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• Recall the CAPM Formula

M.V. Wüthrich, ETH Zurich 3



CAPM formula and a stochastic extension (1/3)

• The CAPM formula for expected return E[Rj] = µj is given by

µj − µ0 = βj

(
r(M) − µ0

)
,

with riskless return µ0, expected market return r(M) and beta factor βj.

• Stochastic extension of the CAPM formula: assume we have a risk factor F with
E[F ] = 0 and σ2 = Var(F ), then we can set for the random return Rj

Rj = µj + bjF = µ0 + βj

(
r(M) − µ0

)
+ bjF,

for bj 6= 0, 1 ≤ j ≤ n.

• This model provides us with E[R] = µ and Σ = Cov(R) = (σ2bkbj)1≤k,j≤n.
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CAPM formula and a stochastic extension (2/3)

• Choose risk factor F with E[F ] = 0 and set for bj 6= 0

Rj = µ0 + βj

(
r(M) − µ0

)
+ bjF.

• Assume for the first two risky assets b1 6= b2. Then, we can construct an interesting
portfolio x = (x1, x2, 0, . . . , 0)> ∈ Rn with

x1 =
b2

b2 − b1
and x2 =

−b1
b2 − b1

.

This investment strategy gives us full investment in risky assets x>e = 1.

• The portfolio return of x is given by

x>R = µ0 +

[
b2

b2 − b1
β1 −

b1
b2 − b1

β2

](
r(M) − µ0

)
.

This portfolio return is riskless!

M.V. Wüthrich, ETH Zurich 5



CAPM formula and a stochastic extension (3/3)

• The portfolio return of x is given by

x>R = µ0 +

[
b2

b2 − b1
β1 −

b1
b2 − b1

β2

](
r(M) − µ0

)
.

This portfolio return is riskless!

• Since we can only have one riskless asset (no arbitrage assumption is discussed
below) we need to have

b2
b2 − b1

β1 −
b1

b2 − b1
β2 = 0, that is, β2 =

b2
b1
β1.

• Thus, using a no arbitrage argument, the price system is completely determined
by the riskless return µ0 and the expected return µ1 of the first risky asset R1.
The latter determines the risk aversion towards risk factor F .
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• APT Without Idiosyncratic Risk
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Financial market model

Assumptions. We have n+ 1 financial assets fulfilling the following assumptions:

• R0 = µ0 is the riskless asset.

• Risky assets R = (R1, . . . , Rn)> fulfill, for 1 ≤ j ≤ n,

Rj = µj +

K∑
k=1

bj,kFk, (1)

with bj,k ∈ R and with centered risk factors Fk, i.e. E[Fk] = 0, for 1 ≤ k ≤ K.

• We have dimension assumption n > K.
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Vector notation

• We use vector notation and define matrix B = (bj,k)1≤j≤n;1≤k≤K ∈ Rn×K, that
is,

B =

b1,1 · · · b1,K
... . . . ...

bn,1 · · · bn,K

 ∈ Rn×K.

Recall n > K.

• Set for risk factors F = (F1, . . . , FK)>.

• We can then rewrite (1) as
R = µ+BF .
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Arbitrage portfolio

Definition. We call x̃ ∈ Rn+1 an arbitrage portfolio if the following three conditions
hold:

• x̃>ẽ = 0, i.e., we have a net investment of zero;

• E[x̃>R̃] = x̃>µ̃ > 0, i.e., we have a positive expected return;

• Var(x>R) = 0, i.e., no risk is involved.

Interpretation.

• An arbitrage portfolio generates a positive return x̃>R̃ > 0, P-a.s., from a zero
net investment and at zero (downside) risk.

• The positive expected return in the second bullet point can be replaced by a
non-zero expected return, note that if x̃ would generate a negative expected
return (with a zero investment and at zero risk), then −x̃ is an arbitrage portfolio.
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No arbitrage theorem

Economic Principle. We exclude the existence of arbitrage portfolios at the financial
market.

Theorem. Under the above financial market assumptions and under the exclusion of
arbitrage: there exists λ = (λ1, . . . , λK)> ∈ RK such that

µ = µ0e+Bλ. (2)

Interpretation.

• No arbitrage assigns to every risk factor Fj a pricing factor λj, and consistent
pricing systems µ need to be of the form (2), consistent in the sense of no
arbitrage.

• For K = 1 this gives the CAPM formula, but under a completely different
economic principle (no arbitrage versus market clearing).

• The assumption n > K is crucial, as we will see in the proof.
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Proof of no arbitrage theorem

Proof. Note that n > K implies that matrix B ∈ Rn×K has maximal rank K. Therefore, there

exist non-zero vectors x ∈ Rn with B>x = 0, i.e., we can choose x orthogonal to the K column

vectors of B.

For this choice x ∈ Rn with B>x = 0, we set x0 = −x>e. Then x̃>ẽ = 0 is a zero net

investment portfolio. We use x̃ to construct an arbitrage portfolio. Note

x̃
>
R̃ = x0µ0 + x

>
R

= x0µ0 + x
>

(µ+ BF )

= x0µ0 + x
>
µ+ (B

>
x)
>
F

= x
>

(µ− µ0e) = x
>
µ
e
.

As a consequence, x̃ is a riskless portfolio because it is deterministic, i.e., has zero variance.

Exclusion of arbitrage implies that this portfolio has to have a zero return x>µe = 0.

That is, for every non-zero vector x ∈ Rn with B>x = 0 we need to have

x
>
µ
e

= 0.

This implies that µe is in the span of the column vectors of B and, henceforth, there exists λ ∈ RK

such that µe = Bλ. This proves the theorem. �
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• APT With Idiosyncratic Risk
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Financial market model
Assumptions. There exists an infinite sequence of risky assets having random returns
R1, R2, . . ..

For all n ≥ 1, set R(n) = (R1, . . . , Rn)> and assume the following structural form

R(n) = µ(n) +B(n)F + ε(n),

where

• µ(n) ∈ Rn are the first n elements of an infinite sequence µ1, µ2, . . .,

• B(n) ∈ Rn×K are the first n rows of an ∞×K matrix B,

• F is a K-dimensional risk factor with E[F ] = 0.

• ε(n) are the first n elements of an infinite sequence ε1, ε2, . . . with

? E[εj] = 0 for all j ≥ 1,
? Φ(n) = Cov(ε(n)) has uniformly (in n) bounded eigenvalues with bound λ̄ <∞.
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Interpretation of financial market model

• Set R(n) = (R1, . . . , Rn)> and assume the following structural form

R(n) = µ(n) +B(n)F + ε(n),

where ε(n) is idiosyncratic risk, i.e., this is the part that cannot be fully described
by the common K-dimensional risk factors F .

• Of course, idiosyncratic risk can be reduced by increasing K. There will be
a trade-off between applicability and accuracy that will determine a suitable K
which, of course, should be finite.

• The crucial assumption is: Φ(n) = Cov(ε(n)) has uniformly (in n) bounded
eigenvalues with bound λ̄ < ∞. This will imply an asymptotically perfect
knowledge about the common risk factors F , diversifying idiosyncratic risk. For
this to happen, we need to assume boundedness of the noisy idiosyncratic part.

Basically, this assumption plays the role of n > K in the previous section.
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Asymptotic arbitrage portfolios

Definition. We call the sequence x(n) ∈ Rn, n ≥ 1, an asymptotic arbitrage
opportunity if the following three conditions hold:

• (x(n))>e(n) = 0, with e(n) = (1, . . . , 1)> ∈ Rn, net investment of zero;

• lim sup
n→∞

E[(x(n))>R(n)] ≥ δ > 0;

• lim
n→∞

Var((x(n))>R(n)) = 0, i.e., asymptotically vanishing risk.

Remark that different (stochastic) market models typically need slightly different
arbitrage assumptions.
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No arbitrage theorem

Economic Principle. We exclude asymptotic arbitrage opportunities.

Theorem. Under the above financial market assumptions and under the exclusion

of asymptotic arbitrage opportunities: there exists an infinite sequence (λ̃
(n)

)n with

λ̃
(n)

= (λ
(n)
0 , λ

(n)
1 , . . . , λ

(n)
K )> ∈ RK+1 such that

µ(n) = λ
(n)
0 e(n) +B(n)λ(n) + v(n), (3)

with correction/error terms v(n) ∈ Rn satisfying

lim
n→∞

1

n
‖v(n)‖22 = 0.

In contrast to the case without idiosyncratic risk, we only get an asymptotic result
with idiosyncratic risk, saying that the correction terms ‖v(n)‖22/n vanish, the more
assets we consider for determining the common risk factors F .
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Proof of no arbitrage theorem

Proof. Consider (3)

µ
(n)

= λ
(n)
0 e

(n)
+ B

(n)
λ

(n)
+ v

(n)
,

this is a linear regression equation with responses µj, covariates bj = (bj,1, . . . , bj,K)> ∈ RK (the

j-th row of B), regression parameter λ̃
(n)

and errors v
(n)
j , i.e.,

µj = λ
(n)
0 + b

>
j λ

(n)
+ v

(n)
j ,

for all 1 ≤ j ≤ n. Parameter estimation in linear regression is received by minimizing the squared

error loss objective function. Thus, we consider the objective function

λ̃
(n)
7→ L

µ(n)(λ̃
(n)

) =
1

2

∥∥∥µ(n) − λ(n)
0 e

(n) − B(n)
λ

(n)
∥∥∥2

2
=

1

2

∥∥∥v(n)
∥∥∥2

2
.

We minimize this in λ̃
(n)

for n > K. We start with the intercept, this gives us score equation

∂L
µ(n)(λ̃

(n)
)

∂λ
(n)
0

=
〈
−e(n)

,µ
(n) − λ(n)

0 e
(n) − B(n)

λ
(n)
〉

= −〈e(n)
,v

(n)〉 !
= 0, (4)

i.e. the resulting optimal correction terms v(n) are centered (for all n ≥ K).
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The score equations for the regression parameters in λ(n) are

∂L
µ(n)(λ̃

(n)
)

∂λ
(n)
k

=

〈
−

b1,k
...

bn,k

 ,µ
(n) − λ(n)

0 e
(n) − B(n)

λ
(n)

〉
= −

〈b1,k
...

bn,k

 ,v
(n)

〉
!

= 0,

(5)

i.e.,the resulting optimal correction terms v(n) are orthogonal to the columns of B(n).

These (optimal) correction terms v(n) are now used to construct asymptotic arbitrage opportunities.

We define portfolios

x
(n)

=
1
√
n

1

‖v(n)‖2

v
(n) ∈ Rn.

From the first score equation (4) we know that this portfolio gives us a zero net investment.

Next we calculate the return of this portfolio, we use score equations (5) in the third step,

(x
(n)

)
>
R

(n)
=

1
√
n

1

‖v(n)‖2

(v
(n)

)
>
(
µ

(n)
+ B

(n)
F + ε

(n)
)

=
1
√
n

1

‖v(n)‖2

(
(v

(n)
)
>
µ

(n)
+ (v

(n)
)
>
B

(n)
F + (v

(n)
)
>
ε

(n)
)

=
1
√
n

1

‖v(n)‖2

(
(v

(n)
)
>
µ

(n)
+ (v

(n)
)
>
ε

(n)
)
.
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We calculate expected return and variance of this portfolio

E[(x
(n)

)
>
R

(n)
] =

1
√
n

1

‖v(n)‖2

(
(v

(n)
)
>
µ

(n)
+ (v

(n)
)
>E[ε

(n)
]
)

=
1
√
n

1

‖v(n)‖2

(v
(n)

)
>
µ

(n)

=
1
√
n

1

‖v(n)‖2

(v
(n)

)
>
(
λ

(n)
0 e

(n)
+ B

(n)
λ

(n)
+ v

(n)
)

=
‖v(n)‖2√

n
, (6)

where we have used score equations (4)-(5). The variance of this portfolio is

Var((x
(n)

)
>
R

(n)
) = Var

(
1
√
n

1

‖v(n)‖2

(
(v

(n)
)
>
µ

(n)
+ (v

(n)
)
>
ε

(n)
))

=
1

n

1

‖v(n)‖2
2

Var
(

(v
(n)

)
>
ε

(n)
)

=
1

n

1

‖v(n)‖2
2

(v
(n)

)
>

Φ
(n)
v

(n) ≤
λ̄

n
.

The latter converges to zero for n→∞. Exclusion of asymptotic arbitrage implies that also (6)

needs to converge to zero. This proves the claim because (λ̃
(n)

)n has the necessary properties. �
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No arbitrage theorem

Economic Principle. We exclude asymptotic arbitrage opportunities.

Theorem. Under the above financial market assumptions and under the exclusion

of asymptotic arbitrage opportunities: there exists an infinite sequence (λ̃
(n)

)n with

λ̃
(n)

= (λ
(n)
0 , λ

(n)
1 , . . . , λ

(n)
K )> ∈ RK+1 such that

µ(n) = λ
(n)
0 e(n) +B(n)λ(n) + v(n),

with correction/error terms v(n) ∈ Rn satisfying

lim
n→∞

1

n
‖v(n)‖22 = 0.
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