtan.

• As an immediate consequence of market clearing we see

x(M) = xtan and M =

N∑
i=1

wi(ρi − µ0)

ρetan

,

in particular, the tangential portfolio is equal to the market portfolio of risky
assets.
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• CAPM Formula
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CAPM formula

Theorem. (Sharpe-Lintner-Mossin (1964-1966)). Under the above assumptions and
market clearing we receive for all assets 1 ≤ j ≤ n

µj − µ0 = βj

(
r(M) − µ0

)
,

with expect market return of risky assets r(M) = E[(x(M))>R] and beta’s

βj =
Cov(Rj, (x

(M))>R)

Var((x(M))>R)
.

Proof. Since x(M) = xtan, the market portfolio is a mean-variance portfolio with r(M) = ρtan.

Choose unit vector ej = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Rn and consider

Cov(Rj, (x
(M)

)
>
R) = e

>
j Σx

(M)
=

ρetan

(µe)>Σ−1µe
e
>
j ΣΣ

−1
µ
e

=
ρetan

(µe)>Σ−1µe
µ
e
j = . . . =

Var((x(M))>R)

ρetan

(µj − µ0) .
�

M.V. Wüthrich, ETH Zurich 12



Interpretation of CAPM formula

We have expected returns

µj = µ0 + βj

(
r(M) − µ0

)
,

with beta’s

βj =
Cov(Rj, (x

(M))>R)

Var((x(M))>R)
.

• The expected returns are determined by the riskless return µ0, the expected market
return r(M) and the βj’s, E.g. βj = 1 means that asset j is expected to perform
as the market, often smaller firms have smaller βj’s.

• The β′js are estimated with regression from time series.

• Small correlation of return Rj with the market return gives a small βj and,
henceforth, a small expected return µj. I.e. assets that have low correlation with
the market have higher prices (because investors prefer them for diversification).
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Interpretation of CAPM formula
We have expected returns

µj = µ0 + βj

(
r(M) − µ0

)
,

with beta’s

βj =
Cov(Rj, (x

(M))>R)

Var((x(M))>R)
.

• Underlying assumptions of the CAPM formula that are often criticized:

? All financial agents are mean-variance optimizers.
? All financial agents work with the same mean µ and variance Σ (estimates).
? We have a closed market and only one currency.
? Individual financial agents cannot influence prices (everyone is price taker).

• Further points that lead to discussions:

? The model does not clearly separate endogenous from exogenous factors.
? CAPM is a one-factor formula, multifactor extensions are considered, see

e.g. Fama-French (1993) 3-factor model.
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