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• Financial Portfolios and Returns
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Financial assets in the two period problem

• Assume we have n + 1 financial assets with with values S
(0)
j > 0 at time 0 and

values S
(1)
j at time 1, 0 ≤ j ≤ n.

• We assume that the values at time 0 are known, and the values at time 1 are
modeled by random variables on a given probability space (Ω,F ,P).

• If a state price deflator ϕ > 0, P-a.s., is given, these values are calculated as

S
(0)
j = E[ϕS

(1)
j ] for 0 ≤ j ≤ n.

For the moment, we just assume that these values S
(0)
j are given “reasonably”.

• Asset j = 0, will play the role of the riskless asset, i.e., its value S
(1)
0 is assumed

to be perfectly known at time 0.

• Assets j = 1, . . . , n model the risky assets, and we make the assumption that S
(1)
j

are non-deterministic random variables seen from time 0.
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Vector notation

• We distinguish vectors with n components and with n+1 components, respectively.
This distinction will be highlighted by the following notation

x = (x1, . . . , xn)> ∈ Rn,

x̃ = (x0, . . . , xn)> ∈ Rn+1.

The latter includes the riskless asset and the former does not.
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Asset portfolios and returns (1/2)

• An asset portfolio is given by a vector ã ∈ Rn+1. It has initial value at time 0
(deterministic)

w0 = w0(ã) =

n∑
j=0

ajS
(0)
j = ã>S̃

(0)
,

and it generates wealth at time 1 (random payoff)

W1 = W1(ã) =

n∑
j=0

ajS
(1)
j = ã>S̃

(1)
.

• The latter is usually reformulated for w0(ã) 6= 0 (by assumption S
(0)
j > 0)

W1(ã) =

n∑
j=0

ajS
(1)
j = w0(ã) +

n∑
j=0

aj

(
S

(1)
j − S

(0)
j

)

= w0(ã)

1 +

n∑
j=0

ajS
(0)
j

w0(ã)

S
(1)
j − S

(0)
j

S
(0)
j

 .
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Asset portfolios and returns (2/2)

• We define (relative) returns Rj and portfolio weights xj of assets 0 ≤ j ≤ n as
follows

Rj =
S

(1)
j − S

(0)
j

S
(0)
j

and xj =
ajS

(0)
j

w0(ã)
.

Note that the xj are indeed weights because
∑n
j=0 xj = 1.

• Thus, for w0 = w0(ã) 6= 0, we have

W1 = w0

1 +
n∑
j=0

xjRj

 = w0

(
1 + x̃>R̃

)
,

with

? initial value w0, assumed to be different from 0;
? investment strategy x̃ ∈ Rn+1 with ẽ>x̃ = 1 for ẽ = (1, . . . , 1)>; and

? random (n+ 1)-dimensional return vector R̃.
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General assumptions throughout this chapter

• The initial value w0 6= 0.

• Set ẽ = (1, . . . , 1)> ∈ Rn+1.

• The investment strategy x̃ ∈ Rn+1 satisfies ẽ>x̃ = 1 (full investment).

• The random return vector R̃ has a first riskless component R0 = µ0 > 0, and the
n risky assets have finite second moments with

µ = E[R] ∈ Rn and Σ = Cov(R) ∈ Rn×n is positive definite.
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Simple properties of portfolio returns

• The expected portfolio wealth is given by

E[W1] = w0

(
1 + E

[
x̃>R̃

])
= w0

(
1 + x̃>µ̃

)
.

This motives to define the expected portfolio return of x̃ by

r =
E[W1]− w0

w0
= x̃>µ̃ ∈ R.

• The portfolio variance is given by

Var(W1) = w2
0 Var

(
x̃>R̃

)
= w2

0 Var
(
x>R

)
= w2

0 x
>Σx > 0,

for x 6= 0, because Σ is positive definite and w0 6= 0.
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• Motivation of Mean-Variance Portfolio Optimization
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Exponential utility and Gaussian returns

• This section aims at motivating mean-variance portfolio optimization, but it should
not be used beyond that because the assumptions made in this section are not
realistic in practice.

We make two rather restrictive additional assumptions:

• The random return vector follows a Gaussian distribution R ∼ N (µ,Σ).

• The financial agent has exponential utility function with parameter α > 0.

• These assumptions are only used in this section and they are not necessary for
the general mean-variance optimization framework (which is a distribution-free
approach relying on the first two moments).

M.V. Wüthrich, ETH Zurich 11



On log-normal distributions

Lemma. Under multivariate Gaussian returns and exponential utility we have

E[u(W1)] = −1

α
exp

{
−αw0

(
1 + x̃>µ̃

)
+
α2

2
w2

0 x
>Σx

}
.

Proof. The distribution of the wealth at time 1 is given by

W1 = w0

(
1 + x̃

>
R̃
)
∼ N

(
w0(1 + x̃

>
µ̃), w

2
0 x
>

Σx
)
.

Therefore, exp{−αW1} has a log-normal distribution with mean and variance parameters

−αw0(1 + x̃
>
µ̃) and α

2
w

2
0 x
>

Σx.

This proves the lemma.
�
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Utility maximization problem

Under the above multivariate Gaussian returns and exponential utility assumptions
we can consider the following portfolio optimization problem

x̃ρ = arg max
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃=ρ

E[u(W1)],

for a pre-defined expected return level ρ ∈ R (we come back to this on slide 67).

This optimization problem can be simplified using the above lemma

x̃ρ = arg max
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃=ρ

−
1

α
exp

{
−αw0

(
1 + x̃

>
µ̃
)

+
α2

2
w

2
0 x
>

Σx

}

= arg max
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃=ρ

−
1

α
exp

{
α2

2
w

2
0 x
>

Σx

}

= arg min
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃=ρ

x
>

Σx.

M.V. Wüthrich, ETH Zurich 13



Markowitz (1952) problem

Choose target returns ρ, r ∈ R. The Markowitz problem is given by

x̃ρ = arg min
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃=ρ

x>Σx.

We can also study the following problem

x̃+
r = arg min

x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃≥r
x>Σx.

Below we also discuss what happens

• if we drop the riskless asset, and/or

• if we drop the expected return constraint.
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• Convex Optimization Interlude
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Optimization: preliminaries (1/2)

• The subsequent derivations heavily rely on convex optimization. Therefore, we
briefly recall the methods of Lagrange and of Karush, Kuhn and Tucker (KKT).

• A matrix A ∈ Rn×n is positive definite if x>Ax > 0 for all x 6= 0.

• A positive definite matrix A is invertible and its inverse A−1 is positive definite.

• Assume R is a random vector with covariance matrix Σ ∈ Rn×n. We have for
matrices A,C ∈ Rn×n and vectors b,d ∈ Rn

Cov(AR+ b, CR+ d) = AΣC>.
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Optimization: preliminaries (2/2)

• For a twice differentiable function f : Rn → R, the gradient is

∇f(x) =
∂f(x)

∂x
=


∂f(x)
∂x1...
∂f(x)
∂xn

 ∈ Rn,

and the Hessian is

∇2f(x) =
∂2f(x)

∂x2
=


∂2f(x)

∂x2
1

· · · ∂2f(x)
∂x1∂xn

... ...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2

n

 ∈ Rn×n.

• Example. Choose f(x) = x>Ax for A ∈ Rn×n. Gradient and Hessian of f are

∇f(x) =
(
A+A>

)
x and ∇2f(x) = A+A>.
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Unconstraint (local) maximum

• Choose a twice differentiable function f : Rn → R. Unconstraint local maximums
x ∈ Rn of f are found by solving

∇f(x) = 0, (1)

z>
(
∇2f(x)

)
z < 0 for all z 6= 0. (2)

Condition (1) guarantees that we have a critical point of f , and negative
definiteness (2) guarantees that this critical point is a local maximum.

• If f is a concave function, then any critical point is the global maximum.

• Example. Choose f(x) = 1
2x
>Ax−b>x with A ∈ Rn×n symmetric and negative

definite, and b ∈ Rn. Condition (1) gives

∇f(x) = Ax− b = 0, thus x = A−1b.

Moreover, ∇2f(x) = A is negative definite, and x = A−1b is the global maximum.
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Maximum with equality constraint

• Choose twice differentiable functions f, g : Rn → R and solve for given a ∈ R

arg max
x∈Rn; g(x)=a

f(x).

• Define Lagrange function for Lagrange multiplier λ ∈ R

L(x, λ) = f(x)− λ (g(x)− a) .

• Constraint local maximums x ∈ Rn are found by solving

∂L(x, λ)

∂x
= ∇f(x)− λ∇g(x) = 0, (3)

∂L(x, λ)

∂λ
= − (g(x)− a) = 0, (4)

+ second order conditions.

M.V. Wüthrich, ETH Zurich 19



Example: maximum with equality constraint
Choose f(x) = 1

2x
>Ax− b>x with A ∈ Rn×n symmetric and negative definite.

Moreover, set side constraint g(x) = d>x = a for d 6= 0. Conditions (3) and (4) are

∂L(x, λ)

∂x
= Ax− b− λd = 0,

∂L(x, λ)

∂λ
= −

(
d>x− a

)
= 0.

The first equation gives us x = A−1b+ λA−1d. Plugging this into the second
equation and using positive definiteness of A gives us

λ =
a− d>A−1b

d>A−1d
.

Thus, we have critical point

x = A−1b+
a− d>A−1b

d>A−1d
A−1d.
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Constraint convex optimization
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Maximum with inequality constraint
Choose twice differentiable functions f, g : Rn → R and solve for given a ∈ R

arg max
x∈Rn; g(x)≥a

f(x).

Define Lagrange function for Lagrange multiplier λ ∈ R and b ≥ a

L(x, λ, b) = f(x)− λ (g(x)− b) .

Constraint local maximums x ∈ Rn are found by solving the KKT conditions

∂L(x, λ, b)

∂x
= ∇f(x)− λ∇g(x) = 0, (5)

∂L(x, λ, b)

∂λ
= − (g(x)− b) = 0, (6)

∂L(x, λ, b)

∂b
= λ ≤ 0, (7)

(b− a)λ = 0, (8)

+ second order conditions.
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Inequality constraint convex optimization
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Linear inequality constraint to the upper right of the blue line:
λ = 0: global (inner) maximum b∗ > a

λ < 0: constraint (boundary) maximum b∗ = a
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• Markowitz Without Riskless Asset
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Assumptions for model without riskless asset

Model Assumptions. There are n risky assets with returns R = (R1, . . . , Rn)>

having finite second moments such that

(A1) µ = E[R] ∈ Rn, and there exist 2 ≤ j ≤ n such that µj 6= µ1;

(A2) Σ = Cov(R) ∈ Rn×n is positive definite.

Terminology. An investment strategy x ∈ Rn is normalized e>x = 1.

An investment strategy z ∈ Rn is said to be efficient if there is no other investment
strategy x ∈ Rn with

x>µ ≥ z>µ,

x>Σx < z>Σz.
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Markowitz (1952) problem without riskless asset

(“=”) Choose target return ρ ∈ R. Determine the mean-variance portfolio

xρ = arg min
x∈Rn; e>x=1; x>µ=ρ

x>Σx.

(“≥”) We can also study the following problem for r ∈ R

x+
r = arg min

x∈Rn; e>x=1; x>µ≥r
x>Σx.

x+
r provides an efficient portfolio.
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Calculation of the efficient portfolio

• Define the Lagrange function with Lagrange multipliers λ1, λ2 and with ρ ≥ r

L(x, λ1, λ2, ρ) = −1

2
x>Σx− λ1(e>x− 1)− λ2(x>µ− ρ).

• Solving the Markowitz problem “≥” requires solving the following KKT conditions

∂L(x, λ1, λ2, ρ)

∂x
= − Σx− λ1e− λ2µ = 0, (9)

∂L(x, λ1, λ2, ρ)

∂λ1
= −

(
e>x− 1

)
= 0, (10)

∂L(x, λ1, λ2, ρ)

∂λ2
= −

(
x>µ− ρ

)
= 0, (11)

∂L(x, λ1, λ2, ρ)

∂ρ
= λ2 ≤ 0, (12)

(ρ− r)λ2 = 0. (13)
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Calculation of the mean-variance portfolio

• The mean-variance portfolio for x>µ = ρ is obtained by solving (9)-(11). We start with this.

• KKT (9) gives us, note that Σ is positive definite,

x = −Σ
−1

(λ1e+ λ2µ) = −Σ
−1

(e,µ)

(
λ1

λ2

)
. (14)

• Inserting this into KKT (10)-(11) gives us(
1

ρ

)
= (e,µ)

>
x = −(e,µ)

>
Σ
−1

(e,µ)

(
λ1

λ2

)
= A

(
−λ1

−λ2

)
,

with matrix

A =

(
a b

b c

)
=

(
e>Σ−1e e>Σ−1µ

e>Σ−1µ µ>Σ−1µ

)
∈ R2×2

.

• Claim. Matrix A is positive definite.

Choose z = (z1, z2)
> 6= 0. Note that y

def.
= (e,µ)z = z1e+ z2µ 6= 0 for all z 6= 0 because

of assumption (A1), saying that e and µ cannot be collinear. This then implies the proof of

positive definiteness of A

z
>
Az = y

>
Σ
−1
y
>
> 0.
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• As a consequence A is invertible and, henceforth,(
−λ1

−λ2

)
= A

−1

(
1

ρ

)
. (15)

• This provides us with mean-variance portfolio for ρ ∈ R, see (14),

xρ = Σ
−1

(e,µ)A
−1

(
1

ρ

)
,

with

A
−1

=
1

ac− b2

(
c −b
−b a

)
=

1

(e>Σ−1e)(µ>Σ−1µ)− (e>Σ−1µ)2

(
µ>Σ−1µ −e>Σ−1µ

−e>Σ−1µ e>Σ−1e

)
.

• We calculate the variance of the mean-variance portfolio xρ

Var(x
>
ρR) = x

>
ρ Σxρ = (1, ρ)A

−1
(e,µ)

>
Σ
−1

ΣΣ
−1

(e,µ)A
−1

(
1

ρ

)

= (1, ρ)A
−1

(
1

ρ

)
=

c− 2bρ+ aρ2

ac− b2
.
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Mean-variance portfolio without riskless asset

Theorem. The mean-variance portfolio xρ for target return ρ ∈ R is given by

xρ = Σ−1(e,µ)A−1

(
1
ρ

)
,

with a = e>Σ−1e, c = µ>Σ−1µ, b = e>Σ−1µ and

A−1 =
1

ac− b2

(
c −b
−b a

)
.

We have mean E[x>ρR] = ρ and variance

Var(x>ρR) =
c− 2bρ+ aρ2

ac− b2
≥ 1

a
=

1

e>Σ−1e
> 0.

The latter comes from the global minimum variance (gmv) portfolio with ρgmv = b/a.
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Mean-variance (MV) boundary: parabola
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Calculation of the efficient portfolio

• To find the efficient portfolios x+
r we still need to solve KKT (12)-(13), that is,

∂L(x, λ1, λ2, ρ)

∂ρ
= λ2 =

b− ρa
ac− b2

≤ 0,

(ρ− r)λ2 = 0,

for ρ ≥ r.

• We can either do this formally, or just by looking at the MV boundary:
every mean-variance portfolio xρ with an expected return ρ above the global
minimum variance return ρgmv = b/a is an efficient portfolio x+

ρ , and below it is
not.
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Efficiency frontier (EF): case 1
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Efficiency frontier (EF): case 2
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Efficiency frontier (EF)
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Efficient portfolio without riskless asset

Theorem. The efficient portfolio x+
r for target return r is given by

x+
r = Σ−1(e,µ)A−1

(
1

r ∨ ρgmv

)
,

with ρgmv = b/a, a = e>Σ−1e, c = µ>Σ−1µ, b = e>Σ−1µ and

A−1 =
1

ac− b2

(
c −b
−b a

)
.

We have mean E[(x+
r )>R] = r ∨ ρgmv and variance

Var((x+
r )>R) =

{
c−2br+ar2

ac−b2 if r ≥ ρgmv,

1/a if r < ρgmv.
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• Example Markowitz
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Example: Markowitz problem

• We consider the daily stock market indexes of (1) CHF banks, (2) CHF insurance
companies, (3) CHF food companies and (4) CHF health care companies.1

• Denote these daily indexes by S
(t)
j for j = 1, . . . , 4 and time points t =

2000/08/02, . . . , 2020/12/15. This gives us 5′132 daily weekday observations
(without weekends and public holidays).

• The means µ(t) and the covariance matrices Σ(t) are estimated with the sample
means and covariances using rolling windows of length K = 100 business days.

1Source: Swiss National Bank SNB, Kapitalmarkt, Schweizerische Aktienindizes:

https://data.snb.ch/de/topics/finma#!/cube/capchstocki
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Example: Markowitz problem
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Example: Markowitz problem

(lhs) Observed daily returns and (rhs) estimated expected daily returns µ(t) using

the empirical mean of a rolling window of a length of K = 100 business days.
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Example: Markowitz problem

(lhs) Observed daily volatilities and (rhs) rooted observed daily covariations using

empirical covariances of a rolling window of a length of K = 100 business days. This

provides calibration of covariance matrices Σ(t).
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Example: Markowitz problem

Global minimum variance portfolio:

(lhs) expected return ρ
(t)
gmv = b(t)/a(t) and (rhs) volatility σ

(t)
gmv = 1/

√
a(t).
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Example: Markowitz problem
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Example: Markowitz problem
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Example: Markowitz problem

Efficient portfolios for return target r = 0.05%:

(lhs) expected return r+
t = max{r, ρ(t)

gmv} and (rhs) volatility of efficient portfolio
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• Further Analysis of Mean-Variance Portfolios
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Herding effect of mean-variance portfolios

Proposition. Assume b = e>Σ−1µ 6= 0.

• Every mean-variance portfolio xρ, ρ ∈ R, is a linear combination of the global
minimum variance portfolio xρgmv and the portfolio

x(0) =
1

e>Σ−1µ
Σ−1µ.

• Every weighted linear combination of xρgmv and x(0) is a mean-variance portfolio.

Proof. From the derivation of the mean-variance portfolio we know, see (14),

xρ = −Σ
−1

(λ1e+ λ2µ) = Σ
−1

(e,µ)

(
−λ1

−λ2

)
,

and the Lagrange multipliers are given by, see (15),(
−λ1

−λ2

)
= A

−1

(
1

ρ

)
=

1

ac− b2

(
c− bρ
−b+ aρ

)
.
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Case 1: Choose ρ = ρgmv = b/a. This provides for the Lagrange multipliers

(
−λ1

−λ2

)
= A

−1

(
1

ρgmv

)
=

1

ac− b2

(
c− b2/a

0

)
=

(
1/a

0

)
.

Therefore, the global minimum variance portfolio is given by

xρgmv =
1

a
Σ
−1
e =

1

e>Σ−1e
Σ
−1
e.

Case 2: Choose ρ = ρ0 = c/b, which, by assumption, is well-defined. This provides for the

Lagrange multipliers(
−λ1

−λ2

)
= A

−1

(
1

ρ0

)
=

1

ac− b2

(
0

−b+ ac/b

)
=

(
0

1/b

)
,

and

x
(0)

= xρ0 =
1

b
Σ
−1
µ =

1

e>Σ−1µ
Σ
−1
µ.

Remark that xρgmv and x(0) are mean-variance portfolios and ρgmv 6= ρ0, because A is positive

definite (ac− b2 6= 0).

We are now ready to prove the proposition. Choose ρ ∈ R. There exist α ∈ R such that
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ρ = αρ0 + (1− α)ρgmv. We then have by linearity

xρ = Σ
−1

(e,µ)A
−1

(
1

ρ

)
= Σ

−1
(e,µ)A

−1

(
1

αρ0 + (1− α)ρgmv

)
= αΣ

−1
(e,µ)A

−1

(
1

ρ0

)
+ (1− α)Σ

−1
(e,µ)A

−1

(
1

ρgmv

)
= αx

(0)
+ (1− α)xρgmv. �

Remarks.

• We have proved that all mean-variance optimizers hold the same two portfolios
x(0) and xρgmv, only their shares α and 1 − α in these two portfolios differ
according to their required target returns ρ. We can interpret this as a herding
effect because all these financial agents have the same asset strategy.

• This behavior will also be the basis of the capital asset pricing model (CAPM)
formula in the next chapter.

• Note that implicitly we assume that all these financial agents work with the same
parameters µ and Σ.
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• Markowitz With Riskless Asset
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Assumptions for model with riskless asset

Model Assumptions. There is one riskless asset R0 = µ0 ∈ R and there are n risky
assets with returns R = (R1, . . . , Rn)> having finite second moments such that

(A1) µ = E[R] ∈ Rn, and there exist 1 ≤ j ≤ n such that µj 6= µ0;

(A2) Σ = Cov(R) ∈ Rn×n is positive definite.

(“=”) Choose target return ρ ∈ R, the mean-variance portfolio is

x̃ρ = arg min
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃=ρ

x>Σx.

(“≥”) We can also study the efficient portfolio for r ∈ R

x̃+
r = arg min

x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃≥r
x>Σx.
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Reformulation of the problem with riskless asset
Note that the riskless asset does not appear in the objective function x>Σx:

x̃+
r = arg min

x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃≥r
x>Σx.

Therefore, we can solve this problem in two steps:

B Step 1. Solve the following problem for expected excess return re = r − µ0

x+
r = arg min

x∈Rn; x>µe≥re
x>Σx,

that is, we drop component x0 and normalization ẽ>x̃ = 1. This is taken care off in
Step 2. Moreover, we only consider excess returns above the riskless rate µ0

x̃>µ̃ = x̃> (µ̃− µ0ẽ+ µ0ẽ) = x>µe + µ0,

under normalization ẽ>x̃ = 1 and where we set excess returns µe = µ− µ0e.

B Step 2. Set (x̃+
r )0 = 1− e>x+

r .
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Reformulation of the Markowitz problems

(“=”) Choose target return ρ = ρe + µ0 ∈ R, the mean-variance portfolio is

xρ = arg min
x∈Rn; x>µe=ρe

x>Σx.

Moreover, portfolio normalization is achieved by (x̃ρ)0 = 1− e>xρ.

(“≥”) We can also study the efficient portfolio for r = re + µ0 ∈ R

x+
r = arg min

x∈Rn; x>µe≥re
x>Σx.

Moreover, portfolio normalization is achieved by (x̃+
r )0 = 1− e>x+

r .
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Calculation of the efficient portfolio

• Define the Lagrange function with Lagrange multiplier λ and with ρe ≥ re

L(x, λ, ρe) = −1

2
x>Σx− λ(x>µe − ρe).

• Solving the Markowitz problem “≥” requires solving the following KKT conditions

∂L(x, λ, ρe)

∂x
= − Σx− λµe = 0,

∂L(x, λ, ρe)

∂λ
= −

(
x>µe − ρe

)
= 0,

∂L(x, λ, ρe)

∂ρe
= λ ≤ 0,

(ρe − re)λ = 0.

Again, we only solve the Lagrange problem formally which corresponds to the first
two KKT conditions, and the full KKT solution is obtained graphically.
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Calculation of the mean-variance portfolio

• The first KKT condition gives us, note that Σ is positive definite,

x = −λΣ
−1
µ
e
.

• Inserting this into the second KKT condition gives us

ρ
e

= (µ
e
)
>
x = −λ(µ

e
)
>

Σ
−1
µ
e
.

• Because of assumption (A1), µe cannot be the zero vector, which allows us to calculate Lagrange

multiplier λ. As a consequence

xρ =
ρe

(µe)>Σ−1µe
Σ
−1
µ
e
.

• We calculate the variance of the mean-variance portfolio xρ

Var(x
>
ρR) = x

>
ρ Σxρ =

(
ρe

(µe)>Σ−1µe

)2

(µ
e
)
>

Σ
−1

ΣΣ
−1
µ
e

=
(ρe)2

(µe)>Σ−1µe
.
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Mean-variance portfolio with riskless asset

Theorem. The mean-variance portfolio x̃ρ for target return ρ = µ0 + ρe is given by

xρ =
ρe

(µe)>Σ−1µe
Σ−1µe and (x̃ρ)0 = 1− e>xρ.

We have mean E[x̃>ρ R̃] = x̃>ρ µ̃ = ρ and E[x̃>ρ R̃
e
] = x>ρ µ

e = ρe, and variance

Var(x̃>ρ R̃) = Var(x>ρR) =
(ρe)2

(µe)>Σ−1µe
≥ 0.

• Remark: The variance of the mean-variance portfolio x̃>ρ R̃ is a quadratic function
in the required expected excess return ρe.

• To compare the two cases (with riskless versus without riskless) we will need

(µe)>Σ−1µe = (µ− µ0e)>Σ−1(µ− µ0e) = µ2
0a− 2µ0b+ c.
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Mean-variance (MV) boundary
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Efficiency frontier (EF)
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Efficient portfolio with riskless asset

Theorem. The efficient portfolio x̃+
r for target return r = µ0 + re is given by

x+
r =

re ∨ 0

(µe)>Σ−1µe
Σ−1µe and (x̃+

r )0 = 1− e>x+
r .

We have mean E[(x̃+
r )>R̃] = (x̃+

r )>µ̃ = r ∨ µ0 and variance

Var((x̃+
r )>R̃) = Var((x+

r )>R) =
(re ∨ 0)2

(µe)>Σ−1µe
≥ 0.
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MV boundary: with vs. without riskless asset
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Tangential portfolio

Definition. The mean-variance portfolio x̃ρ ∈ Rn+1 with x>ρ e = 1 is called
tangential portfolio and its return is denoted by ρtan.

• The above implies (x̃ρ)0 = 0, i.e., zero investments into the riskless asset.

• We need to prove existence and uniqueness.

Proposition. Assume ρgmv = b/a 6= µ0. There exists a unique tangential portfolio
x̃tan = x̃ρtan with

ρtan = µ0 +
(µe)>Σ−1µe

(µe)>Σ−1e
=

(µe)>Σ−1µ

(µe)>Σ−1e
=

c− µ0b

b− µ0a
.

Proof. If tangential portfolio exists, it has to be of the form

xρ =
ρe

(µe)>Σ−1µe
Σ
−1
µ
e

and x
>
ρ e = 1,
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for some ρ = µ0 + ρe. Merging these two identities gives us requirement

1 =
ρe

(µe)>Σ−1µe
(µ

e
)
>

Σ
−1
e.

The claim follows, once we prove that the last term is different from zero. We have

(µ
e
)
>

Σ
−1
e = (µ− µ0e)

>
Σ
−1
e = b− µ0a 6= 0,

where the last step follows from the assumptions.
�

Remarks.

• There is a singularity in parametrization ρgmv = b/a = µ0.

• We have under ρgmv 6= µ0:

ρgmv =
µ>Σ−1e

e>Σ−1e
= µ0 +

(µe)>Σ−1e

e>Σ−1e
= µ0 +

(µe)>Σ−1µe

e>Σ−1e

1

ρetan

,

thus, ρgmv > µ0 if and only if ρetan > 0.
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Riskless rate vs. global minimum variance rate
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Both models are mathematically valid, however, economically only ρgmv > µ0 is

sensible. Therefore, model calibration should provide b/a > µ0.
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• Further Considerations
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Further budget constraints in portfolio optimization

• Choose target return r ∈ R, the efficient portfolio is

x̃Cr = arg min
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃≥r, x̃∈C

x>Σx,

where C ⊂ Rn+1 is a set that poses further restrictions.

• Typically, C is a convex set which makes optimization still feasible. We give some
examples:

? no short-selling C = {x ∈ [0, 1]n;
∑n
j=1 xj ≤ 1} (unit simplex);

? bounded L1-norm C = {x ∈ Rn;
∑n
j=1 |xj| ≤ 1} (LASSO regularization);

? bounded L2-norm C = {x ∈ Rn;
∑n
j=1 x

2
j ≤ 1} (ridge regularization),

the latter two are borrowed from regression modeling in statistics.

Note that C needs to be seen in conjunction with normalization ẽ>x̃ = 1.
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Further budget constraints in portfolio optimization
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An L2 constraint is fundamentally different from an L1 constraint because the

former is differentiable. The latter leads to sparsity in portfolio selection, meaning,

that certain assets will not be chosen at all, whereas under the former the weights

can be very small. We refer to lectures on regularization in regression modeling.
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Revisit of exponential utility and Gaussian returns

• As a motivation (and a motivation, only) we have started from the exponential
utility function and multivariate Gaussian returns R. This provides us with (note:
we drop the expected return condition)

x̃ = arg max
x̃∈Rn+1; ẽ>x̃=1

E[u(W1)]

= arg max
x̃∈Rn+1; ẽ>x̃=1

− 1

α
exp

{
−αw0

(
1 + x̃>µ̃

)
+
α2

2
w2

0 x
>Σx

}

= arg max
x̃ρ∈Rn+1; ρ∈R

− 1

α
exp

{
−αw0

(
1 + x̃>ρ µ̃

)
+
α2

2
w2

0 x
>
ρ Σxρ

}

= arg max
x̃ρ∈Rn+1; ρ∈R

− 1

α
exp

{
−αw0 (1 + ρ) +

α2

2
w2

0

(ρe)2

(µe)>Σ−1µe

}
.

This shows that the optimal return ρ = µ0 + ((µe)>Σ−1µe)/(αw0) > µ0 is a
decreasing function of risk aversion α and initial wealth w0, i.e. select ρ vs. α.
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• Asset and Liability Management in Insurance
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Asset and Liability Management (ALM) in Insurance

• We are considering the idealized situation of fully diversified insurance technical
risk, so that we are only left with a financial portfolio: assume that the liabilities
can be described by a portfolio z̃ ∈ Rn+1 with z̃>ẽ = 1.

• Assume we want to choose an investment strategy x̃ ∈ Rn+1 that provides an
extra return r ∈ R+ above z̃>µ̃ at “minimal ALM risk”.

• This motivates ALM strategy

x̃r = arg min
x̃∈Rn+1; ẽ>x̃=1; x̃>µ̃≥z̃>µ̃+r

(x− z)>Σ(x− z)

= arg min
x∈Rn; x>µe≥z>µe+r

x>Σx− 2z>Σx,

the latter optimization drops the first component by setting (x̃r)0 = 1− x>r e.
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Lagrange problem

• We start with the Lagrange problem. The Lagrange function is given by

L(x, λ, r) = −1

2
x>Σx+ z>Σx− λ(x>µe − (z>µe + r)).

• The first KKT condition gives us, note that Σ is positive definite,

x = z − λΣ−1µe.

• Inserting this into the second KKT condition gives us

z>µe + r = (µe)>x = z>µe − λ(µe)>Σ−1µe.

• Because of assumption (A1), µe cannot be the zero vector, which allows us to
calculate Lagrange multiplier λ. As a consequence

xr = z +
r

(µe)>Σ−1µe
Σ−1µe.
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ALM problem solution

• The portfolio with extra return r ≥ 0 at minimal ALM risk is given by

xr = z +
r

(µe)>Σ−1µe
Σ−1µe.

• We calculate the ALM risk for r ≥ 0

Var
(
(xr − z)>R

)
=

r2

(µe)>Σ−1µe
.

• In solvency considerations extra return through ALM mismatch means extra risk,
and the latter formula quantifies the size of this extra risk.
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