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• Multiperiod Cash Flows
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T + 1 period models

• Choose discrete and finite time t = 0, 1, . . . , T . Thus, we consider T + 1 periods.

• Goal. We would like to price the following cash flows at time 0

c = (c1, . . . , cT )> ∈ RT .

We will call this price π = π(c) ∈ R. We give an example for T = 4.

t = 0

π

t = 1

c1

t = 2

c2

t = 3

c3

t = 4

c4
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• Deterministic Cash Flows
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Definitions of positivity of vectors

Choose a vector v = (v1, . . . , vn)> ∈ Rn for some n ≥ 2.

• v ≥ 0 (is non-negative) ⇐⇒ vi ≥ 0 for all 1 ≤ i ≤ n.

• v > 0 (is positive) ⇐⇒ v ≥ 0 and there exists 1 ≤ k ≤ n with vk > 0.

• v � 0 (is strictly positive) ⇐⇒ vi > 0 for all 1 ≤ i ≤ n.

• We have
v � 0 =⇒ v > 0 =⇒ v ≥ 0.

• We use notation Rn++ = {v ∈ Rn; v � 0}.
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Security market

Definition. Choose T, n ∈ N.
A security market is a pair (π, C) with π ∈ Rn and C ∈ Rn×T .

Each element πj of π is interpreted as the price at time 0 of the cash flow (security)
cj = (cj,1, . . . , cj,T )> ∈ RT which corresponds to the j-th row of C ∈ Rn×T :

π1
...
πj
...
πn

 and


c1,1 · · · c1,t · · · c1,T

... . . . ... ...
cj,1 · · · cj,t · · · cj,T

... ... . . . ...
cn,1 · · · cn,t · · · cn,T

 ∈ Rn×T .

Thus, we have n different cash flows (securities) c1, . . . , cn with payments at times
t = 1, . . . , T and prices π = (π1, . . . , πn)> ∈ Rn at time 0.

Question. What are necessary assumptions to have a reasonable pricing system π?
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Portfolio strategy

Definition.

• A portfolio strategy is a vector x ∈ Rn.

• A portfolio strategy x ∈ Rn generates cash flow

C>x =

 n∑
j=1

xjcj,1, . . . ,

n∑
j=1

xjcj,T

> ∈ RT .

• Portfolio strategy x ∈ Rn has price at time 0: π>x.
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Arbitrage-free security market

Definition. A portfolio strategy x ∈ Rn is an arbitrage opportunity if it satisfies one
of the following two conditions:

(a) π>x = 0 and C>x > 0, or

(b) π>x < 0 and C>x ≥ 0.

Interpretation. Arbitrage opportunity (a) means to have a portfolio strategy x of
price zero that has non-negative payouts and at least one strictly positive payout.
Arbitrage opportunity (b) means to receive money at time 0 that we do not have to
pay back.

Definition. A security market (π, C) is arbitrage-free if it does not contain any
arbitrage opportunity.
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Auxiliary lemma from Linear Algebra

Stiemke’s Lemma (1915). Let A ∈ Rn×m. Precisely one of the following two
statements holds true:

i) there exists y ∈ Rm++ such that Ay = 0, or

ii) there exists x ∈ Rn such that x>A > 0.

Proof. See lecture on Linear Algebra.
�
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No arbitrage theorem

Theorem. A security market (π, C) is arbitrage-free if and only if there exists
d ∈ RT++ with π = Cd.

Interpretation. d = (d1, . . . , dT )> ∈ RT++ plays the role of discount factors

πj =

T∑
t=1

dtcj,t with dt > 0 for all t.

t = 0

πj

t = 1

cj,1

t = 2

cj,2

t = 3

cj,3

d3

t = 4

cj,4
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Proof: no arbitrage theorem
Theorem. A security market (π, C) is arbitrage-free if and only if there exists
d ∈ RT++ with π = Cd.

Proof. We define matrix

A =


−π1 c1,1 · · · c1,t · · · c1,T

... ... ... ...

−πj cj,1 · · · cj,t · · · cj,T
... ... ... ...

−πn cn,1 · · · cn,t · · · cn,T

 ∈ Rn×(T+1)
,

and apply Stiemke’s Lemma to matrix A. Assume assertion i) of Stiemke’s Lemma holds true, i.e.,

there exists y ∈ RT+1
++ such that Ay = 0. This is equivalent to

∃y ∈ RT+1
++ such that Ay =

(
−πjy0 +

T∑
t=1

cj,tyt

)>
1≤j≤n

= 0.

Since y0 > 0 this is equivalent to

∃y ∈ RT+1
++ such that

T∑
t=1

cj,t
yt

y0

= πj for all 1 ≤ j ≤ n.
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From this we see that we have one redundancy providing that assertion i) of Stiemke’s Lemma is

equivalent to

∃d ∈ RT++ such that
T∑
t=1

cj,tdt = πj for all 1 ≤ j ≤ n.

Thus, if we can prove that assertion ii) of Stiemke’s Lemma is equivalent to the existence of an

arbitrage opportunity x ∈ Rn, the claim of the theorem follows. Assertion ii) of Stiemke’s Lemma

says that there exists x ∈ Rn such that x>A > 0. This is equivalent to

∃x ∈ Rn such that
(
−π>x, C>x

)
> 0.

There are two cases: (1) −π>x = 0 and C>x > 0, this is arbitrage opportunity (a), or (2)

−π>x > 0 and C>x ≥ 0, this is arbitrage opportunity (b). Therefore, assertion ii) of Stiemke’s

Lemma is equivalent to the existence of an arbitrage opportunity. Because assertions i) and ii) of

Stiemke’s Lemma are mutually exclusive the proof is complete.
�
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Interpretation: no arbitrage theorem
Theorem. (π, C) is arbitrage-free if and only if there exists d ∈ RT++ with π = Cd.

Interpretation.

• d = (d1, . . . , dT )> ∈ RT++ plays the role of discount factors

πj =
∑T

t=1
dtcj,t with dt > 0 for all t,

i.e. arbitrage-free prices are discounted net values in our security market.

• There are no probabilities involved, i.e., everything is deterministic here, and we
only use Linear Algebra.

• Discount factors dt > 0 are positive, and they can be bigger than 1.

• There may be infinitely many discount factors: note that if we have two discount
factors d1 6= d2 ∈ RT++ for π, then every convex combination αd1 + (1− α)d2 ∈
RT++, 0 ≤ α ≤ 1, is a discount factor, too, for the same pricing system π.
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Completeness of security market

Theorem. (π, C) is arbitrage-free if and only if there exists d ∈ RT++ with π = Cd.

In general, under no arbitrage we can have infinitely many discount factors d ∈ RT++.

Definition. A security market (π, C) is complete if for every cash flow c ∈ RT there
exists a portfolio strategy x ∈ Rn such that c = C>x.

• Completeness is equivalent to C having full rank T (rows of C span RT ).

• Completeness means: we can replicate every cash flow c with securities from C.

• Under completeness, we may, w.l.o.g., assume that the first T rows of C are
linearly independent. Thus, in that case C̃ = (c>1 , . . . , c

>
T )T ∈ RT×T has full

rank T and we can calculate its inverse. For any c ∈ RT we can then choose
xc ∈ RT such that c = C̃>xc, in particular, this portfolio strategy is found by
xc = (C̃>)−1c.
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No arbitrage and completeness of security markets

Corollary. A security market (π, C) is arbitrage-free and complete if and only if
there exists a unique d ∈ RT++ with π = Cd.

Sketch of proof. No arbitrage is equivalent to the existence of a discount factor d ∈ RT++. The

uniqueness of the discount factor is then equivalent to the full rank T property of C. �

Outlook.

• This finite dimensional security market (π, C) is the simplest multiperiod no-
arbitrage set-up, and there are many extensions/generalizations, e.g.

? discrete time, finite horizon and infinite probability spaces (Dalang–Morton–
Willinger, 1990)

? continuous-time and infinite probability spaces (Delbaen–Schachermayer, 1994)

• In general, these frameworks are summarized under the so-called Fundamental
Theorem of Asset Pricing (FTAP) theory, relying on a suitable definition of no
arbitrage (depending on the chosen market modeling framework).
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• Term Structures of Interest Rates

M.V. Wüthrich, ETH Zurich 17



No arbitrage and completeness of security markets

Corollary. A security market (π, C) is arbitrage-free and complete if and only if
there exists a unique d ∈ RT++ with π = Cd.

• W.l.o.g. we may under completeness assume that C ∈ RT×T with full rank T .

• Under no-arbitrage and completeness we have d = C−1π, and for any cash flow
c ∈ RT the portfolio strategy x = (C>)−1c generates c ∈ RT , thus, this cash
flow has price at time 0

π(c) = π>x = π>(C>)−1c = (Cd)
>

(C>)−1c = d>c.

Corollary. Assume the security market (π, C) is arbitrage-free and complete. The
(unique) no arbitrage price of any cash flow c ∈ RT is given by π(c) = d>c.
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Zero-coupon bond (ZCB)

Definition. A (default-free) zero-coupon bond (ZCB) with maturity m ∈ {1, . . . , T}
is given by the cash flow em = (0, . . . , 0, 1, 0, . . . , 0)> ∈ RT .

Corollary. Assume the security market (π, C) is arbitrage-free and complete. The
(unique) no arbitrage price of ZCB em is given by π(em) = d>em = dm > 0.

Remarks.

• The above corollary gives unique ZCB prices at time 0 under no arbitrage and
completeness. Having these (unique) prices of all ZCBs 0 ≤ m ≤ T we can
uniquely price all cash flows (by forming appropriate linear combinations).

• If we do not have completeness we can, strictly speaking, only replicate and
uniquely price cash flows c that are in the span of C.

• The discount factors may be dt > 1 and dt+1 > dt, no arbitrage only implies that
they are strictly positive d ∈ RT++.
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Term structure of interest rates

Choose d ∈ RT++ such that π = Cd and, for simplicity, assume 1 ≤ t ≤ T are years.

• Spot rate/one-year interest rate at time 0

r0 = d−1
1 − 1 ⇐⇒ d1 = (1 + r0)−1.

• Forward rate at time 0 for maturity t (annually compounded)

f0(t) =
dt−1

dt
− 1 ⇐⇒ dt =

1

1 + f0(t)
dt−1.

• Yield-to-maturity rate at time 0 for maturity t (annually compounded)

y0(t) = d
−1/t
t − 1 ⇐⇒ dt = (1 + y0(t))

−t
.

• Yield curve at time 0 is given by y0 = (y0(1), . . . , y0(T ))> ∈ RT .
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1Source: Swiss National Bank https://data.snb.ch/de/topics/ziredev#!/cube/rendoblid
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• Duration and ALM
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Macaulay duration (1938)

• In this section we assume a constant interest rate r > 0 which gives us yield rate
y0(t) ≡ r and discount factors dt = (1 + r)−t. The price of a cash flow c ∈ RT
under these assumptions is

π(c; r) = d>c =

T∑
t=1

ct
(1 + r)t

.

• We consider the sensitivity of the log-price log(π(c; r)) in r (assume c > 0)

d log(π(c; r))

dr
=

1

π(c; r)

T∑
t=1

(−t) ct
(1 + r)t+1

= − 1

1 + r
D(c; r),

with Macaulay duration (present value of weighted maturities)

D(c; r) =

∑T
t=1 t

ct
(1+r)t∑T

t=1
ct

(1+r)t

=

T∑
t=1

t

ct
(1+r)t∑T
s=1

cs
(1+r)s

.
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Immunization and ALM

• The Macaulay duration is useful to describe first order changes in prices w.r.t. to
interest rate changes r 7→ r + ∆r. Note (Taylor expansion)

π(c; r + ∆r) = π(c; r)

[
1− D(c; r)

1 + r
∆r

]
+ o(∆r), as ∆r → 0.

• Assume we have insurance liabilities cL ∈ RT+ and financial assets cA ∈ RT+.
Typically, these two cash flows differ and we require that they have the same net

present value at time 0: π(cL; r) = d>cL
!
= d>cA = π(cA; r).

• Immunization against an instantaneous small change ∆r in interest rate r, means

that we should match the durations D(cL; r)
!
= D(cA; r) because in that case we

have (under net present value equalization)

π(cL; r + ∆r)− π(cA; r + ∆r) = o(∆r), as ∆r → 0.
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• Term Structures in Continuous Time
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Extension to continuous time

• We extend the above framework to continuous (and finite) time t ∈ [0, T ].

• The forward rate at time s for maturities t > s is a function t > s 7→ f(s, t).

• A (default-free) ZCB with maturity t is a financial instrument that pays a fixed
amount of size 1 at time t.

• The price at time s ≤ t of a ZCB with maturity t is given by

P (s, t) = exp

{
−
∫ t

s

f(s, u)du

}
,

assuming that the forward rate is integrable.
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Relating continuous time to discrete time

• The price at time 0 of a ZCB with maturity t ∈ {1, . . . , bT c} is given by

P (0, t) = exp

{
−
∫ t

0

f(0, u)du

}
= exp

{
−

t∑
k=1

∫ k

k−1

f(0, u)du

}

=

t∏
k=1

exp

{
−
∫ k

k−1

f(0, u)du

}
def.
=

t∏
k=1

1

1 + f0(k)
= dt,

where f0(k) are exactly the discrete time forward rates at time 0 defined in the
previous section, and dt is the resulting discount factor for maturity t ∈ N.

• (f(0, t))t>0 is called continuously compounded forward rate at time 0.

• (f0(t))t∈N is called annually compounded forward rate at time 0, supposed t ∈ N
correspond to years.
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Term structure of interest rates

• Forward rates at time s are obtained from ZCBs by (subject to existence)

f(s, t) = − ∂
∂t

logP (s, t).

• Spot/short rate at time s (subject to existence)

rs = lim
t↓s

f(s, t).

• Continuously compounded yield rate at time s for maturity t > s

y(s, t) = − 1

t− s
logP (s, t) = − 1

t− s

∫ t

s

f(s, u)du.

• Continuously compounded yield curve at time s is given by u > 0 7→ y(s, s+ u).
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Yield curves
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In fact, these are continuously compounded yield curves u > 0 7→ y(s, s+ u)!
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• Interest Rate Shocks in Continuous Time
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Interest rate shocks

• Set forward rate f = (f(t))t>0 = (f(0, t))t>0 at time 0. Then,

P (0, t; f) = exp

{
−
∫ t

0

f(u)du

}
.

• 1st Goal. Study an instantaneous constant interest rate shock ∆

P (0, t; f + ∆) = exp

{
−
∫ t

0

f(u) + ∆du

}
= P (0, t; f) exp{−t∆}.

• Similarly to the duration section we would like to understand immunization for
these instantaneous constant interest rate shocks (parallel shifts).
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Reservation about this setup

Claim. In general, instantaneous constant interest rate shocks ∆ (parallel shifts)
induce “arbitrage” (we did not define the right version of arbitrage here).

Example. Consider 3 ZCBs with maturities m = 1, 2, 3 and prices P (0, 1), P (0, 2) and P (0, 3).

We can then choose x ∈ R3 and x 6= 0 such that

x1P (0, 1) + x2P (0, 2) + x3P (0, 3) = 0. (1)

Thus, x is a zero net investment portfolio.

Consider an instantaneous interest rate shock ∆ 6= 0. This provides us with portfolio value

V (∆) = x1P (0, 1)e
−∆

+ x2P (0, 2)e
−2∆

+ x3P (0, 3)e
−3∆

.

This is a polynomial of degree 3 for variable δ = e−∆ > 0.
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Thus, we can consider function on δ ∈ (0,∞)

g(δ) = x1P (0, 1)δ + x2P (0, 2)δ
2

+ x3P (0, 3)δ
3
,

with the following requirements

g(1) = 0 net investment zero (1),

g
′
(1) = 0 net investment zero (1) is a local minimum,

lim
δ↓0

g(δ) = 0,

lim
δ→∞

g(δ) = ∞.
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arbitrage for constant shocks Delta

delta=exp(−Delta)

g(
de

lta
)

A solution is

x1P (0, 1) = 1,

x3P (0, 3) = 1 and

x2P (0, 2) = −2x3P (0, 3).

This provides g(δ) > 0 for all δ 6= 1,

i.e. any interest shock ∆ 6= 0 gives

a positive value V (∆) > 0.
�
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Fisher–Weil immunization (1971)

• Assume we have an insurance liability with a fixed payment L > 0 a time T (here,
time can run beyond T ). Its present value at time 0 is given by

V (L, f) = L P (0, T ; f) = L exp

{
−
∫ T

0

f(u)du

}
.

• Assume we can buy ZCBs with n different maturities m1, . . . ,mn > 0. If we hold
a cash flow A = (A1, . . . , An) with Ak ≥ 0 units of ZCB with maturity mk we
have asset value at time 0

V (A, f) =

n∑
k=1

Ak P (0,mk; f) =

n∑
k=1

Ak exp

{
−
∫ mk

0

f(u)du

}
.

• The equivalence principle requires V (L, f) = V (A, f) at time 0.

• 2nd Goal. Study general instantaneous interest rate shocks f(·) 7→ f(·) + ∆(·).
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Shiu (1987) result on Fisher–Weil immunization

Fisher–Weil immunization is given by

D(A; f) =

∑n
k=1mkAk P (0,mk; f)∑n
k=1Ak P (0,mk; f)

!
= T =

T L P (0, T ; f)

L P (0, T ; f)
. (2)

Theorem. Assume that we have the equivalence principle and Fisher–Weil
immunization (2) for positive liability L > 0 and non-negative cash flows A ≥ 0.
Assume the instantaneous interest rate shock u 7→ ∆(u) is continuously differentiable.

• If ∆(u)2 −∆′(u) ≥ 0 for all u, then V (A, f + ∆) ≥ V (L, f + ∆).

• If ∆(u)2 −∆′(u) ≤ 0 for all u, then V (A, f + ∆) ≤ V (L, f + ∆).

The 2nd case ∆′ ≥ ∆2 ≥ 0 (counter-clockwise turns) is dangerous.
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Small lemma from analysis

For the proof of this theorem we first provide a small lemma from analysis.

Lemma. Assume ∆ is continuously differentiable and define

g(t) = exp

{
−
∫ t

T

∆(u)du

}
.

g is twice continuously differentiable with

1. g′′(t) = g(t)
[
∆2(t)−∆′(t)

]
;

2. g(T ) = 1 and g′(T ) = −∆(T );

3. g(t) = g(T ) + g′(T )(t− T ) +
∫ t
T

(t− w)g′′(w)dw.

Proof. The proof is immediate; the last statement uses integration by parts.
�
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Proof of the Shiu (1987) result

Proof. The following equivalences also hold with the opposite sign ≤ instead of ≥.

V (A, f + ∆) ≥ V (L, f + ∆)

⇐⇒

L ≤
n∑
k=1

Ak exp

{
−
∫ mk

T

f(u) + ∆(u)du

}

=

n∑
k=1

Ak exp

{
−
∫ mk

T

f(u)du

}
exp

{
−
∫ mk

T

∆(u)du

}
def.
=

n∑
k=1

ak g(mk),

with
∑n

k=1 ak = L (equivalence principle). Thus,

V (A, f + ∆) ≥ V (L, f + ∆) ⇐⇒
n∑
k=1

ak ≤
n∑
k=1

akg(mk). (3)
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Using the equivalence principle and Fisher–Weil immunization (2) we receive

n∑
k=1

mkak = D(A; f)
n∑
k=1

ak = T
n∑
k=1

ak,

and as a result
n∑
k=1

(mk − T )ak = 0. (4)

The above lemma provides us with

g(t) = 1−∆(T )(t− T ) +

∫ t

T

(t− w)g
′′
(w)dw.

We use this for the right-hand side of (3), and in the 3rd step we use (4),

n∑
k=1

akg(mk)−
n∑
k=1

ak =

n∑
k=1

ak (g(mk)− 1) (5)

=

n∑
k=1

ak

(
−∆(T )(mk − T ) +

∫ mk

T

(mk − w)g
′′
(w)dw

)

=
n∑
k=1

ak

∫ mk

T

(mk − w)g
′′
(w)dw.
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Note that in the last integral the difference mk − w always has the same sign, so we can apply the

mean value theorem that gives us some wk either in [T,mk] or in [mk, T ] (depending on the sign)

such that the last term is equal to

n∑
k=1

akg(mk)−
n∑
k=1

ak =

n∑
k=1

akg
′′
(wk)

∫ mk

T

(mk − w)dw

=

n∑
k=1

akg
′′
(wk)

(mk − T )2

2
.

Since that cash flows A ≥ 0, we have for all k: ak(mk − T )2/2 ≥ 0. Therefore, the sign in (3) is

determined by

g
′′
(wk) = g(wk)

[
∆

2
(wk)−∆

′
(wk)

]
,

which, by assumption on ∆, is either positive or negative for all k. This finishes the proof.
�
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Alternative by Fong–Vasiček (1984) (1/2)

Fong–Vasiček (1984) use ex ≥ 1 + x to get lower bound

g(t) = exp{−
∫ t
T

∆(u)du} ≥ 1−
∫ t
T

∆(u)du. Inserting this into (5) gives us

n∑
k=1

akg(mk)−
n∑
k=1

ak ≥
n∑
k=1

ak

∫ T

mk

∆(u)du
def.
=

n∑
k=1

akh(mk).

Using the mean value theorem we have

h(mk) = h(T ) + h
′
(T )(mk − T ) + h

′′
(wk)

(mk − T )2

2

= −∆(T )(mk − T )−∆
′
(wk)

(mk − T )2

2
.

Using (4) we have

n∑
k=1

akg(mk)−
n∑
k=1

ak ≥ −
1

2

n∑
k=1

ak∆
′
(wk)(mk − T )

2

≥ −
1

2

(
max

wk∈[mk,T ]
∆
′
(wk)

) n∑
k=1

ak(mk − T )
2
.
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Alternative by Fong–Vasiček (1984) (2/2)

Theorem. Assume that we have the equivalence principle and Fisher–Weil
immunization (2) for positive liability L > 0 and cash flows A ≥ 0. Assume
the instantaneous interest rate shock u 7→ ∆(u) is continuously differentiable. If

−
(

max
wk∈[mk,T ]

∆′(wk)

) n∑
k=1

Ak exp

{
−
∫ mk

T

f(u)du

}
(mk − T )2

2
≥ 0,

we receive
V (A, f + ∆) ≥ V (L, f + ∆).

This result also involves the convexity (beyond duration) defined by, see also (2),

C(A; f) =

∑n
k=1m

2
kAk P (0,mk; f)∑n

k=1Ak P (0,mk; f)
,

and the last term in the above theorem can be controlled by convexity matching.
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Outlook

• The above framework can now be generalized to stochastic interest rate modeling
in discrete time. This is an essential next step in valuation and solvency modeling.
We refer to the book of Föllmer–Schied Stochastic Finance - An Introduction in
Discrete Time, to the ETH lecture Mathematical Foundations for Finance and
to our lecture notes Market-Consistent Actuarial Valuation.

• One can introduce insurance technical risk beyond financial risks, in general, this
will lead to incompleteness of markets.

• One can go over to continuous time modeling, using the Black–Scholes model,
the Vasiček short rate model, or a more complex stochastic process. We refer to
lectures in mathematical finance.

• One can study different asset classes that have different stochastic behavior.

M.V. Wüthrich, ETH Zurich 42



• Thank you for attending the lecture!
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