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Two period model: set of traded positions

e We choose a sufficiently rich probability space (€2, F,P).

e Let X be the set of traded positions, and assume

X c L°(Q,F,P)={X is a random variable on (Q, F,P)}.

e Interpretation. X is the set of positions that can be purchased at time 0.
For a given position X € X:

X > 0 reflects a positive payout (gain) at time 1, and
X < 0 reflects a liability (loss) at time 1.

e Question. If there is a choice between X € X and Y € X", how should we make
a decision between X and Y?

M.V. Wiithrich, ETH Zurich 3



Preference order

A preference order on X is a relation > with the following two properties:

e completeness: for all X, Y € X, either X > Y or Y > X;

e transitivity: for all XY, Z € X with X Y and Y = Z, then X >~ Z.

e If X > Y, we say we prefer X over Y.
o If X Y and Y > X, we are indifferent between X and Y, write X ~ Y.

e If X =Y, we say that we strictly prefer X over Y.
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Numerical representation

A preference order = on A allows for a numerical representation if there exists a

function
U:xXx —R, X —UX),

such that for all X, Y € X

X =Y < UX)>UY).

e A numerical representation is not unique because X — U(X) = f(U(X)) gives
the same preference order as numerical representation U for any strictly increasing

function f : R — R.

e There are necessary and sufficient conditions for the existence of numerical
representations of preference orders > on sets X, for details we refer to Theorem
2.6 in Follmer—Schied (2011).

> We will define preference orders through numerical representations.
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Expected utility (1/2)

e Assume that Z C R is the minimal interval such that

Xel, P-a.s., for all X € X.

e For instance, if X' is a set of non-negative random variables, then Z C R,..

e We construct a numerical representation U as follows:
Choose a function u : Z — R and define

U(X) = E[u(X)] = / u(z)dFx (),
T
if I'xy denotes the distribution function of X € X.

e Function (1) generates a preference order on X, = {X € X; E[|lu(X)|] < oo}.

e In general, we assume that X" and u are such that X, = &.
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Expected utility (2/2)

e If u:7Z — R is strictly increasing we call it a utility function.

e A numerical representation U (X ) = E[u(X)] given by (1) using a utility function
u is called Von Neumann—Morgenstern utility or expected utility representation.

e Interpretation.

Each financial position X € X has a price 7(X) € R at time 0 and a (random)
payoff X at time 1.

Each financial agent will be characterized by a utility function u : Z — R.
Moreover, this financial agent will have a budget constraint B C R.

This financial agent will then solve the expected utility maximization problem

argmax  Elu(X)].
XeX with 7(X)EB

An economic equilibrium will determine the price functional 7 : X — R.
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Risk aversion

Lemma. Any affine linear transformation u(-) — v(:) = a +bu(:), a € R and b > 0,
of utility function v : Z — R generates the same preference order.

Proof. Use the linearity of expected values to prove this claim.
General Assumption. X C L'(Q, F,P) = {X € LY(Q, F,P); E[|X]|] < oo}

Definition. A financial agent with utility function v : Z — R is called
e risk averse if u(E|X]) > E[u(X)] for all X € X;

e risk neutral if u(E[X]) = E[u(X)] for all X € X;

e risk seeking if u(E[X]) < E[u(X)] for all X € X.

Remark. Strictly risk averse if w(E[X]) > E[u(X)] for all non-deterministic X € X.
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Interpretation of risk aversion

Lemma. Assume u : Z — R is a strictly concave utility function, then this financial
agent is strictly risk averse.

Proof. Jensen's inequality implies under concavity of u: w(E[X]) > E[u(X)] for all X € X.
Note that for non-deterministic X the inequality is strict.

e Example:

Assume u is a strictly risk averse utility function.
Assume we have a choice between the following to random payouts X, Y € X

nan . e o
5 { 1’000'000  with probability 1%, o v_o

+10’101  with probability 99%,

Do you prefer X or Y7 Note E[X| = E[Y] = 0.
We have E[u(X)] < u(E[X]) = u(0) = E[u(Y)], thus, we have Y >~ X.
Under risk aversion we always prefer mean E[X| over its random variable X.
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Examples: exponential utility function

(Regularity) Assumptions. Assume
- utility functions u : Z — R are three times differentiable, and

- strictly risk averse utility functions are strictly concave, i.e. satisfy v’ > 0 and
1/
u’” < 0.

> This will be assumed in the sequel without explicit further mentioning.

Exponential utility function.
Choose Z = R and a > 0. The exponential utility function is defined by

1
u(x) = - exp{—ax} for x € 7.

We have v/(x) = exp{—ax} > 0 and v"(z) = —aexp{—ax} < 0.
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Example: power utility function

Power utility function.
Choose Z = Ry and v > 0. The power utility function is defined by

u(x) =

”i’l__vv for v >0 and v # 1,
log(x) fory=1.

We have v/(z) = xz~7 > 0 and v'(z) = —yz~ 7! < 0.

power utility function

u(c)
0
4___‘\\\\\
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Absolute and relative risk aversion

e Absolute risk aversion (ARA): oara(z) = —u//(;:).

e Relative risk aversion (RRA): orra(z) = N—(:‘f)

e Exponential utility function (on Z = R).

oArRA(Z) =a >0 and orRrA(T) = az.

For this reason the exponential utility function is also called CARA utility function.

e Power utility function (on Z =R,).

OARA(T) = ’yaz_l >0 and orrA(T) =7 > 0.

For this reason the power utility function is also called CRRA utility function.
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Certainty equivalent (1/2)

Definition. Assume we have a financial agent with utility function v : Z — R and
wealth w € R. The certainty equivalent x = x(Fx,w,u) € R of position X € X
with distribution X ~ Fx is given by the solution of (subject to existence)

u(w+z) =E [u(w+ X)]|.

e Interpretation and properties.

r = x(Fx,w,u) is the deterministic value that makes the agent indifferent
w—+x~w—+ X.

If the certainty equivalent exists, it is unique. This follows from the strictly
increasing property of the utility function w.

r = x(Fx,w,u) indicates that the certainty equivalent depends on the
distribution function Fx of X. |If two random variables have the same
distribution function they have the same certainty equivalent. This is also called
law-invariance.
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Certainty equivalent (2/2)

Lemma. Assume that the utility function uw : Z — R is strictly risk averse (strictly
concave) and that the certainty equivalent z = z(Fx,w,u) € R exists for given
wealth w € R and position X € X with distribution X ~ F'x. We have

r=x(Fx,w,u) < E[X],
and the inequality is strict for non-deterministic X .

Proof. We use Jensen's inequality to receive
u(w+z) = Elu(w+ X)] < uv(w+ E[X]).
The claim then follows from the strictly increasing property of wu.
Interpretation. For non-deterministic random variables X we have certainty

equivalent x = z(Fx,w,u) < E[X]. Therefore, this agent is willing to exchange X
by any deterministic value y € (z, E[X]) as this implies

w+EX] = w+y = w+zx ~ w+ X.
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More risk averse

Interpretation. For non-deterministic random variables X we have certainty
equivalent x = z(Fx,w,u) < E[X]. Therefore, this agent is willing to exchange X
by any deterministic value y € (x,[E|X]) as this implies

w+EX] = w+y = w+z ~ w+ X.

Definition. Agent 1 with utility function u; : Z — R is more risk averse than agent
2 with utility function us : Z — R if for all position X € X

ur ' (Elu(X)]) < uy (Elua(X)]).
Assume certainty equivalents x(F'x,w,u1) and x(F'x,w, us) exist, then we have
r1 =x(Fx,w,u1) < x(Fx,w,us) = Ta,

if agent 1 is more risk averse than agent 2; thus, in this case agent 1 has a bigger
interval (z1,[E|X]) if both agents are risk averse. Proof. Exercise.
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Regularity assumption on the set X

e We have assumed X C {X € LY(Q, F,P); X € Z,P-ass.}.
e Each random variable X € X is characterized by a probability measure
ux()=P[X € -] on interval Z,

and, thus, in the sequel we identify X with a subset of probability measures
M1(Z,B(Z)) on I (note that expected utility is law-invariant).

e By an abuse of notation we use both X C L(Q, F,P) and X € M1(Z,B(I)).

Assumption. X C M(Z,B(Z)) is convex and contains all point masses d,.,, x € Z.

Convexity of X implies that if we choose any two measures 1, 1o € X we have
ap; + (1 —a)us € X for all o € [0, 1].
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Main theorem on risk aversion

Theorem. Assume X C M+(Z,B(Z)) is convex and contains all point masses 9, for
x € I. The following statements are equivalent:

(a) agent 1 is more risk averse than agent 2;

(b) QSI){A(-) > Q(A2I){A(-), where these are the ARA of agents 1 and 2, respectively;

(c) u1(-) = (vous)(:) for a strictly increasing and concave function v.

Proof. Under the above assumptions, w1 and us are strictly increasing and three times
differentiable. We start with item (c) and define

o(y) =u (u' () fory € un(Z).
This provides us with
(vous)(x) =uy (’U;2_1('U;2(x))> = ui(x) for x € T,

where we have used continuity and strictly increasing a couple of times.
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Next we calculate the derivative of v, it is for y € us(Z) given by

uy (uy ' (y))
uh (ug ' (y))

V) =i (') = v () = > 0,

thus, v is strictly increasing. Next we calculate the second derivative of v

uy (uy ' (y)) uy (uy ' (y)) — uy (ug ' (y)) wy (uy’ (y))

v(y) =
(uh (uz ()

uf (ug () uy (ug (y)) ug (uy' (v)
(uh (u5' () (uh (uy (1))’

ui (ur' (@) o] (ui'()  uf (uzl(y))]
() (uy (1)) Lt (ua' () wh (uy' ()

uy (uy ' (y))

- s [0 (02" ®) = e (w'®)]

(uj (uz'(v)))

2 (¥)

Note that the factor in front of the square bracket is strictly positive. Therefore, v is concave if and

only if the square bracket is non-positive. This proves the equivalence of (b) and (c).

M.V. Withrich, ETH Zurich
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Next, we reformulate (a). We have

(a) <= u; (E[ui(X)]) < u; (Elux(X)]) forall X € X

— Eu(X)] < (u1owu,’) (Elux(X)]) forall X € X
<— Eui(X)] < v(E[ux(X)]) forall X € X.

Next we prove that (c) implies (a). Concavity of v implies for all X € X (we use Jensen's inequality)
v (Elug(X)]) 2 E[(v 0 u2)(X)] = Elui (X)],
which is equivalent to (a).

Finally, we prove that (a) implies (b). Assume that (b) does not hold, i.e., that there exists z € Z

such that Q(AlP){A(Z) < fof){A(z). Continuity (three times differentiability) implies that there exist an

open interval O C Z such that Q(A}l)%A(z) < Q(:I)%A(Z) for all z € O. Formula (2) implies that v is
strictly convex on w2 (). Choose a probability measure p € X C My(Z, B(Z)) that is supported
in O and which is not concentrated in a single point (such a measure exists because O is open and
non-empty, and X is convex and contains all point measures §,, z € ). Choose X ~ . Then we
have using Jensen’s inequality in the second step

Eur(X)] = E[(wou)(X)] > vEus(X)]) = w (uz' Eua(X)])) -

Thus, agent 1 is not more risk averse than agent 2. This finishes the proof of the theorem. =
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More risk averse

Corollary. Assume X C M{(Z,B(Z)) is convex and contains all point masses 9, for
x € L. The following statements are equivalent:

(a) Q(AlP){A(:C) > QEA?I)DLA(:IJ) for all x € Z;

(b) z(Fx,w,u1) < x(Fx,w,us) for all X € X and w € R for which the certainty
equivalents exist.

Sketch of proof. (a) is equivalent to u; = v o wuy for a strictly increasing and concave function v.

The latter is equivalent to (b). q

This corollary explains that the pricing interval (z(F'x,w,u), E[X]) widens under
increasing risk aversion in u.
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Utility indifference price

Definition. Assume we have a financial agent with utility function v : Z — R and
wealth w € R. The utility indifference price m = 7(Fx,w,u) € R of risky position
X € X with distribution X ~ Fx is given by the solution of (subject to existence)

u(w) =Eu(w— X +m)].

7, = m — E|X] is called premium risk loading.

e Interpretation.

Because of the sign switch, a positive X has now the interpretation of an

Insurance risk or an insurance claim.

m = 7w(Fx,w,u) is the deterministic value that makes the agent indifferent in
accepting the risk X at price m or not insuring risk X, i.e. w ~w — X + .
We have law-invariance of 7(F'x, w, u).

If the utility indifference price exists it is unique. Proof. Exercise.

0 is the certainty equivalent of m — X, i.e., 7 is such that x(F,_x,w,u) = 0.
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Premium risk loading

Corollary. Assume the utility function w : Z — R is strictly risk averse (strictly
concave) and that the utility indifference price 7 = n(Fx,w,u) € R exists for given
wealth w € R and risky position X € X with distribution X ~ F'x. We have

T, =7 — E[X] >0,
and the inequality is strict for non-deterministic X .

Proof. This is an easy consequence of the lemma on slide 15 by noting that the utility indifference

price 7 satisfies x(Fr_x,w,u) = O. -
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Exponential utility function indifference price

Theorem. Assume that u is a risk averse utility function.
The following are equivalent:

(a) m = m(Fx,w,u) does not depend on w for all X € X;
(b) u(x) = —aexp{—ax} + b for some a >0, a > 0 and b € R.

Proof. We use our standing assumptions here: u is three times differentiable, strictly increasing and
strictly concave on Z, as well as that X is convex and containing all point measures 6, of x € Z,
where Z is an interval with non-empty interior.

We first prove that (b) implies (a). Using a lemma from above we know that we can drop a and b
because any affine linear transformation of a utility function generates the same preference order. In
particular, statement (b) just considers the exponential utility function. Therefore, we receive the
utility indifference price as the solution 7 of

exp{—aw} = Elexp{—a(w — X + 7)}| = exp{—a(w + 7) }E[exp{a X }].

This implies utility indifference price which does not depend on w

™= élog (E[exp{aX1}]) .
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We prove that (a) implies (b). Since X is a convex set containing all point measures §,, x € Z, we
can choose any Bernoulli random variable X that takes values 1 and xo in Z with probabilities p
and 1 — p. Choice of Bernoulli random variables will imply that all subsequent expected values and
derivatives are well-defined.

Assume that 7 ( F'x, w, u) is the utility indifference price of such a Bernoulli random variable and for
a given w in the interior of Z. Then it satisfies

w(w) =E[u(w — X +7(Fx,w,u))].

Calculating the derivative of the above w.r.t. w implies (we use in the 2nd step that the utility
indifference price does not depend on w)

) = B[dw= X+ w,w) (14 (P ww) ) |

= E[u(w— X+ 7(Fx,w,u))].

Define v = —u/. Since w is risk averse, we have v’ < 0 and, henceforth, v" > 0, which implies
that v is a twice differentiable utility function. This implies

v(w) = E[v(w— X+ 7(Fx,w,u))],

and, henceforth, 7 is also the utility indifference price of v. That is, we have for all such Bernoulli
random variables X

m(Fx,w,u) = 7(Fx,w,v) = .
M.V. Wiithrich, ETH Zurich 26



This implies for all such Bernoulli random variables X
v ' E(w—X+7])=w=u "(Eu(w— X + 7).

This implies that agent u and agent v have the same risk aversion, and using the main theorem on
risk aversion from above we find that o\gra(-) = 0ira(+) on Z. The latter is equivalent to

'U///(x) B ,U//(x) B u///(x)

— — f |l x € 7.
W(x)  v(z) W)
We calculate the first derivative of the ARA of u
! o =~ L) W) ) W) )W)
doSARA T T g uw'(z) (u'(x))? o u () u(x)  w(x)]

This implies that oyga = a > 0, we use risk averse here. This provides differential equation
1/ /
u (x) +au(x) =0,

and solving this differential equation provides the exponential utility function.
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Interpretation of exponential utility function

Assume u is a risk averse utility function. The following are equivalent:

(a) m = 7w (Fx,w,u) does not depend on w for all X € X;

(b) u(x) = —aexp{—az}+0b for somea >0, a>0and b € R.

e The utility indifference price under the exponential utility function does not depend
on the size w of the insurance company. This is not a reasonable model property
because bigger insurance companies expect to be able to better diversify claims.
Henceforth, they should charge a smaller premium risk loading 7. = m — E[X] for
bigger w. Therefore, the exponential utility function should not be used!

e Actuaries like the exponential utility function because it has nice analytical
properties, i.e., the utility indifference price

r = —log (Efexp{aX}]) = log Mx(0),

relies on the moment generating function M x of X evaluated in a € R,..
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Decreasing absolute risk aversion

Theorem. Assume that u is a risk averse utility function.
The following are equivalent:

(a) m = 7w (Fx,w,u) is decreasing in w for all X € X;
(b) okpalz) = —% is decreasing in x € 7.

Sketch of proof. The utility indifference price of w and random variable X fulfills
w(w) =E[u(w — X +7(Fx,w,u))].

Calculating the derivative of the above w.r.t. w implies (this needs a bit of work)
/ / d
uv(w) = E|lu(w—X+7n(Fx,w,u)) (1 + d—W(FX,w,u)>} :
w

The implicit function theorem provides differentiability of 7 w.r.t. w and this implies that (a) is
equivalent to %w(Fx, w,u) < 0 for all X € X. The latter is equivalent to

v (w) < Eu'(w—X+n(Fx,w,u))] forall X € X.
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Define v = —u/. This is a twice differentiable utility function due to the risk aversion of u. This
implies that (a) is equivalent to

v(w) > E[v(w— X+ n(Fx,w,u))] for all X € X.
In turn this implies that (a) is equivalent to
m(Fx,w,u) < w(Fx,w,v) forall X € X.

This statement is equivalent to saying that agent v is more risk averse than agent u and, thus, (a) is

equivalent to
'U//,(CU) UH(:IZ) B ’U////(CU)

_u’(az) - _v’(ac) N —u”(az)

Using the first derivative of the ARA of u this is equivalent to

forall x € .

d . ’U///(w) u/,/(w) B ’U,//(Qj>

dz CARA T T uw(x) [u'(x) u(x)

<0 forall z € Z,

i.e., the ARA is a decreasing function.
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Interpretation of decreasing absolute risk aversion

The following are equivalent:

(a) m = nw(Fx,w,u) is decreasing in w for all X € X;

(b) o%ga(x) is decreasing in z € 7.

e The ARA should be a decreasing function in order to reflect that bigger insurance
companies should charge smaller premium risk loadings ..

e The power utility (CRRA utility) function has this property

—1

0ARA(T) =y and ORRA(T) = 7.

The CRRA utility function is only defined on Z = R, therefore, it only allows
to consider bounded risks X for utility indifference pricing. That is, we need to
assume X < M, P-a.s., for some fixed constant M.
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Introduction to risk exchange economy

e So far, we have discussed properties of certainty equivalents.

e To consider expected utility maximization

argmax  Elu(X)],
XeX with X€B

we need a budget constraint B C X as, in general, we cannot freely attain any
position X € X.

e The budget constraint will be determined by prices 7(X) € R at time 0 of
positions X € X, if X reflects the (random) payout at time 1.

e These prices will be calculated from a market equilibrium that describes demand
and supply if financial agents are allowed to exchange positions X € X" at time O.
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Assumptions

e To keep things simple in this section, we choose a finite probability space ({2, F,P)
with || < co and F being the resulting power set on €.

e Assume that X (only) contains all strictly positive random variables on (2, F,P),

l.e.,

X(w) >0

forall we ) and X € X.

e Assume we have N > 2 financial agents each holding a given position at time 0
that provides payoff X; € X attime 1,1 <7 < N.

e The total market capitalization at time 1 is given by

M.V. Withrich, ETH Zurich
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State price deflator

e \We assume that each agent ¢ can trade at time 0 his initial holding X; € X" against
any other position Y; € X as long as a certain budget constraint is fulfilled.

e For this we need the notion of a price 7(X) € R of all X € X at time 0.

e We introduce a financial pricing kernel ¢ which itself is a random variable in X
with normalization E[p] = 1.}

e This financial pricing kernel allows us to define prices at time O for all X € X

mo(X) = ElpX] € (0,00).

e Strict positivity ¢ > 0, P-a.s., is crucial (and trivial in our toy example). Such
financial pricing kernels are called state price deflators or stochastic discount
factors. A simple example is p = 1.

'Normalization E[p] = 1 assumes that the interest rate is 0, we can easily generalize this to
positive interest rates r > 0 by assuming E[p] = (1 + )~ ".
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Toy model for risk exchange economy

Assumptions. We have a state price deflator ¢ € X and N > 2 financial agents
1 <17 < N with:

e each agent holds an initial position X; € A at time 1;

e each agent may trade his initial position against any other position Y; € A subject
to his budget constraint

Bf ={X € X; 71,(X) =7m,(X;)} C AX;
e each agent is described by strictly risk averse utility function u; on R, .

e Each agent tries to achieve by trading

X! = argmax Elu;(X)]. (3)
XeB?
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First order conditions

Theorem. The optimal position X of (3) fulfills the first order conditions

u, (X)) = N P-a.s.,

1

for some \; > 0.

Proof. Working on finite probability spaces allows us to directly apply the method of Lagrange. The
Lagrange function is given by

with Lagrange multiplier A\; € R. The optimal position X is found by maximizing the Lagrange
function L£; note that u; is a concave function and all side constraints are linear. This optimization is
most easily solved by considering directional derivatives, i.e. we perturb X by a position X € X for
small € € R such that X = X + eX € X. This gives us Lagrangian

L(e;X)=E [ui(x; n 555)] pY (%(xj LeX) — %(XZ-)) .

The optimal position X" needs to provide a critical point of L(¢; )A(/) ine=0foral X € X.
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Therefore, we consider score equations

d _
0=—L(e; X)
de

=E [u;(xg‘))}“] — \E[pX].

Thus, we obtain requirement
E [u;(xg‘))?] — NE[pX]  forall X € X.

But this implies the claim (use e.g. definition of conditional expectation w.r.t. information ), and

positivity of X\; > O is received because both u’ and ¢ are strictly positive.
i ' ]
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Herding behavior in our toy model

Corollary. The optimal positions

X = (@)™ )

1

are comonotone for 1 < < N.

Proof. Comonotonicity means that all X can be described by strictly decreasing transformation of
a common latent risk factor. This is the case here, we have common latent risk factor ¢ and

I\ —1 . . . . .
z — (u;)” " (Az) are strictly decreasing functions due to strict concavity of . s

e This can be interpreted as herding behavior because in this toy model all agents
have the “same” optimal strategy.

e Remaining question: where does state price deflator ¢ come from?
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Market clearing and state price deflator

Assumption. We require market clearing in our risk exchange economy saying that
the total market capitalization is shared in an optimal equilibrium

N N
Z=Y Xi=)» X
1=1 1=1

Theorem. Under market clearing the optimal asset allocations X are comonotonic
to the market capitalization Z, and Z = v(y) for a strictly decreasing function v.

Proof. Market clearing provides
N N N
* —1
Z=> Xi=> X;=> (u) (Nip)=1uv(p),
i=1 i=1 i=1
where the latter defines function v.
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Interpretation of theorem

Theorem. Under market clearing the optimal asset allocations X are comonotonic
to the market capitalization Z, and Z = v(y) for a strictly decreasing function v.

e In this toy example market clearing provides a pricing function 7, that can be
calculated from the market capitalization. Thus, prices are given endogenously
under market clearing.

e The agents diversify all idiosyncratic risks and are only left by systematic risk
reflected by Z which can be interpreted as the overall growth of the economy.

e This toy example generalizes the savings example of the introduction where we
have assumed that there is no uncertainty at time 1. In that example, the
equilibrium rate 7* was (also) determined from the growth rate g of the economy.

e By the Radon—-Nikdym derivative dP*/dP = ¢ we can interpret the state price
deflator ¢ in terms of a pricing measure P* because m,(X) = E[pX]| = E*[X].
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Example: exponential utility function

e We assume that all financial agents have an exponential utility function

1
u;(x) = — exp{—a;x},

where we allow for heterogeneity o; > 0 between different financial agents 1.

e We have .
(i)' (y) = —-logy.

e This provides us with optimal positions

X} = ——log(Ai) = —log(\;) — — log().

Qv Qv Qv

e Market clearing requires

N N * N 4 N 4

7 = ;X = ;X = ; - log(\;) — log(¢) ; "~
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e This motivates definition of the aggregate market risk aversion

which implies

e This gives us equilibrium state price deflator

N
1
© = exp {oz*Z —a’ g log()\i)} :
Q;

1=1

e Normalization E[p] = 1 gives us

_ exp{—-a*Z}
77 Elexp {—a*Z}]’
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e Thus, budget constraints under the equilibrium state price deflator are given by

lexp{—a*Z} X;]
Elexp {—a*Z}]

ro(X;) = E[pX)] = =

Note that m,(X;) < E[X;] if exp{—a*Z} and X, are negatively correlated, i.e.,
in that case we want a positive expected return.

e The individual Lagrange multipliers \; are determined from the budget constraint

To( X)) = 7y (-ilog()\z‘) — i10%(90)) = T (Xi),

87 7

using (4). This gives us optimal position

Xi = w0+ S (2= m(2) = (molX) - Sm(2)) + Sz

07)

o The expected wealth at time 1 is E[X] > 7,(X;) due to negative correlation.
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