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1. Administrative matters
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About the lecturer: Peter Blum
Educational background:

I Professional degree in electronics and software engineering.

I Diploma in mathematics from ETH Zurich.

I PhD in financial and insurance mathematics from ETH Zurich [3].

I Chartered Financial Analyst (CFA), CFA Institute.

I Fully qualified actuary (Aktuar SAV) of the Swiss Actuarial Society

Professional experience:

I Industrial software engineering at Landis & Gyr and Siemens.

I Asset / Liability Management, research and financial engineering at Zurich Re,
then Converium (now Scor).

I With Suva - The Swiss National Accident Insurance Fund since 2005, initially
as an analyst, then heading teams in asset allocation, treasury and research.

I Deputy head of portfolio management during the Great Financial Crisis.

I Chief Risk Officer and Chief of Staff of the Finance Department since 2011,
with responsibilities both on the asset and on the liability side.

I Also heavily involved in the strategic management of the Suva Pension Fund.
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Institutional background

Suva - The Swiss National Accident Insurance Fund (figures as of 2019)

I Provider of compulsory accident insurance for the secondary and public sectors
in Switzerland since 1918.

I 2.067 million insured persons in 130’000 insured companies and institutions.

I 479’746 cases of accident and professional disease processed.

I Benefits of CHF 4.5 billion paid, including medical costs, daily indemnities and
83’709 disability and survivors’ pensions totaling CHF 1’648 million.

I Assets under management of CHF 53.8 billion.

Suva Pension Fund (figures as of 2019)

I Pension fund according to Swiss law (2nd Pillar) for the employees of Suva, in
operation since 1985.

I 3’958 active and 2’121 retired members.

I Contributions of CHF 115 million, benefits of CHF 111 million.

I Assets under management of CHF 3.3 billion.
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Course schedule

Lectures every Wednesday afternoon from 16:15 to 18:00

I Lectures will take place online via Zoom.

I Lectures will be recorded, and recordings will be available to students.

I Changes in course schedule will be announced by e-mail.

Lecturer available for questions after the lectures and during the break.

Otherwise: peter.blum@math.ethz.ch

Course language: English.
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Documentation

Slide presentations as made available on the ETH web platform plus whiteboard
notes made in the lectures.

Slides are made such that they can be printed black-and-white and 2-up without
loss of information.

Not all presentations have been published yet. Publication of further chapters or
revised versions of already-published chapters will be announced by e-mail.

If you find mistakes in the presentations, please tell the lecturer.

Excel sheets and R code made available on the web platform are for illustration
only.

References given, unless otherwise stated, are for information only.
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Exams

Oral exam of 30 minutes.

During the ordinary exam session (next one: January 25 to February 19, 2021).

Examination language: English (German may be available upon demand).

Further information and instructions in the last lecture.
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2. Properties of social insurance
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Risks covered by social insurance

The most common forms of social insurance include

I Old-age provision, i.e. pension insurance. In its capital-based variant the most
important type of social insurance covered in this course.

I Health insurance, at least the basic, compulsory part of it.

I Accident insurance, if it is separate from health insurance. May be further sub-
divided into insurance against occupational accidents and diseases (Workers’
Compensation) and insurance against spare-time accidents.

I Disability insurance, to the extent that it is not yet covered by other types of
insurance providers.

I Unemployment insurance.

I Etc. (In Switzerland, for instance, building / fire insurance is essentially also
a type of social insurance.)

Organization, benefits and financing of the social insurance system vary greatly
from country to country.
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Properties of social insurance

Social insurance is usually mutually compulsory, i.e. clients must take out the
insurance, and insurers must accept the clients:

I There is a defined market; growth corresponds to the growth of the client base
as specified by law.

I No risk selection; in particular, no adverse selection. Insurers can and must
insure both ”good” and ”bad” risks.

I On the other hand, there is an assured client base for the insurer over a long
time, which is beneficial for long-term planning.

Defined insurance benefits for defined insured risks:

I Little to no room for product design.

I No growth opportunities through product innovation.

Generally high regulation density; usually regulation through special laws and spe-
cial regulatory bodies differing from the ones for private insurance. This may include
special accounting standards.
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Social insurance institutions are often not publicly listed companies. Many social
insurance institutions have a special legal status:

I Swiss pension funds are usually foundations, legally and financially separated
from their sponsoring institutions. There is also a legal obligation to keep the
foundation funded. This is an extremely effective means of risk management.

I Many social insurance institutions are outright governed by special law, e.g.
also Suva.

I But, in some cases, also normal publicly listed companies or private mutual
societies may be carriers of social insurance.

I However, in general, analytic approaches based on the economic theory of the
firm (see e.g. [6]) are not applicable in a social and pension insurance context
and will not be discussed any further in this course.

Social insurance is usually not-for-profit, but financial stability and financial sus-
tainability are of utmost importance:

I Therefore, social insurance is still insurance - even under particularly demanding
conditions - and thus a valid field for actuarial reasoning.

I We do not consider social benefits that are paid from the general public budget
and, hence, are not insurance in our sense.

I Limited profit-taking may be allowed if private companies provide social insur-
ance services, in order to compensate them for their cost of capital.
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The most important feature of social and pension insurance, however, is the often
very long time horizon:

I Think of pension insurance: The saving process starts e.g. at age 25, whereas
life expectancy is above 80 (and increasing), with a substantial chance for
people to make it well into their nineties.

I Taking into account disability and long-term care, the time horizons in accident
insurance are by no means shorter.

I Or think of asbestos-related diseases: a malignant mesothelioma may break
out 20 or 40 or even more years after the actual exposure.
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Illustration: life expectancy

Pension insurance and also other forms of social insurance must remain available
over the entire life span of their clients.
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Basic financing modes

For pension insurance, there are two basic financing modes:

Pay-as-you-go:

I Current benefits are paid from current contributions.

I Current contributors acquire the right to receive benefits in the future.

I No (or no substantial amount of) money is accumulated. Hence, there are
no (substantial) investment proceeds that contribute to the financing, and no
risks either from investing the money.

Capital-based insurance:

I Contributions of each contributor are accumulated and then used to pay old-
age benefits for that person when they are due.

I While being accumulated, the money is invested. This generates investment
proceeds that are a source of funding.

I Substantial financial risk may arise from the investment of the accumulated
contributions.
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Illustration: pay-as-you-go
Pay-as-you-go is basically an inter-generational contract.
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Illustration: capital-based insurance
In capital-based insurance, each generation (in principle) cares for itself.
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Illustration: capital-based old-age insurance process
Our big question: How much can we expect from the investment proceeds? And
what investment risk do we take in turn?
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3. About this course
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Focus and goal of this course

Since substantial financial risk only arises in the capital-based setup, we will focus
on the latter and we will not treat pay-as-you-go any further.

Given the properties of social and pension insurance as outlined before, we will have
to work in a long-term, multi-period framework. This represents a big challenge:

I Financial risk in short-term, single-period and asset-only setups is very well
understood; see [5].

I Financial risk in a long-term, multi-period setup and in the presence of liabilities
is less well-understood, and some original reasoning will be necessary.

We will take a micro perspective, i.e. the point of view of a single social insurance
institution or pension fund. This is the situation that actuaries will most likely be
faced with in practice.

Macro considerations aimed at designing entire pension systems are undoubtedly
also interesting, but beyond the scope of this course. See [2] for more on this.
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About stochastic simulation
In practice, settings are usually too complicated for comprehensive analytical tractabil-
ity. Therefore, stochastic simulation is usually applied as a tool of analysis.

Hence, a solid understanding of the methods and numerics of stochastic simulation
is indispensable for an analyst wanting to solve practical problems related to financial
risk in social and pension insurance. A good textbook is e.g. [1].

I The usefulness of many studies is hampered or even negated by technical mis-
takes such as too few simulation runs, lack of care for variance and dependence,
lack of care for the tails, etc.

Numerical quality is necessary, but not sufficient. Most importantly, models must
be well-designed, i.e.

I They must be parsimonious and focus on the really important influence factors
and distinguish them from the less relevant ones.

I They must treat the relevant influence factors properly.

I In particular, they must give due care to the dependencies and the interplay
between the influence factors.

In brief, good models must be simple, focused on the relevant factors and risk
measures, and modular. This is where this course attempts to add value.
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Call from practice:

If you have to present important results in front of a board of directors or trustees
(which usually mainly consists of non-quantitative people) you must:

I perfectly understand what you are talking about, and

I be able to explain everything in simple, understandable and conclusive words.

If you are able to do this, people will likely accept your proposals, and they will
likely trust the scientific models underneath the conclusions, even if they cannot
understand them in detail.

Two voices on this topic:

I ”Make things as simple as possible, but not simpler.” (Attributed to Einstein)

I ”Whereof one cannot speak, thereof one must remain silent.” (Wittgenstein,
Tractatus logico-philosophicus)
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Concept of this course
Our focus will be on Asset / Liability Management (ALM), i.e. the interface be-
tween assets and liabilities, throughout the course. For assets and liabilities on a
standalone basis, there are other courses.

We will develop a relatively simple modeling framework that focuses on the top-
level influence factors, policy variables and risk measure as well as on their interplay.
This modeling framework abstracts, but comprises many subordinated details.

Under some assumptions, we will obtain an analytically tractable model that pro-
vides closed-form solutions for a number of important questions. In this analytic
model, we will be able to develop a solid understanding of the most relevant ALM
factors and their interplay:

I required return / liability growth rate
I expected return
I risk-taking capability
I short-term (investment) risk
I long-term (financial) risk

The most interesting and most intriguing aspect will be the relationship between
short-term and long-term risk. We will see that reducing short-term risk will not
necessarily reduce long-term risk.
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On good risk management

Good risk management is not simply the avoidance or reduction of risk. Good
risk management actually means considerate risk-taking with long-term financial
stability as the goal.

The tools developed and the insights gained in the analytical framework are also
useful in more general settings where stochastic simulation must be used:

I They allow to build well-focused and well-structured models.

I They provide useful analytics to assess the financial condition of an institution.

I They allow to better understand and appraise the outcomes of studies of all
kinds and to draw valid conclusions.

Very fundamentally, it is not the goal of this course to provide cookbook-type
recipes. This is rather about enabling people to think independently and in a well-
structured manner about problems related to financial risk in a social and pension
insurance context and to develop valid and sensible tailor-made solutions for these
problems.
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Mathematical prerequisites

While this course aims at being as self-contained as possible, some mathematical
knowledge is nevertheless taken for granted:

I Knowledge of basic concepts of probability theory and statistics on the level of
an undergraduate course.

I Knowledge of calculus and linear algebra on the level of undergraduate courses.

I Other concepts will be introduced in due course.

We will see that even fairly simple mathematical reasoning - when applied rigorously
and focused on the relevant factors - can provide very deep and useful insights.

This is very useful nowadays when plentiful computing power allows to create sim-
ulation models that overwhelm the analyst with a plethora of more or less useful
information. Staying focused on the relevant factors and issues is really crucial.

It would be possible to formalize the problems treated in this course in much more
sophisticated manners (e.g. in continuous time with diffusion processes and an
incomplete-markets setup); this is, however, still work in progress.
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4. Assuring future pensions: the danger of taking no risk
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Introduction

The following presentation is intended to motivate the most important problems,
notions and concepts that will be treated throughout this course.

It is from a talk given on Risk Day 2017 at ETH Zurich.

It specifically shows the situation of Swiss pensions funds. But it is representative
for many other capital-based social insurance institutions worldwide.
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The Task: Financing Future Pensions

Let t denote time in years. We have some stream of future promised cashflows
C = (C1, . . . , CT )

′ ∈ RT , assumed to be deterministic here, e.g.:

At time t = 0 (i.e. now), we must put up an amount A0 of assets in such a way that
the payment of all future cashflows Ct is assured. These assets can be invested,
and the returns from doing so must be taken into account.

Peter Blum (Suva) I Introduction September 13, 2020 28 / 44



First Approach: Immunization

Let P (0, s) denote the value at time t = 0 of a zero-coupon bond (ZCB) maturing
at time t = s, with P (s, s) = 1.

Now, we replicate the cashflow stream C = (C1, . . . , CT )
′ ∈ RT by using ZCBs:

At time t = 0 and for each time t > 0, we buy Ct units of the ZCB maturing at t,
at a price of P (0, t) per unit. The total cost of this is

A0 = PVZCB
0 (C) =

T∑
t=1

P (0, t)Ct

In the absence of credit risk, the payment of all future promised cashflows Ct is
thus assured. That is, we have managed to create an immunized position at time
t = 0, and all subsequent financial risk is eliminated.

Therefore, the immunized value PVZCB
0 (C) is a viable valuation of the cashflow

stream C.

Note: There is no ZCB market in CHF, but an essentially equivalent portfolio can
be constructed from coupon bonds, interest rate swaps and bond futures - at least
for time horizons not exceeding 30 years.

Peter Blum (Suva) I Introduction September 13, 2020 29 / 44



The Cost of Immunization
We use the ZCB curve for the CHF as mandated by the Finma for the SST 2017:

Based on this curve, we obtain the following immunized value for our example
cashflow stream:

PVZCB
0 (C) =

T∑
t=1

P (0, t)Ct = 20’726 MCHF

This corresponds to 95% of the sum of undiscounted cashflows of 21’730 MCHF.
That is, we must put up almost the entire amount up front; there is only a very
small contribution of interest rates to the financing.
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The Statutory Setup of Swiss Pension Funds
In reality, Swiss pension funds do not use market-derived ZCB curves for the valu-
ation of their liabilities. Rather, they use a constant discount rate λ:

L0 = PV0(C, λ) =

T∑
t=1

Ct
(1 + λ)t

This discount rate λ, called technical interest rate, is fixed by the board of trustees
of each pension fund.

In order to make this comparable to the immunized approach, we can specify the
equivalent immunized discount rate

λZCB := IRR
(

PVZCB
0 (C), C

)
which equates the two valuations, i.e.

PV0

(
C, λZCB

)
= PVZCB

0 (C)

In our specific example, we have λZCB = 0.35%, and this would also be the order
of magnitude for other Swiss pension funds.
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Technical Interest Rate: Development & Current Situation

From Swisscanto, Schweizer Pensionskassenstudie 2020 [7] (520 institutions with
total AuM of CHF 772 bln. and 3.8 mln. insured persons).

Technical interest rates λ were reduced considerably over the past ten years. But
with values well above 2%, they are far away from values in the immunized case,
which would be below 0.5%.
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The Effective Situation of Swiss Pension Funds
Swiss pension funds are far away from immunized positions. Achieving this would
have a strong impact on the valuation of their liabilities; in our example:

Achieving immunized positions would thus require drastic measures:

I Either the injection of large sums of additional financing.

I Or severe reductions of benefits: At λ = 0.35%, conversion rates (UWS)
would be below 4%, whereas at λ = 2%, they are between 4.5% and 5%.

Thus, rather than immunizing their liabilities, Swiss pension funds try to finance
their higher discount rates by running mixed investment strategies with considerable
shares of risky assets such as equities or real estate.

This then creates financial risk, i.e. the possibility that some of the promised
payments may not be made due to investment losses. How can this situation be
dealt with?
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The Essential Asset / Liability Management Setup

With A0 and L0 given, we consider the following generic Asset / Liability model:

At = At−1(1 +Rt) + Ct
Lt = Lt−1(1 + λ) + Ct

}
for t ∈ {1, . . . , T}

At = value of assets at time t

Lt = value of liabilities at time t

Ct = net cashflow from insurance, i.e. contributions - paid benefits - costs

λ = intrinsic growth rate of liabilities; here equal to the technical interest rate

Rt = investment returns: Rt ∼ iid with E [Rt] ≡ µ and Var [Rt] ≡ σ2 <∞

That is, the liabilities develop deterministically, whereas the assets follow a random
walk. The quantity of interest for further investigations is the funding ratio, i.e.

FRt =
At
Lt

This is then also a random walk. We would like to have FRt ≥ 1, i.e. the assets at
time t cover the liabilities from time t on.
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Long-term Financial Risk

Long-term financial risk consists of the possibility that some of the promised cash-
flows may not be paid due to adverse investment returns Rt over one or several
periods. Quantification of long-term financial risk is, therefore, associated with the
state of underfunding, i.e. FRτ < 1 for some fixed time horizon 1 ≤ τ ≤ T .

The most widespread risk measure used is the probability of underfunding, i.e.

ψτ := P [FRτ ≤ 1|FR0]

As usual in quantitative risk management [5], we would like to have a risk measure
that also incorporates the extent of the underfunding. To this end, we define the
Expected Funding Shortfall, i.e.

EFSα,τ = 1−E [FRτ |FRτ ≤ qα(FRτ )]

Here, qα(FRτ ) is the left α-quantile of the distribution of FRτ given FR0. We
consider the difference to 1 because this is the funding shortfall that must be filled
up in order to re-attain fully-funded status.
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A Simple Analytical Model for Long-term Financial Risk
If the fund is in equilibrium, i.e. Ct ≡ 0, and if we assume (somewhat dangerously)
that Rt ∼ iid N (µ, σ2), then FRτ given FR0 is log-normally distributed, and we
have for the probability of underfunding:

ψτ (FR0, λ, µ, σ
2) = Φ

(
− log FR0 + (µ− λ)τ

σ
√
τ

)
and for the Expected Funding Shortfall [4]:

EFSα,τ (FR0, λ, µ, σ
2) = 1− 1

α FR0 exp
{(
µ− λ+ 1

2σ
2
)
τ
}

Φ
(
Φ−1(α)− σ

√
τ
)

These formula allow to get a good intuition of the interplay between the various
variables, in particular:

∂ EFSα,τ
∂ λ > 0 ⇒ required return

∂ EFSα,τ
∂ µ < 0 ⇒ expected return

∂ EFSα,τ
∂ FR0

< 0 ⇒ risk-taking capability

∂ EFSα,τ
∂ σ > 0 under realistic conditions ⇒ short-term investment risk
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The Task of Asset / Liability Management

If we cannot avoid long-term financial risk altogether by immunizing, we should at
least set up our fund in such a way that long-term financial risk is minimized.

I The main policy variable is the technical interest rate λ that can be fixed by
the board of trustees.

I Moreover, the investment strategy can be designed so as to attain a certain
expected return µ. For a sustainable funding, we must have µ ≥ λ , and we
specify here that µ = λ.

However, given the choices of λ and µ = λ, the other variables cannot be chosen
freely anymore:

I Since initial assets A0 are given, the initial funding ratio FR0 depends on the
technical interest rate λ, i.e. FR0 = FR0(λ). This is the liability profile, and
its properties are determined by the liabilities of the pension fund.

I A certain level of return µ = λ entails a certain level of short-term invest-
ment risk σ, i.e. σ = σ(µ) = σ(λ). This is the risk / return profile, and its
properties are determined by the financial markets and by applicable invest-
ment constraints.

We must, therefore, optimize long-term financial risk under these contingencies.
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The Liability Profile and the Risk / Return Profile
In realistic settings, the liability profile and the risk-return profile are both convex:

Liability profile: Risk / return profile:

In principle, these developments are compatible with one another:

I Higher technical interest rate λ ⇒ higher required return µ ⇒ higher short-
term investment risk σ, but also higher risk-taking capability FR0.

I And vice versa.

The question now is which one of the two profiles dominates, and whether there
is an optimum in terms of long-term financial risk somewhere within the range of
feasible policies.
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The Full Picture in the Analytical Model

Letting µ = λ, and plugging the liability profile FR0 = FR0(λ) and the risk / return
profile σ = σ(λ) into the formula for the Expected Funding Shortfall, we obtain:

EFSα,τ (λ) = 1− 1
α FR0(λ) exp

{
1
2 (σ(λ))

2
τ
}

Φ
(
Φ−1(α)− σ(λ)

√
τ
)

Thus, the Expected Funding Shortfall simply becomes a function of the technical
interest rate λ. This can be evaluated easily over a range of realistic values for λ.

The optimal technical interest rate λ∗ is then simply the one that minimizes the
Expected Funding Shortfall, i.e.

λ∗ = arg min
λ∈[µmin, µmax]

EFSα,τ (λ)

In more complex settings, evaluations along the exact same logic can be done by
using stochastic simulation.

The essential point is not the formula, but the logic with the liability profile (insti-
tutional side) and the risk / return profile (financial markets side).
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Minimizing Long-term Financial Risk

For our example and plugging in a risk / return profile that reflects current conditions
in the financial markets, we obtain the following result:

That is, it makes sense to fix a moderately elevated technical interest rate λ∗ and
to assume the associated short-term investment risk σ(λ∗) in order to minimize
long-term financial risk.
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Conclusions

Since the cost of immunization is currently too high, Swiss pensions fund are heavily
exposed to financial risk.

In the interest of their fiduciary duty, they should set themselves up in such a manner
that long-term financial risk is minimized.

This is, however, not necessarily achieved by choosing the lowest possible technical
interest rates and by assuming the lowest possible amounts of investment risk.

Fixing a higher technical interest rate and assuming more investment risk in the
short term may, at least to some extent, reduce financial risk in the long term.

Good strategic risk management is, thus, not necessarily myopic risk avoidance, but
rather considerate risk-taking with long-term financial stability in mind.

Bear in mind that the optimum always depends on the specific characteristic of the
institutions under investigation. Do only what you thoroughly understand based on
serious qualitative and quantitative analysis.
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Structure of the course

Chapter I Introduction

Chapter II Preliminaries

Chapter III Financing Liabilities

Chapter IV The Asset / Liability Framework

Chapter V The Lognormal Model

Chapter VI ALM Study 1 - Dealing with the Risk / Return Profile

Chapter VII ALM Study 2 - Incorporating Required Return

Chapter VIII ALM Study 3 - Valuation and Risk Management

Chapter IX Portfolio Construction and the Risk / Return Profile

Chapter X Synopsis, Wrap-up and Conclusions
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1. Cashflows and their properties
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Time scale conventions

A discrete time scale will be used throughout the course.
Let t denote time in years: t ∈ {0, 1, . . . , T} ⊆ N0 with final time T <∞.

Time t = 0 denotes the present, at which valuations usually take place; values t > 0
denote the future.

If t denotes a time interval, then this is to be interpreted as (t − 1, t]. Usually, it
suffices to identify t with the end of the respective year.

Note: All considerations in this course could easily be made also on quarterly,
monthly or even continuous time scales. For the ease of presentation, however,
only the yearly time scale will be used hereinafter.
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Cashflows

Let Ct ∈ R denote some promised cashflow that occurs at time t, e.g.

I one installment of an old-age or disability pension,

I a reimbursement of a medical treatment,

I a reimbursement for long-term care,

I an unemployment benefit.

By convention, the cashflow Ct always takes place at the end of year t.

Let C = (C1, . . . , CT )′ ∈ RT denote a stream of cashflows taking place over times
t ∈ {1, . . . , T}.

Special case: If Ct = c for all t, then C is called an annuity.

Attention: There is no universal convention regarding signs. When only liabilities
are considered, a positive sign may mean a cash outflow from the institution. In
other instances, a positive sign may denote an inflow, whereas a negative sign may
denote an outflow.
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Mean Time to Payment

Definition 1 (Mean Time to Payment (MTP))

Let C = (C1, . . . , CT )′ ∈ RT denote a stream of cashflows with Ct ≥ 0 for all t.
The Mean Time to Payment is defined as:

MTP(C) =

T∑
t=1

t Ct∑T
s=1 Cs

MTP is a weighted time to payment where each time t is weighted by the relative
contribution of the cashflow Ct to the total payment

∑T
s=1 Cs.

MTP is a useful summary statistic which is independent of any discount rates. It
measures the average time horizon of the cashflow stream.

If C is an annuity, then we have MTP(C) = T+1
2 . This is due to the fact that∑T

t=1 t = T (T+1)
2 .
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Time value of money
We stand at t = 0 and we must finance some cashflow Ct taking place at some
future time t > 0. Hence, we must incorporate the time value of money:

Let there be an account in which we can deposit money and which grants an interest
of δ, i.e. if we invest an amount M at t = 0, we have at t = 1:

M + δM = M(1 + δ)

And over several time periods, due to the compounding of interest, we have

M(1 + δ)(1 + δ) · · · (1 + δ) = M(1 + δ)t

If there is some set amount Ct at time t, we can equate

M(1 + δ)t = Ct

Solving for M , we obtain

M =
Ct

(1 + δ)t

M is the present value as of time t = 0 and with discount rate δ of the future
cashflow Ct. I.e. if we can set aside M at time t = 0 and if the interest rate δ is
guaranteed, then we end up with Ct at time t.
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Note: This whole course is basically about

1. selecting a sensible value for the discount rate δ, and

2. making sure that δ will actually be earned.

Note: In life insurance mathematics, one usually considers the so-called discount
factor v = (1 + δ)−1, and one considers this factor as deterministic and given; see
e.g. [4].

Note: In the past, one used to assume that δ > 0, and one used to make consid-
erable efforts to build interest rate models that avoid negative rates, see e.g. [1].
Nowadays, we must relax this assumption and also allow for negative interest rates
and discount rates.
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Present Value of a stream of cashflows

Definition 2 (Present Value)

Let C = (C1, . . . , CT )′ ∈ RT be a stream of cashflows, and let δ be a discount
rate. The Present Value of C as of time 0 is defined as

PV0(C, δ) =

T∑
t=1

Ct
(1 + δ)t

That is, each single cashflow is discounted back to time t = 0, and these discounted
values are summed up. Hence, if the discount rate δ is guaranteed, we can set aside
the amount PV0(C, δ) at time t = 0, and this suffices to finance all committed
cashflows Ct of C with certainty.

This formula can easily be generalized to some general valuation date s > 0:

PVs(C, δ) =

T∑
t=s+1

Ct
(1 + δ)t−s
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For general cashflows streams, the present value must be computed numerically;
see example spreadsheets. For regular cashflows, in particular for annuities, we can
obtain explicit formulae:

Proposition 1 (Present value of an annuity)

Let CT be a T -year annuity, i.e. CT = (c, . . . , c)′ ∈ RT , and let δ be the dis-
count rate with δ ∈ (−1,∞) \ {0}. Then we have:

PV0(CT , δ) =
c

δ

(
1− 1

(1 + δ)T

)

Proof: Using the definition of the present value, we have:

PV0(C, δ) = c

T∑
t=1

1

(1 + δ)t
=: c

T∑
t=1

vt for v =
1

1 + δ

Here, the vt form a geometric sequence (at)t with a1 = v and at+1/at = v.
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Proof: (cont’d) Therefore, we have for the T -th partial sum, see [2]:

T∑
t=1

vt = v
1− vT

1− v

Re-inserting v = 1
1+δ and rearranging, we obtain the claim. �

This formula and proof also work for negative discount rates, provided that they
are greater than -100% (which amounts to a full confiscation).

There are other such standardized cashflow streams in life insurance mathematics;
see [4] for more details.
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Internal Rate of Return

Definition 3 (Internal Rate of Return (IRR))

Let C = (C1, . . . , CT )′ ∈ RT be a stream of cashflows, and assume that its
present value is known to be PV ∗0 . Assume that there exists some discount rate
δ∗ such that PV0(C, δ∗) = PV ∗0 . Then, δ∗ is called the Internal Rate of Return,
formally IRR(C,PV ∗0 ).

The IRR is simply the discount rate that equates the present value of some given
cashflow stream to some given value:

PV0(C, IRR(C,PV∗0)) = PV∗0

When it comes to bonds, the IRR is also called yield to maturity, see next section.

When some promised cashflow stream C is specified, and when a certain amount
M of money is given to finance it, then IRR(C,M) is the discount rate that must
be guaranteed so that M suffices to pay C.

In general, the IRR must be determined numerically; when cashflows have opposing
signs, this can cause problems.
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Dependence of present value on discount rate
For a stream of cashflows C = (C1, . . . , CT )′ ∈ RT , the present value is given by

PV0(C, δ) =
∑T

t=1

Ct
(1 + δ)t

If Ct > 0 for all t, then PV0 decreases as δ increases, and vice versa.

Example: Consider an annuity with T = 20 and Ct = c = 1′000:

If we are able to sustain a discount rate of 5%, we have to put up 12’462 at time
zero to finance the annuity. If we are only able to sustain 2%, we have to put up
16’351, i.e. 31% more. These differences are dramatic. Therefore, it is crucially
important to choose the discount rate δ carefully.
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For a given cashflow stream C, the relationship δ 7→ PV0(C, δ) can be computed
explicitly. For the annuity example above, this looks as follows:

As one would expect from the formula, the relationship is non-linear.

In order to express the relationship between δ and PV0(C, δ) more concisely, there
exist the notions of duration and convexity.
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Duration of a stream of cashflows

Definition 4 (Duration)

Let C = (C1, . . . , CT )′ ∈ RT be a stream of cashflows with Ct > 0 for all t.
The Duration of C is then defined as

D(C, δ) = − ∂

∂δ
PV0(C, δ)

/
PV0(C, δ)

The duration is the relative change in value of C in response to an infinitesimal
change in the discount rate δ.

In the finance literature, this form of duration is called Modified Duration. If the Ct
do not depend on δ, it also equals the Effective Duration. It does, however, differ
slightly from the often-cited Macaulay Duration which equals (1 + δ)D(C, δ).

If useful, we can use the relationship D(C, δ) = − ∂
∂δ log PV0(C, δ).

The term − ∂
∂δPV0(C, δ) is the absolute change in value and often referred to as

the Dollar (or whatever currency you like) Duration.
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Proposition 2 (Duration of a stream of cashflows)

Under the assumptions of Definition 4, we have

D(C, δ) =
1

1 + δ

T∑
t=1

t Ct
(1 + δ)t

/
T∑
t=1

Ct
(1 + δ)t

Proof: Take first derivatives and rearrange terms. �

D(C, δ) can thus be interpreted as a specially weighted mean time to payment,
hence the name duration. One should, however, be careful with this interpretation.

If Ct > 0 tor all t, then D(C, δ) > 0 and ∂
∂δPV0(C, δ) < 0. I.e. PV0 decreases

whenever δ increases, and vice versa.

Attention: Care must be taken with the sign whenever using the duration.
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Convexity of a stream of cashflows

Definition 5 (Convexity)

Let C = (C1, . . . , CT )′ ∈ RT be a stream of cashflows with Ct > 0 for all t.
The Convexity of C is then defined as

K(C, δ) =
∂2

∂δ2
PV0(C, δ)

/
PV0(C, δ)

This is just the second order term, the change in the change of value.

Proposition 3 (Convexity of a stream of cashflows)

Under the assumptions of Definition 5, we have

K(C, δ) =
1

(1 + δ)2

T∑
t=1

t (t+ 1)Ct
(1 + δ)t

/
T∑
t=1

Ct
(1 + δ)t

Proof: Take second derivatives and rearrange terms. �

If the cashflows Ct are positive and and fixed, the convexity is always positive.
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Approximation formula

We can now use duration and convexity in the classical manner to make first or
second order Taylor approximations for the change of PV0(C, δ). Let δ0 denote the
starting point, and let ∆δ denote the change in discount rate. Then:

First order:

PV0(C, δ0 + ∆δ)− PV0(C, δ0)

PV0(C, δ0)
= −D(C, δ0)∆δ + o((∆δ)2)

Second order:

PV0(C, δ0 + ∆δ)− PV0(C, δ0)

PV0(C, δ0)
= −D(C, δ0)∆δ + 1

2 K(C, δ0)(∆δ)2 + o((∆δ)3)
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How good is this approximation in practice?

In the presence of significant non-linearity, the first-order approximation does rather
poorly for larger changes of the discount rate.
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Call from practice

Actual cashflow streams from social and pension insurance often exhibit signifi-
cant convexity. Hence, using duration alone as a measure for sensitivity against
changes of interest rate / discount rate may be misleading and dangerous. There-
fore, in practice:

1. Use explicit calculation of true present value if possible.

2. Or use at least the second order approximation.

Particularly, if larger changes of discount rates have to be dealt with.
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2. Bonds and yield curves
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Bond basics
Bonds are the most basic and most frequent type of security in which capital-based
social and pension insurance institutions invest the money that they hold in order
to cover their liabilities. For a comprehensive reference, see [3].

A (bullet) bond is a security by which an issuer (e.g. the Swiss Confederation)
takes on some amount of money P , called the Principal and promises to pay a fixed
Coupon c each year for a specified number of years N as well as to pay back the
principal at the time of Maturity, i.e. when the N years have expired.

Basically, the owner of the bond, e.g. a pension fund, extends a loan of P to the
issuer, e.g. the Swiss Confederation, and is indemnified for doing so by receiving
the regular coupon payments c. The loan is to be paid back in full at maturity.

The lifetime N of a bond is fixed at issuance. We are, however, more interested in
its residual lifetime at the time when we do the valuation. i.e. usually at t = 0.
We call this the Time to Maturity M .

I A 10-year bond (N = 10) issued 5 years ago (at t = −5) is now (at t = 0) a
bond with 5 years time to maturity (M = 5).

I The same holds for a 30-year bond issued 25 years ago.
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Hence, a bond is basically a standardized stream of cashflows:

In the terminology introduced before, we can, therefore, express the bond as follows:

C = (C1 = c, . . . , CM−1 = c, CM = c+ P )′ ∈ RM (1)

Thus, we can apply all the cashflow concepts introduced above also to bonds.

Outlook: One intuitive idea would be to match the cashflows of some bonds with
the promised cashflows from the insurance side in order to obtain an immunized
position. This will be looked at in the following chapter.
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For the time being, we make the following simplifying assumptions:

I There is no credit risk, i.e. we can be reasonably sure that all the payments
will actually be made.

I There is only one coupon payment per year.

I All payments take place at the end of the respective year.

Convention: We will always quote the principal P as 100. Thus, everything else
corresponds to a percentage of the principal. This corresponds to standard practice
in the bond markets. If we need a position of more than 100, we simply use several
units of the bond.
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Market price and Yield to maturity

A bond is a standardized security that can, in principle, be bought and sold in an
organized market at any time during its lifespan.

Let B0 denote the market price of a bond with cashflows C as in Formula 1 prevailing
at the valuation time t = 0. We can now determine the discount rate δ∗ that equates
the present value of the bond to its market price:

PV0(C, δ∗)
!
= B0 ⇔ δ∗ = IRR(C, B0)

In the bond world, this internal rate of return δ∗ is called Yield to Maturity and
abbreviated by R(0,M).

The yield to maturity is, in principle, the annual rate of return that can be achieved
if one buys the bond at price B0 at t = 0 and holds it up until maturity at time
t = M .

This is based on the assumption that the coupon payments c can be reinvested at
the interest rate R(0,M) between time t when they are made and maturity M .
This is not always realistic, as interest rates change over time.
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The traded price B0 of a bond is not necessarily equal to the par value P , and the
yield to maturity R(0,M) is not necessarily equal to the coupon rate c/P . Both
B0 and R(0,M) depend on supply and demand as they prevail in the market, e.g.:

For a bond with P = 100, the following nomenclature is common:

I A bond with a market price B0 < 100 is said to trade at a discount.

I A bond with a market price B0 > 100 is said to trade at a premium.

I A bond with a market price B0 ≈ 100 is said to trade at par.
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The yield curve
In the market, there are usually comparable bonds for a range of different maturities
M1 < M2 < . . . < Mn, each one with its traded price B0(Mi) and its yield to
maturity R(0,Mi). The graph {(Mi, R(0,Mi)) : i = 1, . . . , n} is called the
Yield Curve.

Example: Yield curve for bonds of the US Treasury as of August 2018:
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Yield curve shapes

Normally, the yield curve is upward-sloping: The longer you tie up your money, the
higher the yield to maturity that you get as a reward.

However, the yield curve may, at times, also be downward-sloping (”inverted”), or
it may be humped, or it may have even fancier shapes:

For sloped yield curves, the steepness of the slope is of considerable interest.
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Yield curve history
Over the past decades, yields have decreased dramatically over the entire range of
maturities; here e.g. the Swiss case:

This is a major problem for capital-based social and pension insurance institutions,
as we will see in the next chapters.
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Zero-coupon bonds
Coupon bonds as introduced are rather cumbersome due to the intermediate coupon
cashflows. A simpler alternative:

A Zero-Coupon Bond (ZCB) with maturity M pays the amount of 1 at maturity
M , and no coupons in between t = 0 and t = M . Let P (0,M) be the market price
of a ZCB at time t = 0. Applying the usual valuation method, we then must have
for some discount rate δ∗:

PV0

(
ZM , δ∗

)
= P (0,M) =

1

(1 + δ∗)M
or δ∗ =

1

P (0,M)1/M
− 1

The resulting discount rate δ∗ =: Z(0,M) is called Zero-Coupon Yield or also
Spot Rate. It has no underlying issues with reinvestment.

Convention: Zero coupon bonds are always quoted with a final value of 1.

Therefore, the price of a zero coupon bond can be directly used as an alternative
discount factor for a cashflow CT occurring at time T :

P̃V0(CT , Z(0, T )) := P (0, T )CT
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Based on this, we can express a coupon bond as a portfolio of zero-coupon bonds:

I For each time t ∈ {1, . . . , M}, we hold c units of a ZCB with maturity t.

I For t = M , we hold an additional P units of a ZCB with maturity M .

This ZCB portfolio produces exactly the same pattern of cashflows as a coupon
bond. Therefore, if the market is arbitrage-free, the traded price B0 of the coupon
bond must be equal to the price of the ZCB portfolio:

B0
!
=

M∑
t=1

c P (0, t) + P (0,M)P (2)

In most markets, zero coupon bonds do not actually exist. Formula 2, applied
to a number of different maturities can, however, be used to compute artificial
equivalent ZCB rates from the prices of actually traded coupon bonds by means of
a procedure called bootstrapping.

We will not treat this further here. ZCB curves are readily available from different
sources, e.g. from Bloomberg or also from supervisory authorities for statutory
purposes.

Peter Blum (Suva) II Preliminaries September 16, 2020 31 / 37



Example: Zero-coupon rate curves computed by FINMA for use in the Swiss Sol-
vency Test 2020:

Peter Blum (Suva) II Preliminaries September 16, 2020 32 / 37



Valuation based on ZCB curves

The valuation logic based on ZCB prices and rates as shown above can also be
applied to general cashflow streams, i.e. instead of computing

PV0(C, δ) =

T∑
t=1

Ct
(1 + δ)t

for a single discount rate δ, one can also compute

P̃V0(C) =
T∑
t=1

Ct P (0, t) =
T∑
t=1

Ct
(1 + Z(0, t))t

This amounts to applying a specific discount rate for each time t. If we start with
the latter approach, we can link this to the former one by letting

δ∗ = IRR(C, P̃V0) such that PV0(C, δ∗) = P̃V0(C)

δ∗ is then the equivalent single discount rate.
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Duration and convexity of bonds

Since bonds are simply streams of cashflows, we can apply the concepts of duration
and convexity directly to them.

For a coupon bond, we have C = (c, . . . , c, c + P )′ ∈ RM ; letting δ = R(0,M)
and using Propositions 2 and 3, we obtain:

D(C, δ) =
1

1 + δ

[
M∑
t=1

c t

(1 + δ)t
+

MP

(1 + δ)M

]/[
M∑
t=1

c

(1 + δ)t
+

P

(1 + δ)M

]

K(C, δ) =
1

(1 + δ)2

[
M∑
t=1

c(t+ 1)t

(1 + δ)t
+
M(M + 1)P

(1 + δ)M

]/[
M∑
t=1

c

(1 + δ)t
+

P

(1 + δ)M

]

For a zero coupon bond, the cashflow stream is C = (0, . . . , 0, 1)′ ∈ RM , and,
letting δ = Z(0, T ), the formulae simplify to:

D(C, δ) =
M

1 + δ
≈M and K(C, δ) =

M (M + 1)

(1 + δ)2
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Also with bonds, convexity is an issue, and second-order approximation should be
preferred over first-order approximation.
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Duration and convexity of a portfolio of bonds

Proposition 4 (Portfolio duration and convexity)

Assume that we hold n1 units of a bond C1 valued at PV 1
0 per unit, and n2 units

of a bond C2 priced at PV 2
0 per unit. Then we have for the combined position:

D(n1C1 + n2C2, δ) = w1D(C1, δ) + w2D(C2, δ)

K(n1C1 + n2C2, δ) = w1K(C1, δ) + w2K(C2, δ)

where wi =
niPV i

0

n1PV 1
0 + n2PV 2

0

for i ∈ {1, 2}.

Proof: Use ∂
∂δ

[
n1PV 1

0 + n2PV 2
0

]
= n1

∂
∂δ PV 1

0 + n2
∂
∂δ PV 2

0 , then divide by the

portfolio value n1PV 1
0 + n2PV 2

0 and rearrange.

Same procedure with second derivatives for convexity. �

This naturally generalizes to portfolios with n bonds. The relation only holds exactly
if all bonds have the same yield δ. Otherwise it is a (usually good) approximation.
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1. Introduction and overwiew
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The task

Let t ∈ {0, 1, . . . , T} for T <∞ denote time in years.

Assume that we have a stream C = (C1, . . . , CT )
′ ∈ RT of promised cashflows

with Ct ≥ 0 for all t. This can be e.g. a portfolio of old-age or disability pensions.
Assume, for the time being, that these cashflows are deterministic and known.

We stand at time t = 0 and must put up a portfolio of assets A0 such that the
payment of all cashflows Ct for all times t ∈ {1, . . . , T} is assured (at least with
high probability).

How can this be achieved?
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Example: cashflow stream

A typical cashflow stream in social and pensions insurance (albeit with an unusually
short time horizon, for simplicity’s sake):
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Näıve approach: bank account

Assume that there is a bank account which pays an annual interest rate δ. Then
we can put up the amount

A0 =

T∑
t=1

Ct

(1 + δ)t
(= PV0(C, δ))

and all future payments are assured; c.f. Section 1 of Chapter II.

Does this work? If the earning of the interest rate δ is guaranteed for the entire
time span t = 0, 1, . . . , T : YES.

Is the interest rate guaranteed? NO! It can actually vary quite considerably over
time. If this is the case, payment of all liabilities is no longer assured.

I in the 1980-ies: δ ≈ 4%

I around 2000: δ ≈ 2%

I now: δ ≈ 0%

This does not work. FORGET IT!
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Alternative: bonds

Recall from Section 2 of Chapter II that a bond is basically a standardized stream
of cashflows:

B = (c, . . . , c, c+ P )
′ ∈ RM

where c is the (annual) coupon, P is the principal and M is the number of years
to maturity, i.e. the redemption of the principal. We shall follow the convention of
Chapter II and always let P = 100.

By paying the market price B0 prevailing at t = 0, we can acquire the bond, i.e.
the right to receive exactly this stream of cashflows.

I Important: After the purchase, there is no more uncertainty about the cash-
flows ...

I ... under the tacit assumption that the issuer of the bond does not go bankrupt
until the maturity of the bond.

Ansatz: At time t = 0, we buy a portfolio of different bonds, composed in such a
way that their cashflows are equal to the liability cashflows to be financed.
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2. Cashflow matching and immunized value
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Bond portfolio

Assume that we have a bond market with N different bonds Bi, i ∈ {1, . . . , N}.
Each bond has its specific coupon ci and its specific maturity M i. We assume that
M i ≤ T for all i. Following the usual convention, we also assume that the principal
P i of each bond equals 100. That is, we have a number of standardized streams
of cashflows

Bi =
(
ci, . . . ci, 100 + ci

)′ ∈ RMi

We assume that all these bonds are (reasonably) free of credit risk, which is the
case e.g. for bonds of the Swiss confederation.

We stand at t = 0 as usual. All bonds are assumed to be traded in the market, with
current market prices Bi

0 for i ∈ {1, . . . , N}. This also means that each bond has
its yield to maturity

R(0,M i) = IRR
(
Bi, Bi

0

)
i.e. the discount rate that equates the present value of the cashflow pattern to the
price paid in the market.
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Cashflow matrix

Assume w.l.o.g. that 1 = M1 ≤ M2 ≤ · · · ≤ MN = T . Then, we can express
the cashflows in matrix form: B ∈ RT×N such that Bt,i expresses the cashflow of
bond i at time t:

B =



100 + c1 c2 · · · ci · · · cN

0 100 + c2
...

...
... 0

...
...

...
...

...
...

... ci
...

...
... 100 + ci

...
...

... 0
...

...
...

... cN

0 0 · · · 0 · · · 100 + cN



Peter Blum (Suva) III Financing Liabilities September 16, 2020 10 / 45



Example: bond market data

Market data from the Swiss bond market as of Summer 2018:
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Example: yield curve

Yield curve resulting from the bond market data:

This does not look like in the textbooks. But it is the reality that Swiss institutional
investors have to cope with nowadays.
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Example: cashflow matrix

Cashflow matrix resulting from the bonds indicated above:
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Immunization: idea

At time t = 0, from each bond Bi, we can buy ni units at the market price Bi
0.

This results in a portfolio

n := (n1, . . . , nN )
′ ∈ RN

Given the cashflow matrix B, this portfolio will produce a cashflow stream Bn ∈ RT

over time. If we manage to fix n in such a way that

Bn = C or (Bn)t = Ct for all t ∈ {1, . . . , T}

where Ct is the given liability cashflow at time t, then we have achieved the state
of immunization, i.e.

I We buy the portfolio n at time t = 0 for the price
∑N

i=1 niB
i
0.

I At each time t ∈ {1, . . . , T}, this portfolio gives us an income of (Bn)t.

I And this income is then used (and sufficient) to pay the cashflow Ct owed.

That is, by purchasing the portfolio n at time t = 0, we have covered all our
obligations for t ∈ {1, . . . , T}.
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Simple immunization
Let C = (C1, . . . , CT )

′ ∈ RT denote the liability cashflow stream.

Assume that we have exactly N = T different bonds Bi, i ∈ {1, . . . , N = T},
and each of these bonds matures in a different year. That is, for each single year
t ∈ {1, . . . , T}, we we have one bond with i = t and cashflow pattern

Bt =
(
ct, . . . , ct, 100 + ct

)′ ∈ Rt

This yields a cashflow matrix that is quadratic, i.e. B ∈ RT×T and that has
upper triangular form. If the coupon rates are non-degenerate, then B also has full
rank. With the portfolio vector n = (n1, . . . , nT )

′ ∈ RT , we obtain the following
condition for immunization:

Bn = C

and this has the (under these circumstances unique) solution

n = B−1C

The problem with this simple solution is that certain elements of this solution may
be negative, i.e. ni < 0 for some i ∈ {1, . . . , T}.
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This amounts to a short position in bond Bi. Such a short position can, in principle,
be implemented. But in the context of social and pension insurance, short positions
are often forbidden by law or regulation. And even if they are not forbidden, they
are not desirable for reasons related to operations and risk management.

Anyway, in realistic settings with longer time horizons than 10 years, it is usually
difficult or impossible to set up a cashflow matrix that is exactly upper triangular.

Therefore, we need a more general formulation of the immunization problem. It
must accommodate the constraint that n ≥ 0 (to be understood as ni ≥ 0 for
all components i), and it should also be able to deal with more general cashflow
matrices where N 6= T .

Note: A setting where each (reasonably measurable) cashflow can be perfectly
replicated by securities available in the market is called a complete market.
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General immunization problem

Let C = (C1, . . . , CT )
′ ∈ RT with Ct ≥ 0 for all t ∈ {1, . . . , T} be a given

stream of liability cashflows.

Assume that we have N bonds Bi with coupons ci and with maturities such that
1 = M1 ≤ · · · ≤ MN = T , each one with its market price Bi

0 and its yield to
maturity Ri(0,M i) = IRR(Bi, Bi

0) at time t = 0.

The resulting cashflow matrix is B = (Bt,i)t∈{1, ... , T}, i∈{1, ... , N} , where Bt,i de-

notes the cashflow from bond i at time t.

Let n = (n1, . . . , nN )
′ ∈ RN denote the portfolio, i.e. ni is the number of units

of bond i that we purchase at time t = 0. We always impose n ≥ 0.

If we hold some bond portfolio n, then for each time t ∈ {1, . . . , T}, we have a
total cash inflow (Bn)t and a cash outflow of Ct from the liabilities, resulting in a
discrepancy (C − Bn)t. In the simplest case, we would simply minimize the sum
of these discrepancies, i.e.

min
n

1′ (C−Bn) s.t. n ≥ 0

This is a simple linear programming problem as proposed e.g. in [1].
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The solution may, however, not be satisfactory. We might have the situation where
a large positive discrepancy at some time t1 may be compensated by a large negative
discrepancy at some other time t2. This is contrary to our intention of matching
cashflows from the bond holdings with cashflows for the liabilities as best as we
can. To the latter end, we should rather optimize absolute deviations, i.e.

min
n

T∑
t=1

((Bn)t − Ct)
2 s.t. n ≥ 0 (1)

The square makes sure that larger discrepancies (in whatever direction) are more
penalized than smaller ones. Using matrix notation, this problem is equivalent to

min
n

1
2 n
′(B′B)n− (C′B)n s.t. n ≥ 0 (2)

This is a standard quadratic programming problem that can be solved by any stan-
dard software package. If necessary, we can also impose further equality or inequality
constraints.
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Proof: (Equivalence of equations 1 and 2)

We have (Bn)t =
∑N

i=1 Bt,i ni. Therefore:

((Bn)t − Ct)
2 =

(∑N

i=1
Bt,i ni − Ct

)2

=

(∑N

i=1
Bt,i ni

)2

− 2Ct

∑N

i=1
Bt,i ni + C2

t

The term C2
t does not depend on n and needs not be considered any further. For the second

term, we can sum over t to obtain:∑T

t=1
Ct

∑N

i=1
Bt,i ni =

∑T

t=1

∑N

i=1
Ct Bt,i ni

=
∑N

i=1

(∑T

t=1
Ct Bt,i

)
ni = (C′B)n

For the first term, we have(∑N

i=1
Bt,i ni

)2

= ((Bn)t)
2 =

(
n′B′)

t
(Bn)t

and therefore ∑T

t=1

(
n′B′)

t
(Bn)t = n′(B′B)n

Putting everything together and multiplying by 1
2

, we obtain

1
2
n′(B′B)n− (C′B)n �
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Immunizing portfolio

Let n∗ denote the solution of Optimization Problem 2, i.e. the bond portfolio that
best matches the given liability cashflows C. What does this mean?

I At time t = 0, we buy ni units of Bond Bi at market price Bi
0 for each

i ∈ {1, . . . , N}. This results in a total purchase price of
∑N

i=1 n
∗
iB

i
0.

I We then hold this portfolio unaltered over time, without buying or selling.
Thus, at each time t ∈ {1, . . . , T} we receive a cashflow of (Bn∗)t.

I We then use this cashflow in order to pay the liability cashflow Ct.

Generally, there will be no exact match between (Bn∗)t and Ct. But if the discrep-
ancies are small relative to the value of the bond portfolio, i.e.√∑T

t=1
((Bn∗)t − Ct)

2 �
N∑
i=1

n∗iB
i
0

this is a viable approximation. We simply need to hold a relatively small amount of
additional cash D∗ to make sure that the discrepancies will be covered.
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Example: results
Composition of portfolio, purchase price and residual:
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Immunized value

By following the procedure above, for some given stream of liability cashflows, we
have the following situation:

I By buying the bond portfolio n∗ at time t = 0 for the price
∑N

i=1 n
∗
iB

i
0, and

by putting up additional cash D∗,

I we can make sure that all subsequent liability cashflows at all future times
t ∈ {1, . . . , T} can be paid with certainty.

This situation is completely independent of the subsequent development of the
bond prices. By paying Bi

0 at t = 0, we have assured the receipt of the cashflows
(ci, . . . , ci, 100 + ci), irrespective of what the price for doing this would be in the
future.

That is, we have effectively created an immunized position, and the price for doing
so is the immunized value of the cashflow stream C:

IV0(C) :=

N∑
i=1

n∗iB
i
0 +D∗ ≈

N∑
i=1

n∗iB
i
0
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If we want to remain in the present value framework according to Chapter II, we
can also define the equivalent immunized discount rate δIM as

δIM := IRR (C, IV0(C))

such that the usual present value becomes equal to the immunized value, i.e.

PV0(C, δIM) =

T∑
t=1

Ct

(1 + δIM)t
= IV0(C)

The value IV0(C) is a viable valuation of the cashflow stream C because it is based
on a discount rate that we can actually earn. It has a special role with respect to
other valuations based on other discount rates, because no financial risk is involved.
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Example: immunized value

For our example, we obtain the following results:

I Immunized value: IV0(C) = 658′718 + 0.02 = 658′718

I Equivalent immunized discount rate: δIM = −0.35%

I Undiscounted sum of liability cashflows: 648′841

Since the equivalent immunizing discount rate is negative, the purchase price of the
immunizing portfolio is higher than the undiscounted sum of cashflows.

That is, in order to achieve an immunized position under the current market condi-
tions, we must put up more money at the beginning than we will pay out over the
course of time. We have managed to eliminate financial risk, but the price for this
is a negative contribution from financial returns.
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Immunization with zero-coupon bonds
Another drawback of the immunization approach as presented is that the handling
of the coupon bonds is relatively cumbersome.

The situation would be less complicated if we had zero-coupon bonds. Recall from
section 2 of Chapter II that a zero-coupon bond is a security that pays the amount
of 1 at maturity M > 0 and nothing in-between times 0 and M . One unit of the
zero coupon bond can be purchased at the price P (0,M) at time t = 0.

Assume that for each time t ∈ {1, . . . , T}, we have a zero-coupon bond available
with purchase price P (0, t) at time 0.

Let C = (C1, . . . , CT )′ ∈ RT be a given stream of liability cashflows with Ct ≥ 0
for all t. Then, at time t = 0 and for each future time t ∈ {1, . . . , T}, we can
simply buy Ct units of the zero-coupon bond maturing at time t. In this case,
we are completely immunized, even without an approximation error. The cost of
achieving this immunization is

P̃V0(C) =
T∑

t=1

P (0, t)Ct

where P̃V0(C) is the alternative present value as in Section 2 of Chapter II.
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Here again, we can compute the equivalent immunized discount rate:

δIMZ := IRR
(
C, P̃V0(C)

)
such that the immunized value matches the usual present value, i.e.

PV0(C, δIMZ) =

T∑
t=1

Ct

(1 + δIMZ)t
= P̃V0(C)

In most markets except the US, zero-coupon bond do not exist as traded securities.

Hence, P̃V0(C) is, in principle, not a viable valuation.

However, as described in Section 2 of Chapter II, one can compute notional zero-

coupon bond prices and rates. And the value P̃V0(C) obtained from these notional
prices is a - typically fairly good - approximation of the actual immunized value.

Peter Blum (Suva) III Financing Liabilities September 16, 2020 26 / 45



Example: valuation with zero-coupon bonds

For our example, zero-coupon yields and yields-to-maturity of coupon bonds are
not dramatically different:

Therefore, also the valuation resulting from the application of the zero-coupon curve
is very similar from the one obtained with coupon bonds:

I Immunized value: P̃V0(C) = 658′718

I Equivalent immunized discount rate: δIMZ = −0.35%
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Immunization: conclusions

The concept of immunization is very appealing: By purchasing a portfolio of securi-
ties at time t = 0, we can - in principle - ensure the payment of all future promised
cashflows without any financial risk remaining.

Therefore, the immunized value of a stream of liability cashflows is an important
reference value: It denotes the amount of money that must be put up if one wants
to ensure the payment of the liabilities without financial risk interfering. This is
related to the economic concept of the certainty equivalent.

The immunized value has, however, also a number of drawbacks, notably:

I For longer-dated liabilities (e.g. t � 20 years), there may not exist enough
bonds with corresponding maturities.

I One could still compute the immunized value by using extrapolated bond prices
and yields (in particular for zero-coupon bonds).

I But these immunized values are only meaningful to a limited extent, because
the immunizing position cannot actually be implemented. That is, in this case,
there is financial risk remaining.
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In the current situation, however, the main drawback is that the immunized value
is very expensive. With current bond prices and yields (c.f. the example), the
equivalent discount rates are around or even below zero, and one must put up very
high amounts of money to assure payment of the liabilities without financial risk.

In our example, δIM = −0.35% for IV0(C, δIM) = 658′718. Compare this to the
values obtained with other discount rates.

δ PV0(C, δ)
0% 648′841
1% 621′990
2% 596′855
3% 573′298
4% 551′194

The rest of this course will be basically about judging whether it makes sense to
incur some financial risk in order to sustain a somewhat higher discount rate and
achieve a lower valuation of the liabilities.
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3. Simplification: duration matching
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Introduction
The task here is the same as in the case of cashflow matching: We are given a
stream of cashflows C = (C1, . . . , CT )

′ ∈ RT with Ct ≥ 0 for all t, and we want
to set up a bond portfolio at time t = 0 in such a manner that the payment of C
is assured without financial risk at t > 0.

If the assets held are only bonds, then financial risk arises from changes in interest
rates. If interest rates change, then the value of the bonds held changes. But -
at least in principle - one should also adapt the discount rate of liabilities, which
causes a change in the value of liabilities.

If we set up the bond portfolio in such a way that its change in value is equal to the
change in value of the liabilities, then we are - at least in principle - immunized:

I If interest rates rise, the value of the bonds diminishes. But so does the
value of the liabilities if the discount rate is adapted accordingly.

I If interest rates fall, the discount rate of liabilities should be reduced. This
causes the value of liabilities to rise. But so does the value of the bonds.

The approach is now to make sure that the movement on the asset side and on the
liability side are (approximately) equal.

Peter Blum (Suva) III Financing Liabilities September 16, 2020 31 / 45



Interest rate sensitivity

Recall Chapter II: The measures of interest rate sensitivity for any stream of dis-
counted cashflows - liabilities and bonds alike - are the duration (1st order) and the
convexity (2nd order):

Duration: D(C, δ) = − ∂

∂δ
PV0(C, δ)

/
PV0(C, δ)

Convexity: K(C, δ) =
∂2

∂δ2
PV0(C, δ)

/
PV0(C, δ)

For a bond, the discount rate δ equals its yield to maturity R(0,M). For a port-
folio of bonds, the overall duration and convexity can be calculated or at least
approximated by using Proposition 4 of Chapter II.
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Duration matching

Let C = (C1, . . . , CT )
′ ∈ RT with Ct ≥ 0 for all t be a stream of liability

cashflows, and let δ denote its discount rate.

Let B1 . . . , BN denote a set of bonds, each one with its yield to maturityRi(0,M i)
and market price Bi

0 as of t = 0. Let n = (n1 . . . , nN )
′ ∈ RN with ni ≥ 0 for all

i denote the number of units of bond i that we hold in our portfolio.

To achieve duration (and convexity) matching, we must select n at t = 0 such that

D

(∑N

i=1
ni B

i, δn

)
= D(C, δ)

K

(∑N

i=1
ni B

i, δn

)
= K(C, δ)

δn ≥ δ
n ≥ 0

The additional convexity condition should normally be included in social and pension
insurance settings. It may, however, be omitted in certain situations.
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δn denotes the overall yield to maturity of the bond portfolio , i.e.

δn = IRR

(∑N

i=1
ni B

i,
∑N

i=1
niB

i
0

)
We will see in the next chapter that the condition δn ≥ δ is important.

If the set of available bonds is sufficiently rich, this problem will not have a unique
solution, and we may be able to impose additional constraints or targets, e.g.

I maximize yield δn or minimize purchase price
∑N

i=1 niB
i
0

I impose cashflow matching for the first few years

Note that, in general, there is absolutely no guarantee that the cashflows will match.
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Immunization by duration matching
Assume that the yield in the bond market changes by ∆δ for all maturities. This
also means that δn changes by ∆δ. Because of the condition δn ≥ δ, this also
means that we should change the discount rate δ by ∆δ.

Relative effect on the asset side:

∆ PV
(∑N

i=1 ni B
i, δn + ∆δ

)
PV
(∑N

i=1 ni B
i, δn

) = −D
(∑N

i=1
ni B

i, δn

)
(∆δ)

+
1

2
K

(∑N

i=1
ni B

i, δn

)
(∆δ)

2
+ o

(
(∆δ)

3
)

Relative effect on the liability side:

∆ PV (C, δ + ∆δ)

PV (C, δ)
= −D (C, δ) (∆δ) +

1

2
K (C, δ) (∆δ)

2
+ o

(
(∆δ)

3
)

Due to the matching conditions, these relative changes will be equal. That is, if
liabilities increase, then so will the assets used to cover them. And vice versa.
To the extent that duration and convexity are a good measure for interest rate
sensitivity, we have at least in principle an immunized position.
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Example: duration-matched portfolios

Two possible duration-matched portfolios and the cashflow-matched portfolio for
comparison:
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Example: cashflows under duration matching

Unless explicitly imposed, a duration-matched portfolio leads to cashflow patterns
that are not necessarily related to the cashflow stream that must be financed.

Cheapest portfolio, no conditions
imposed on cashflows:

Cashflow matching condition
imposed for times t = 1, 2:
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Duration matching: conclusions

By applying duration (and convexity) matching, one can create an (approximately)
immunized position of assets and liabilities with less restrictive conditions than for
cashflow matching.

One can also combine duration matching (for longer time horizons) and cashflow
matching (for shorter time horizons).

Due to the restriction δ ≤ δn, also duration matching will only allow for very low
discount rates under current market conditions, leading to very high liability values
similar to the ones attained under cashflow matching.

Basic duration matching as shown here only works for parallel shifts of the yield
curve where rates for all maturities move by the same amount ∆δ, which is not
realistic in many situations. To circumvent this, there exist more sophisticated
methods based e.g. on so-called key rate durations; see [1].

Duration and convexity can only be determined accurately for fixed income se-
curities. If an institution also holds other asset classes like equities, real estate or
alternative investments, then one can - in principle - estimate the durations of these
assets, but these estimates lack accuracy. This is particularly the case nowadays
when interest rates are mainly determined politically.
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4. Alternative: loose coupling
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Situation with immunization

With the immunizing approaches (to the extent that they are implementable), one
is in a position where one can set up a portfolio of securities at time t = 0 in such
a way that the payment of all subsequent cashflows Ct for all subsequent times
t ∈ {1, . . . , T} ist assured (at least with a very high probability). This is a very
comfortable position.

An immunizing portfolio can only be created by using (high-grade) bonds or -
in practice - similar fixed income securities such as high-grade loans or private
placements or derivatives such as bond futures or swaps.

The discount rate cannot be higher than the overall yield of the immunizing port-
folio. Therefore, applicable discount rates tend to be very low, particularly in the
current low-interest environment.

This leads to high valuations for some given stream of liability cashflows, and to a
low contribution of investment returns to the overall financing of the liability.
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Challenges and requirements

In many situations (e.g. in Swiss compulsory accident insurance), the discount rate
for the liabilities is exogenously given, and the given level may be well above what
is attainable with an immunizing approach.

Or there may be the desire or the requirement of the institution to have a higher
investment income than just bond yields. Motivations for this may be:

I Higher benefits for the same level of premium or contributions.

I Lower premium or contribution for the same benefits.

I Financing cost increases, particularly due to longevity.

Or the institution may simply have an in-force portfolio that contains substantial
amounts of non-fixed income securities like equities, real estate or alternative in-
vestments.

In all these situations, a less restrictive coupling between the assets and the liabilities
is necessary.
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Loose coupling setup
We have a stream of liability cashflows C = (C1, . . . , CT )

′ ∈ RT with given
discount rate δ, such that the initial value of the liabilities is L0 = PV0(C, δ). For
covering the liabilities, we hold assets valued A0. For financing the liabilities, we
subdivide the institution into two functions:

I The insurance function services the liabilities. For doing so, it receives a
fixed interest δ from the investment function.

I The investment function invests the assets and generates investment pro-
ceeds IPt. It uses these investment proceeds to finance the fixed interest
payments δ.

This subdivision into an insurance and an investment function is related to the
principle of funds transfer pricing, see e.g. [2].

Now, assets and liabilities are only coupled by the discount rate δ and by their total
values A0 and L0. Hence the name loose coupling.
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Investment risk and the role of surplus
In an immunized setup, one need not care about changes in the value of the invest-
ment (bond) portfolio over time, since assets and liabilities are immunized.

In the loose coupling approach, investment proceeds are generally variable, and
they may or may not be sufficient to fund the fixed rate δ in any given year. To
compensate this uncertainty, the institution must hold a capital buffer, called surplus
(or equity, in the corporate world).
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In an immunized setup,the discount rate is low, and thus the valuation of the
liabilities is high. But there is little to no risk from investing the assets due to the
immunized position. Therefore, one needs to hold little or no surplus as a buffer
against investment risk.

In a loosely coupled setup, one may set a higher discount rate, leading to lower
valuations of the liabilities. But, in order to finance this discount rate, one has to
incur a non-negligible investment risk. As a buffer against this, one needs, in turn,
a higher surplus. Hence, the choice of discount rate has consequences in the form
of investment risk and necessary surplus to compensate it.

Where is the optimum in this dynamic and circular relationship? What is the
interplay between discount rate, investment risk and necessary surplus? What is
feasible, and what is not feasible?

These questions are of high relevance, since many social and pension insurance in-
stitutions work according to the loose coupling principle, in particular Swiss pension
funds and compulsory accident insurance.

In the subsequent chapters, we will suitably formalize the problem sketched here,
and we will build a thorough understanding.
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1. Working principle of capital-based insurance
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Promised benefits and liabilities

The institution receives premium income or contributions from its clients or from
third parties.

In return, the institution promises - and thus owes - to its clients certain well-
specified future benefits, e.g.

I old-age or disability pensions

I reimbursement of medical costs from injury or illness

I indemnities for foregone salaries

I subsidies for long-term care

I unemployment benefits

These benefits can be expressed as (estimated) future cashflows.

The present value of these future cashflows, possibly augmented by certain rein-
forcements, is the liability of the institution.
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Accident insurance: short-term benefits
Future payments for medical treatment and income substitution related to accidents
already happened.

”Short-term” is relative: After 5 years, 20% of ultimate payments are still open.
And after 20 years, 5% of ultimate payments are still open. Some payments occur
up to 75 years after the accident.
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Accident insurance: long-term benefits

Future pension payments for disabled and next-of-kin from accidents already hap-
pened. Average age at beginning of pension is around 42 years.
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Accident insurance: liabilities

Excerpt from the balance sheet of the Swiss National Accident Insurance Fund
(see suva.ch):
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Assets and investment proceeds
In order to cover the liabilities, the social insurance institution must hold an appro-
priate amount of assets.

These assets can be invested, e.g. in bonds, equities, real estate or alternative
investments and thus generate investment proceeds.

The investment proceeds are an important part of the funding of the institution.
Higher investment proceeds result in lower premia or higher benefits.

In order to facilitate planning and tariffication, a target (required return) is imposed
for the investment proceeds.

By investing its assets (e.g. in equities), the institution incurs investment risk, i.e.
the investment proceeds may be higher or lower than the target.

The institution must, hence, take appropriate precautions in order to deal with
deviations of actual investment proceeds from required ones.

The extent to which the institution can absorb such deviations of actual investment
proceeds from required ones is called the risk-taking capability.
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Example: assets

Excerpt from the Suva balance sheet:

Substantial portions of the assets are invested in risky asset classes such as equities
or alternative investments.
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Example: investment proceeds
History of investment returns of Suva:

Due to the relatively high percentage of equity holdings, performance fluctuated
considerably from year to year.

On average over several years, however, the performance was sufficient to cover the
financing needs.
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Asset / Liability Management

The big picture obtained comprises the following elements:

Institution Financial markets

Required return Realized investment proceeds

Risk-taking capability Investment risk incurred

Asset / Liability Management (ALM) is the task of reconciling these different and
often conflicting aspects such that the promised payouts can be made with high
probability.
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2. Model framework for social insurance
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Balance sheet
The balance sheet describes the state of the institution at some point t in time:

Let t denote time in years; t ∈ {0, . . . T} for some final time T <∞. Time t = 0
is the present, t > 0 denotes the future.

Let At denote the total value of assets at time t. Specifically, At is the market value
of the assets at the end of year t.

The total assets can be subdivided into n asset classes Ai,t, i.e.

At =

n∑
i=1

Ai,t with Ai,t ≥ 0 for all t ∈ {0, . . . T} and i ∈ {1, . . . n}
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Ai,t can denote e.g. equities, bonds, real estate or alternative investments.

By wi,t := Ai,t/At we denote the portfolio weight of asset class i at time t.

The entire portfolio is specified by wt = (w1,t, . . . wn,t)
′ ∈ Rn. and we have

wi,t ≥ 0 and
∑n
i=1 wi,t = 1.

By Lt we denote the value of the liabilities at time t, i.e. the present value of future
cashflows plus necessary reinforcements; see next section for more details.
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Surplus and Funding Ratio

Definition 1 (Surplus)

The surplus is the difference between assets and liabilities: St = At − Lt

Surplus is expressed in monetary units and bears limited information; e.g.

I 1 MCHF of surplus against 5 MCHF of liabilities (solid)

I 1 MCHF of surplus against 100 MCHF of liabilities (shaky)

This deficit is overcome by the funding ratio which relates surplus to liabilities:

Definition 2 (Funding Ratio)

The funding ratio is the ratio of assets and liabilities:

FRt =
At
Lt

= 1 +
St
Lt

If FRt ≥ 1, i.e. At ≥ Lt or St ≥ 0, the institution is fully funded or overfunded.
Otherwise, the institution is underfunded. The probability or the expected depth of
an underfunding are important risk measures in the ALM context.
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Example: Funding ratio of Swiss pension funds according to the Swisscanto pension
fund studies (see www.swisscanto.ch):

Notice the considerable fluctuations. This development is owed to the financial
crises of 2001 and 2008 and to the general downward trend in interest rates. Fi-
nancial risk management is a serious issue. And it is a long-term issue.
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Income statement
The income statement describes the change in the financial position of the institu-
tion in the t-th year, i.e. in (t− 1, t]:

Income Expense

Premium / Contribution Insurance benefits
Pt Bt

Investment proceeds Revaluation of liabilities
IPt RLt

Pt is the income from premia or contributions; this is an actual cash inflow.

IPt denotes the proceeds from the investment of the assets in monetary units. This
can be an actual cash inflow (e.g. dividends) or a non-cash change in value (positive
or negative).

Bt is the expense from paying promised insurance benefits; this is an actual cash
outflow.
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RLt is the non-cash expense for the intrinsic revaluation of liabilities; see next section
for an in-depth treatment. It can be positive or negative.

We define Ct := Pt −Bt as the net cashflow from insurance operations.

We could also define NRt = Pt+ IPt−Bt−RLt as the net result. This is, however,
less important in social insurance. The main interest is focused on the balance
sheet, in particular on the surplus St and the funding ratio FRt.
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Transition equation for assets

The change in the value of assets in year t depends on the investment proceeds
obtained in the financial markets and on the net cashflow from insurance operations;
the latter is assumed to take place at year-end:

At = At−1 + IPt + Ct

Let Rt denote the rate of return from investing the assets, i.e.

Rt =
IPt
At−1

=
At − Ct
At−1

− 1 =
At−

At−1
− 1

The return Rt only depends on the conditions in the financial markets and on
how At−1 is distributed on the different asset classes, but it does not depend on
cashflows from insurance operations.

Example: Assume that At−1 = 100, Rt = 5.8% and Ct = 7.5. Then we have
At− = 100 · (1 + 5.8%) = 105.8 and At = At− + Ct = 105.8 + 7.5 = 113.3.
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The transition equation can thus be restated as follows:

At = At−1 +RtAt−1 + Ct = (1 +Rt)At−1 + Ct

We can also introduce returns on the level of single asset classes, i.e.

Ri,t =
Ai,t−

Ai,t−1
− 1 and Rt = (R1,t, . . . , Rn,t)

′ ∈ Rn

The return on the full asset portfolio is then given by the weighted sum of asset
class returns, i.e.

Rt =

n∑
i=1

wi,t−1Ri,t = w′t−1Rt

The question of how to construct a suitable portfolio wt from the different asset
classes will be dealt with in the second part of the course. In the meantime, we will
mainly consider the aggregate returns Rt.
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Transition equation for liabilities

The change in the value of liabilities can be expressed in the same way as the change
in the value of assets:

Lt = Lt−1 + RLt + Ct

There is a change due to net cashflows from insurance operations, and there is a
change due to the intrinsic revaluation. For the latter, we can define

λt =
RLt
Lt−1

=
Lt − Ct
Lt−1

− 1 =
Lt−

Lt−1
− 1

We call λt the liability return or the rate of intrinsic change of the liabilities. For
details and examples, see the next section The transition equation then becomes

Lt = Lt−1 + λtLt−1 + Ct = (1 + λt)Lt−1 + Ct
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Transition equation for surplus

For the assets and the liabilities, we have:

At −At−1 = RtAt−1 + Ct

Lt − Lt−1 = λtLt−1 + Ct

Since St = At − Lt, this leads to

St − St−1 = (RtAt−1 + Ct)− (λtLt−1 + Ct)

= RtAt−1 − λtLt−1
= IPt − RLt

That is, if surplus is to remain at least constant, the investment proceeds must be
at least equal to the intrinsic revaluation of liabilities. For the return Rt, this means

RtAt−1 − λtLt−1 ≥ 0 or Rt ≥ λt
Lt−1
At−1

=
λt

FRt−1

Hence, the higher the funding ratio, the lower the required return. In practice, for
the reasons stated above, the funding ratio is more important than the surplus.
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Transition equation for funding ratio
Inserting the transition equations for assets and liabilities into the funding ratio, we
obtain

FRt =
At
Lt

=
(1 +Rt)At−1 + Ct
(1 + λt)Lt−1 + Ct

If Ct = 0, i.e. if contributions and benefits are in balance, this boils down to

FRt = FRt−1
(1 +Rt)

(1 + λt)

That is, to keep the funding ratio at least constant, Rt must be at least equal to
λt. In this case, λt specifies the required return.

For Ct 6= 0, this simple relation is distorted; consider

1
!
=

FRt
FRt−1

=
At
Lt
· Lt−1
At−1

=
At−1(1 +Rt) + Ct
Lt−1(1 + λt) + Ct

· Lt−1
At−1

By rearranging, we obtain

At−1Lt−1(1 +Rt) + CtLt−1 = At−1Lt−1(1 + λt) + CtAt−1
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Dividing by At−1Lt−1 and rearranging, we obtain

Rt = λt +
Ct
Lt−1

− Ct
At−1

Using At−1 = FRt−1Lt−1, we finally obtain

Rt = λt +

(
1− 1

FRt−1

)
Ct
Lt−1

That is, the required return depends not only on λt, but also on the current funding
ratio and on the net cashflow in relation to the existing liabilities.

Using Lt−1 = At−1

FRt−1
, we obtain the alternative representation

Rt = λt + (FRt−1 − 1)
Ct
At−1

That is, if FRt−1 > 1 and Ct > 0, this dilutes the surplus, and we must earn an
extra return to compensate this dilution.

Peter Blum (Suva) IV Asset / Liability Framework September 17, 2020 24 / 48



In general, this yields the following situation:

underfunded overfunded
FRt−1 < 1 FRt−1 > 1

net cash outflow
Rt

!
> λt Rt

!
< λtCt < 0

net cash inflow
Rt

!
< λt Rt

!
> λtCt > 0

The extent of the difference must be evaluated case by case.
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3. Liabilities and required return
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Overview

In the general model, the liabilities are assumed to behave according to the generic
transition equation

Lt = Lt−1 + λtLt−1 + Ct = (1 + λt)Lt−1 + Ct

In the sequel, we explore what this means specifically for different forms of liabilities,
in particular with respect to the intrinsic rate of change λt.

The most typical form of liabilities is when Lt is the present value of some stream
of future cashflows. But there also exist other forms of liabilities that will be
considered.
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Liability is the present value of a cashflow stream
Assume that the liability is the present value of some stream of promised benefits
B = (B1, . . . , BT )′ ∈ RT , i.e. for a fixed and given discount rate δ, we have

Lt = PVt(B, δ) =

T∑
s=t+1

Bs
(1 + δ)s−t

How does the value of the liability change between t− 1 and t?

Lt − Lt−1 =

T∑
s=t+1

Bs
(1 + δ)s−t

−
T∑
s=t

Bs
(1 + δ)s−t+1

=

T∑
s=t+1

Bs
(1 + δ)s−t

−
T∑

s=t+1

Bs
(1 + δ)s−t+1

− Bt
1 + δ

=

T∑
s=t+1

Bs
(1 + δ)s−t

− 1

1 + δ

T∑
s=t+1

Bs
(1 + δ)s−t

− Bt
1 + δ

= Lt

(
1− 1

1 + δ

)
− Bt

1 + δ
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Solving this equation for the value of the liability Lt yields

Lt = (1 + δ)Lt−1 −Bt

That is, we have

I λt = δ, i.e. the intrinsic rate of change equals the discount rate.

I Ct = −Bt, i.e. the cash outflow equals the liability payment.

Recalling the considerations from the previous section, this means that the discount
rate δ is the main determinant of the required return. If the cash outflow is relatively
small w.r.t. the total liability, and if the funding ratio is not too far away from 1,
the required return is approximately equal to the discount rate δ.

Attention: This is based on the tacit assumption that the estimates for the cashflows
are unbiased. If the estimates have to be revised from year to year, the intrinsic
rate of change can be significantly different from δ.
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Liability is a savings account

In a typical Swiss pension fund, the accumulation process of the active members
before retirement works as follows:

I Each year t, the employees and the employer make a contribution totaling Pt
that is credited to the fund.

I Each year t, an interest ρt is granted on the money in the fund.

In particular, all past contributions and all past interest credits are guaranteed and
thus a liability with the following transition equation:

Lt = Lt−1 + Lt−1ρt + Pt = Lt−1(1 + ρt) + Pt

That is, we have:

I λt = ρt, the credited interest rate,

I Ct = Pt, the contributions.

In a general setup, further cashflows would have to be added (benefits of free
passage, retirements).

Attention: This is called ”Beitragsprimat”, but it is not equal to a defined contri-
bution plan in Anglo-American terminology, but rather to a cash balance plan.
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Other liabilities

Besides the above-mentioned elements, the balance sheet of a social insurance
institution may also contain other liability elements, e.g.

I Actuarial reserves against fluctuations in the liability cashflows, e.g. due to
mortality.

I Reserves for financing future adjustments of the liability parameters, e.g. to
cater for longevity.

Most of these liabilities can be modeled in the form

Lt = (1 + λt)Lt−1 + Ct

for some suitable choices of λt and Ct.
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Portfolio of liabilities

Assume that the total liabilities consist of several positions, i.e.

Lt =

m∑
i=1

Li,t with Li,t = (1 + λi,t)Li,t−1 + Ci,t for all i

Then, the consolidated rate of intrinsic change λt is a weighted sum of the single
rates, i.e.

λt =

m∑
i=1

Li,t−1
Lt−1

λi,t

The cashflows simply add up: Ct =
∑m
i=1 Ci,t.

Hence, the generic model is quite broadly applicable.
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4. Elements of the financial account
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Recapitulation of generic model

We have developed the following generic model:

At = At−1(1 +Rt) + Ct

Lt = Lt−1(1 + λt) + Ct

}

With given value A0 for initial assets and L0 for initial liabilities, and suitable
assumptions for the intrinsic growth rate λt and for the investment return Rt, the
model can always be evaluated by straightforward stochastic simulation. Note:

I In many practical situations, the intrinsic growth rate λt of the liabilities can
be modeled as deterministic. This is particularly the case if Lt already contains
suitable reserve components to deal with fluctuations of actuarial risk.

I Unless we have a full immunization (see previous chapter), the investment
returns Rt must be considered as a random variable.
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Actuarial risk and required return

If λ were stochastic, Var[λt] or some other suitable risk measure like VaRα[λt] or
ESα[λt] could be used to denote actuarial risk. However, in the sequel, λt will
mostly be considered as deterministic.

The required return is the minimum value that the return Rt must attain such that
FRt ≥ FRt−1, i.e. remains at least constant. As seen before, we have:

Rt
!
≥ λt +

(
1− 1

FRt−1

)
Ct
Lt−1

= λt + (FRt−1 − 1)
Ct
At−1

If the net cashflow Ct = 0, this boils down to Rt ≥ λt.
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Expected return and investment risk

For all t ∈ {1, . . . , T}, we consider Rt as a random variable on a probability space
(Ω,F ,P), i.e. Rt ∼ Ft with µt := E [Rt] <∞ and σ2

t := Var [Rt] <∞.

I The assumption σ2
t <∞ (finite second moments) is fairly realistic for annual

investment returns. If it comes to higher moments, they may not always be
assumed to exist.

I We do not impose any other assumptions at this point, neither Normal distri-
bution nor absence of serial correlation.

We call µt := E [Rt] the expected return.

The short-term investment risk may be denoted by σ2
t = Var [Rt] or by any other

suitable risk measure such as VaRα[Rt] or ESα[Rt]

I The notion ”short term” is important. This only describes risk for one out
of many periods. This is a necessary ingredient, but not sufficient in order to
cope with the long-term nature of social and pension insurance.
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Risk-taking capability

For the time being, we take the initial funding ratio FR0 as a measure for the
risk-taking capability. Intuitively, we have:

I The higher FR0, the thicker is the cushion for absorbing insufficient invest-
ment proceeds without falling into underfunding.

I The lower FR0, the thinner is the cushion for absorbing insufficient invest-
ment proceeds without falling into underfunding.

This is an approximation. Effectively, one would also have to to consider the pos-
sibilities that the institution has to increase income or reduce obligations when it
falls into underfunding.
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Example: High vs. low initial funding ratio.

High initial funding ratio Low initial funding ratio

The lines represent the 1%- and 99%-quantiles of the funding ratio; the gray area
below FR = 1 represents the state of underfunding.
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Asset / Liability Management: overview

From the above, we obtain the following overall view:

Institution Financial markets
Required return Expected return

λt + (FRt−1 − 1) Ct

At−1
← → µt

l l
Risk-taking capability ← → Investment risk

FR0 σ2
t

The challenge is that these quantities are intricately related:

I higher expected return comes at the price of higher investment risk

I lower required return usually also entails a lower risk-taking capability

Asset / Liability Management is the task of reconciling these often-conflicting di-
mensions such that the payment of the promised insurance benefits is assured with
high probability. This task must often be accomplished under additional constraints.
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Financial risk

The goal of social an pension insurance is to assure with high probability that all
promised payments C = (C1, . . . , CT )′ over the full time period t = 1, . . . , T
can be made.

The proceeds from investing the assets are a source of funding for these promised
payments. Financial risk consists of the danger that promised payments cannot be
made at any time during the time span t = 1, . . . , T due to insufficient investment
returns Rt.

There is no generally accepted way of quantifying financial risk; possible measures
that will be explored subsequently include

I probability of underfunding ψt = P [FRt < 1]

I Expected Funding Shortfall EFSα,t or Funding Ratio at Risk FRaRα,t

for one or several time horizons t.
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5. General random walk model and net profit condition

Peter Blum (Suva) IV Asset / Liability Framework September 17, 2020 41 / 48



General random walk setup

We start from the standard model, i.e. from

FRt =
At−1(1 +Rt) + Ct
Lt−1(1 + λt) + Ct

We make the following assumptions:

I Contributions equal benefits: Ct = 0 for all t.

I Constant intrinsic liability growth rate: λt = λ for all t.

I Investment returns follow a random walk: Rt = µ + εt where εt ∼ iid with
E [εt] = 0 and Var [εt] <∞.

This leads to
FRt

FRt−1
=

1 + µ+ εt
1 + λ

Letting LFRt = log FRt and taking logarithms, we obtain

LFRt − LFRt−1 = log

(
1 + µ+ εt

1 + λ

)
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For small-enough values, we have log(1 + Rt) ≈ Rt and log(1 + λ) ≈ λ, and we
can use the approximation

LFRt = LFR0 +

t∑
s=1

Xs where Xs := µ− λ+ εs

or, equivalently

Zt := LFRt − LFR0 =

t∑
s=1

Xs

That is, we have managed to represent the evolution of the funding ratio as a
random walk. The condition FRt > 1 translates into LFRt > 0.

The assumption that the investment returns Rt form a random walk is not too
unrealistic, at least for the annual returns that we consider here.

This allows us to apply a classic result from the theory of stochastic processes.
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Proposition 1 (Random Walk Theorem)

Let Xs ∼ iid with P [Xs = 0] < 1 and E [|Xs|] < ∞. Then, the random walk
(Zt)t∈N0

with Zt =
∑t
s=1Xs has one of the three following behaviors:

I if E [Xs] > 0 then limt→∞ Zt = +∞ P-a.s.

I if E [Xs] < 0 then limt→∞ Zt = −∞ P-a.s.

I if E [Xs] = 0 then lim inft→∞ Zt = −∞ and lim supt→∞ Zt = +∞ P-a.s.

Proof: See e.g. the classical book by Resnick [1]. �

If E [Xs] < 0, this may well mean that Zt dwells in the positive range for quite some
time. But sooner or later it will invariably become and remain negative. Hence, in
order to assure a sustainable funding, we must have E [Xs] > 0, i.e. µ > λ.

Under our assumptions here, λ represents the required return, and µ the expected
return. The theorem basically tells us that, irrespective of the initial value, the
funding ratio will invariably go below 1 if the expected return is lower than the
required return.
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Fundamental principle

In order to ensure a sustainable long-term funding of the institution, it is necessary
that the expected return be higher than the required return.

If this turns out to be unrealistic, the setup must be adapted such that the required
return becomes lower.
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General random walk: Lundberg bound

If the log-funding ratio follows a random walk, then we have for the infinite-time
ruin probability

ψ(LFR0) ≤ e−R · FR0

where the Lundberg coefficient B is such that MXs
(R) = 1 with M( · ) being the

moment-generating function of the innovations Xs; see e.g. [2].

This only yields an upper bound, and this bound is only valid for the infinite time
horizon.

Moreover, this only works for thin-tailed distributions where the moment-generating
function actually exists. In our context, this would almost invariably be the Normal
one. But for this one, we have a much more powerful framework that we will explore
in the sequel.

Therefore, we will not pursue this any further.
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General random walk: Spitzer’s formula

We define negative ladder heights Yk as the difference between one local minimum
and the next one. It can be shown that the ladder heights are iid with some
distribution function H( · ); see e.g. [2]. Spitzer’s formula the states that

ψ(LFR0) = (1− ψ(0))
∑
k∈N

ψ(0)k
(
1−H∗k(LFR0)

)
This time, we have an equality, but still only for the infinite time horizon. And the
n-fold convolutions are rather cumbersome as well.

We see once more why one has to revert to stochastic simulation in most practical
setups.

In order to maintain some analytical tractability, we must revert to a different, more
restrictive model based on the normal distribution.
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1. Concept and model
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Generic model

In the sequel, we follow the loose coupling approach, i.e. we allow for a general
investment strategy and for investment risk and financial risk. That is, there may
be a mismatch between required return and realized return.

Recall the generic model:

At = At−1(1 +Rt) + Ct

Lt = Lt−1(1 + λt) + Ct

}
for t ∈ {1, . . . , T}

with the following generic elements:

I the initial value of assets (A0) and liabilities (L0)

I the stream of net cashflows Ct from insurance for t ∈ {1, . . . , T}
I the intrinsic rate of change λt of the liabilities for t ∈ {1, . . . , T}
I the investment returns Rt ∼ Ft for t ∈ {1, . . . , T} on some (Ω,F ,P)

We assume that A0 and L0 are given. The cashflows Ct and the intrinsic rate of
change of the liabilities λt may be deterministic (usually) or stochastic, wheras the
investment returns Rt are always stochastic.
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The generic model is fairly flexible. It can cover a wide range of situations and
institutions, and it can also be adapted and extended if necessary.

In general, the model can only be evaluated by stochastic simulation. In practice,
this is the usual and predominant procedure.

In order to obtain an analytically tractable model, we must make a number of
restricting assumptions.

However, this analytically tractable model allows us to define a number of sensible
risk measures and to explore their properties and the general interplay between
assets and liabilities in an understandable and intuitive manner.

The concepts developed and the insights gained within the analytic framework can
then be generalized to the stochastic simulation setup.

Thus, while not necessarily applicable directly, the analytical framework is a very
important help for developing better simulation models and for better interpreting
the outcomes of simulation models.
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The specific model

We assume that the initial values of assets A0 and liabilities L0 are given.

Let us assume that the intrinsic growth rate of liabilities λt is deterministic and
constant over time, i.e. λt = λ for all t ∈ {1, . . . , T} and some given λ.

We assume that the institution is in equilibrium, i.e. contributions received and
benefits paid cancel out such that Ct = 0 for all t ∈ {1, . . . , T}.
We assume that the investment returns follow a Normal random walk, that is
Rt = µ+ εt for all t ∈ {1, . . . , T} with εt ∼ iid N (0, σ2) for fixed values of µ and
σ2 <∞. Equivalently Rt ∼ N (µ, σ2).

Under these assumptions, we have

At
Lt

=
At−1(1 + µ+ εt)

Lt−1(1 + λ)
or, equivalently FRt = FRt−1

1 + µ+ εt
1 + λ

For small values of µ, λ and εt, we can use the approximation

1 + µ+ εt
1 + λ

≈ 1 + µ− λ+ εt
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This gives rise to the a modified model

FRt = FRt−1 (1 + µ− λ+ εt)

Letting ∆FRt = FRt − FRt−1, this is also equivalent to

∆FRt
FRt−1

= µ− λ+ εt

And if we went into continuous time, this would translate into

dFRt
FRt

= (µ− λ)dt+ σdWt

for a standard Brownian Motion (Wt)t∈R+
0

. That is, the funding ratio in continuous

time follow a geometric Brownian Motion, and we could apply Itô’s lemma to obtain

FRt = FR0 exp
{(
µ− λ− 1

2σ
2
)
t+ σWt

}
This means that, given FR0, FRt is Lognormally distributed, i.e. FRt ∼ LN(µ̃, σ̃2)
with µ̃ = (µ− λ− 1

2σ
2)t+ log FR0 and σ̃2 = σ2t.
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Models based on the geometric Brownian Motion, i.e. basically models of the Black-
Scholes type, are extensively used in life insurance mathematics for the valuation
of unit-linked life insurance contracts; see e.g. [3].

However, we want to remain in discrete time and follow a different avenue. If we
consider directly

FRt = FRt−1
1 +Rt
1 + λ

this leads to nothing analytically tractable. Product distributions are highly cum-
bersome, even in the simplest settings. Therefore, as in the general random walk
setup in Section 5 of Chapter IV, we take logarithms to obtain

log FRt − log FRt−1 = log(1 +Rt)− log(1 + λ)

Applying again the approximations log(1+Rt) ≈ Rt and log(1+λ) ≈ λ, we obtain
the the following model, which will turn out to be Lognormal.
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The Lognormal model

Definition 1 (Lognormal model)

We assume that the logarithm of the funding ratio follows a Normal random
walk, i.e. for a given FR0 we have

log FRt − log FRt−1 = µ− λ+ εt

for all t ∈ {1, . . . , T} and for given values µ, λ ∈ R, with εt ∼ iid N (0, σ2) for
some given σ2 with 0 < σ2 <∞.

By iterating the definition, we obtain

log FRt = log FRt−1 + (µ− λ) + εt

= log FRt−2 + (µ− λ) + εt−1 + (µ− λ) + εt

= . . .

= log FR0 + (µ− λ)t+
∑t

s=1
εs

Peter Blum (Suva) V Lognormal Model September 17, 2020 9 / 54



Since the sum of independent Normal random variables is again normally distributed,
we have: log FRt ∼ N (µ̃, σ̃2) with µ̃ = log FR0 + (µ − λ)t and σ̃2 = σ2t. This
also means that FRt is Lognormally distributed:

Proposition 1 (Lognormal model)

Under the model set forth in Definitionn 1, the funding ratio has a Lognormal
distribution, i.e. FRt ∼ LN(µ̃, σ̃2) with

I µ̃ = log FR0 + (µ− λ)t

I σ̃2 = σ2t

Before exploring the consequences of this, we study a few essential properties of
the Lognormal distribution and of moment generating functions.
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2. Moment generating functions
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Definition 2 (Moment Generating Function (MGF))

Let X ∼ F be a random variable on a probability space (Ω,F ,P) taking values in
R. Let r ∈ R. The Moment Generating Function (MGF) is given by

MX(r) = E [exp {rX}] =

∫
R

exp {rx} dF (x)

If X is absolutely continuous with density function f(x), then we also have

MX(r) =

∫
R

exp {rx} f(x)dx

The MGF is closely related to the Laplace transform of a function.

The MGF is a versatile and useful tool for many situations in probability theory and
its applications.
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Proposition 2

Assume that there exists some r0 > 0 such that we have MX(r) < ∞ for all
r ∈ (−r0,+r0). Then we have

MX(r) =

∞∑
k=0

rk

k!
E
[
Xk
]

Proof: Just a sketch; the basic line of argumentation is

MX(r) = E [exp {rX}] = E

[ ∞∑
k=0

(rX)k

k!

]
=

∞∑
k=0

rk

k!
E
[
Xk
]

The last equality is not trivial and takes some additional reasoning [4]. �

Taking derivatives and remembering that 0! = 1, it immediately follows that

dk

drk
MX(r)

∣∣∣∣
r=0

= E
[
Xk
]
<∞

Hence the name moment generating function.
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Proposition 3

Let X ∼ FX and assume that there exists some r0 > 0 such that MX(r) < ∞
for all r ∈ (−r0,+r0). Then, F is completely determined by MX .

That is, if we have X and Y with MX = MY , then FX = FY .

Proof: See e.g. [1]. �

This is the first main use of the MGF: It allows us to show that two random variables
actually have the same probability law.
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Proposition 4

Let X1, . . . , Xn be independent random random variables. Then we have

M∑n
i=1Xi

(r) =

n∏
i=1

MXi(r)

Proof: By using the properties of exponential functions and independence, we obtain

M∑n
i=1Xi

(r) = E
[
exp

{
r
∑n

i=1
Xi

}]
= E

[∏n

i=1
exp {rXi}

]
=
∏n

i=1
E [exp {rXi}]

=
∏n

i=1
MXi(r) �

This is the second main use of MGF, i.e. obtaining the law of sums of independent
random variables. For more on MGF and their uses, see e.g. [2] or [4].
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3. Lognormal distribution
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Normal distribution
The Normal distribution and its properties are assumed to be known; otherwise
refer e.g. to [2]. This is just for completeness.

Definition 3 (Normal distribution)

Let µ̃ ∈ R and σ̃2 ∈ R+ with µ̃, σ̃2 < ∞. A random variable X has a Normal
distribution with parameters µ̃ and σ̃2, i.e. X ∼ N (µ̃, σ̃2) if, for all x ∈ R:

P [X ≤ x] = Φ

(
x− µ̃
σ̃

)
where

Φ(x) =

∫ x

−∞
ϕ(ξ) dξ and ϕ(x) =

1√
2π

exp

{
−1

2
x2
}

A random variable with X ∼ N (0, 1) is said to have a standard Normal distribution.
The function Φ(x) is the cumulative distribution function of the standard Normal
distribution, and ϕ(x) is its density. We will use these two functions frequently in
the sequel.
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Note and remember that ϕ(x) = Φ′(x) > 0 for all x ∈ R.

The density of a general Normal random variable X ∼ N (µ̃, σ̃2) is then

f(x) =
1√
2πσ̃

exp

{
−1

2

(x− µ̃)2

σ̃2

}

Proposition 5 (Moments of the Normal distribution)

Let X ∼ N (µ̃, σ̃2). Then we have:

I Expectation: E [X] = µ̃

I Variance: Var [X] = σ̃2

I Moment-generating function: MX(r) := E
[
erX

]
= exp

{
rµ̃+ 1

2r
2σ̃2
}
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Proof: First, we derive the moment-generating function of a Normal random variable:

MX(r) =

∫ +∞

−∞
erx

1
√
2πσ̃

exp

{
−
(x− µ̃)2

2σ̃2

}
dx

=

∫ +∞

−∞

1
√
2πσ̃

exp

{
−
x2 − 2

(
µ̃+ rσ̃2

)
x+ µ̃2

2σ̃2

}
dx

=

∫ +∞

−∞

1
√
2πσ̃

exp

{
−
x2 − 2

(
µ̃+ rσ̃2

)
x+

(
µ̃2 + 2µ̃rσ̃2 + r2σ̃4

)
− 2µ̃rσ̃2 − r2σ̃4

2σ̃2

}
dx

=

∫ +∞

−∞

1
√
2πσ̃

exp

{
−
(
x−

(
µ̃+ rσ̃2

))2
2σ̃2

}
dx exp

{
2µ̃rσ̃2 + r2σ̃4

2σ̃2

}

= exp
{
rµ̃+ 1

2
r2σ̃2

}
Then, we use the moment-generating function to derive the moments:

d

dr
MX(r)

∣∣∣∣
r=0

= exp
{
rµ̃+ 1

2
r2σ̃2

} (
µ̃+ rσ̃2

)∣∣
r=0

= µ̃

= E [X]
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Proof: (continued)

d2

dr2
MX(r)

∣∣∣∣
r=0

= exp
{
rµ̃+ 1

2
r2σ̃2

} (
µ̃+ rσ̃2

)2
+ exp

{
rµ̃+ 1

2
r2σ̃2

}
σ̃2
∣∣∣
r=0

= µ̃2 + σ̃2

Var [X] = E
[
X2
]
−E [X]2

= σ̃2 �
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Proposition 6 (Sum of Normal random variables)

Let X1, . . . , Xn ∼ iid N (µ̃, σ̃2). Then
∑n
i=1Xi ∼ N (nµ̃, nσ̃2).

Proof: Using the properties of the moment-generating function:

M∑n
i=1Xi

(r) =

n∏
i=1

MXi(r)

=

n∏
i=1

exp
{
rµ̃+ 1

2r
2σ̃2
}

= exp
{
r(nµ̃) + 1

2r
2(nσ̃2)

}
The latter is the moment-generating function of a Normal random variable with
parameters nµ̃ and nσ̃2, and only of this one. �
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Lognormal distribution
A Lognormal random variable is a random variable the logarithm of which has a
Normal distribution; see also [4].

Definition 4 (Lognormal distribution)

Let X ∼ N (µ̃, σ̃2). Then the random variable Y := eX has a Lognormal distribu-
tion; formally Y ∼ LN(µ̃, σ̃2).

Proposition 7 (Cumulative distribution function and density)

Let Y ∼ LN(µ̃, σ̃2). Then we have for y > 0:

I Cumulative distribution function: G(Y ) = P [Y ≤ y] = Φ
(

log y−µ̃
σ̃

)
I Density: g(y) = 1√

2πσ̃
1
y exp

{
− 1

2
(log y−µ̃)2

σ̃2

}
Proof: If Y ∼ LN(µ̃, σ̃2), then Y = eX with X ∼ N (µ̃, σ̃2). But then, we have:

P [Y ≤ y] = P
[
eX ≤ y

]
= P [X ≤ log y] = Φ

(
log y−µ̃

σ̃

)
. The density is obtained

by taking the first derivative. �
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The Lognormal distribution dwells only on the positive half-axis. Its density can
have a wide variety of shapes, for instance:

Therefore, the Lognormal distribution appears well-suited for the modeling of fund-
ing ratios which are always positive and will usually cluster around one.
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Proposition 8 (Scaling property)

Let Y ∼ LN(µ̃, σ̃2) and ρ > 0. Then ρY ∼ LN(µ̃+ log ρ, σ̃2).

Proof: P [ρY ≤ y] = P
[
Y ≤ y

ρ

]
= Φ

(
log yρ−µ̃

σ̃

)
= Φ

(
log y−(µ̃+log ρ)

σ̃

)
�

Proposition 9 (Moments)

Let Y ∼ LN(µ̃, σ̃2). Then we have

I Expectation: E [Y ] = exp
{
µ̃+ 1

2 σ̃
2
}

I Variance: Var [Y ] = exp
{

2µ̃+ σ̃2
} (

exp
{
σ̃2
}
− 1
)

Proof: Since Y = eX with X ∼ N (µ̃, σ̃2):

E [Y ] = E
[
eX
]

= MX(1) = exp
{
µ̃+ 1

2 σ̃
2
}

Similarly E
[
Y 2
]

= MX(2) = exp
{

2µ̃+ 2σ̃2
}

,

then Var [Y ] =E
[
Y 2
]
−E [Y ]

2 �
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Proposition 10 (Loss size index)

Let Y ∼ LN(µ̃, σ̃2) and y > 0. Then we have:

I(y) :=
E
[
1{Y≤y}Y

]
E [Y ]

= Φ

(
log y − (µ̃+ σ̃2)

σ̃

)
Proof: Using the expressions for the density and the expectation:

I(y) =

∫ y

0

x g(x) dx
/

exp
{
µ̃+ 1

2 σ̃
2
}

=

∫ y

0

1√
2πσ̃

exp{log x} exp

{
− (log x− µ̃)2

2σ̃2

}
exp

{
−µ̃− σ̃2

2

}
1

x
dx

=

∫ y

0

1√
2πσ̃

exp

{
− (log x)2 − 2(µ̃+ σ̃2) log x+ (µ̃2 + 2µ̃σ̃2 + σ̃4)

2σ̃2

}
1

x
dx

=

∫ y

0

1√
2πσ̃

exp

{
− (log x− (µ̃+ σ̃2))2

2σ̃2

}
1

x
dx

= Φ

(
log y − (µ̃+ σ̃2)

σ̃

)
�
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4. Probability of underfunding
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Funding ratio: distribution and moments

Under the model as set forth in Definition 1, and according to Proposition 1, given
FR0 and for t > 0, we have for the funding ratio:

FRt ∼ LN(µ̃, σ̃2) with µ̃ = log FR0 + (µ− λ)t and σ̃2 = σ2t

By applying Proposition 9, we obtain:

E [FRt|FR0] = FR0 exp
{

(µ− λ+ 1
2σ

2)t
}

(1)

Var [FRt|FR0] = (FR0)2 exp
{

2(µ− λ+ 1
2σ

2)t
} (

exp
{
σ2t
}
− 1
)

(2)

We note that the expected value of the funding ratio actually increases as the
(short-term) investment risk σ2 increases. This should, however, be considered
with caution and in the context of the probability of underfunding hereafter. Note
in particular that also the variance of the funding ratio increases as σ2 increases.
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Underfunding

Recall that an institution is underfunded when its assets At are insufficient to cover
its liabilities Lt, i.e. At < Lt, or equivalently FRt = At/Lt < 1.

In the corporate world, this corresponds to an insolvency. However, for a social
insurance institution, this does not necessarily mean bankruptcy and liquidation.

Often, the existence of the institutions is guaranteed by law. This does not imply
a financial guarantee, but just the guarantee that the institution will have a client
base and premium or contribution revenue over an unlimited period of time.

Therefore, social insurance institutions are often - at least under certain circum-
stances - allowed to be temporarily underfunded. This may represent an important
advantage.

Nevertheless, underfunding is an undesirable state, and the probability of this hap-
pening is an important long-term risk measure.
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Funding ratio distribution

The graphic shows the evolution of the funding ratio distribution over time, as
expressed by some quantiles:

Note the asymmetry in the distribution of the funding ratio.
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Probability of underfunding

Definition 5 (Probability of underfunding)

Let t > 0. Then the probability of underfunding at time t is defined as

ψt := P [FRt ≤ 1|FR0]

For technical reasons, we use ”≤” rather that ”<”. In the Lognormal model, we
immediately obtain the following result:

Proposition 11 (Probability of underfunding in the Lognormal model)

Let the Lognormal model according to Definition 1 hold. Then, the probability of
underfunding is given by

ψt = ψt(FR0, λ, µ, σ
2) = Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)

Proof: Recall that the Lognormal CDF is Φ
(

log y−µ̃
σ̃

)
and use y = 1. �
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Sensitivities

Sensitivity is an important concept in risk management. It consists of exploring
how a risk measure reacts to changes in one of the input parameters. Specifically,
we consider the probability of underfunding:

ψt = ψt(FR0, λ, µ, σ
2) = Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
and we take partial derivatives w.r.t. the input parameters:

I FR0: initial funding ratio

I λ: intrinsic rate of growth of the liabilities (= required return)

I µ: expected investment return

I σ2: (short-term) investment risk

These sensitivities are to be understood ”ceteris paribus”, i.e. all else remaining
equal. In practice, input factors will not change independently from one another.
For instance, a higher expected return will come along with a higher investment
risk. This will be investigated in the subsequent chapters.

Peter Blum (Suva) V Lognormal Model September 17, 2020 31 / 54



Sensitivity to initial funding ratio

Under the Lognormal model, we have:

∂ψt
∂FR0

=
∂

∂FR0
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
= − 1

σ
√
t
ϕ

(
− log FR0 + (µ− λ)t

σ
√
t

)
1

FR0
< 0

Since ϕ( · ) is the density of the standard Normal distribution, it is always positive;
the same holds for FR0 and σ. Therefore, the sensitivity ∂ψt

∂FR0
is always negative.

That is, a higher initial funding ratio leads to a lower probability of underfunding,
and vice versa.
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Sensitivity to intrinsic growth rate of liabilities

Under the Lognormal model, we have:

∂ψt
∂λ

=
∂

∂λ
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
=

√
t

σ
ϕ

(
− log FR0 + (µ− λ)t

σ
√
t

)
> 0

For the same reasons as above, this sensitivity is always positive.

That is, the higher the intrinsic growth rate of liabilities (and hence the required
return), the higher becomes the probability of underfunding, and vice versa.
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Sensitivity to expected return

Under the Lognormal model, we have:

∂ψt
∂µ

=
∂

∂µ
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
= −
√
t

σ
ϕ

(
− log FR0 + (µ− λ)t

σ
√
t

)
< 0

For the same reasons as above, this sensitivity is always negative.

That is, the higher the expected return, the lower becomes the probability of un-
derfunding, and vice versa.
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Sensitivity to short-term investment risk
Under the Lognormal model, we have:

∂ψt
∂σ

=
∂

∂σ
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
=

1

σ2
√
t
ϕ

(
− log FR0 + (µ− λ)t

σ
√
t

)
(log FR0 + (µ− λ)t)

The first two terms are always positive. The last term on the right-hand side, and
hence the entire sensitivity, can be both positive or negative.

If the institution is in a good financial condition, i.e. if FR0 > 1 and µ ≥ λ, then
∂ψt
∂σ > 0, i.e. taking more investment risk increases the probability of underfunding.

There are, however, situations where ∂ψt
∂σ can be negative. Consider the condition

log FR0 + (µ− λ)t < 0 or, equivalently log FR0 < −(µ− λ)t

That is (assuming µ ≥ λ), if the institution is sufficiently underfunded, taking
higher investment risk may lead to a lower probability of underfunding. Although
not obvious at first sight, it makes sense if one studies the situation in-depth.
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Probability of underfunding: assessment

The probability of underfunding is a good risk measure, and one often used in
practice, for a number of reasons:

I It is sensible in that it addresses a serious danger.

I It takes a long-term view that is adapted to the nature of social and pension
insurance.

I It can be easily calculated in analytical models, and it can be easily estimated
by stochastic simulation.

I It lends itself to intuitive interpretation, and it is easy to explain also to non-
quantitative audiences.

An important disadvantage is that it only indicates the probability of an underfund-
ing to occur. We would, however, also like to know something about the extent of
the underfunding. To this end, we explore a few alternative risk measures in the
next section.
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5. Alternative risk measures
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Concept
Consider the distribution of the funding ratio, here under the Lognormal model:

Contrary to normal practice in insurance risk management, we are not interested in
the right tail. The danger consists of funding ratios below one, i.e. lies in the left
tail. We consider the following measures for the funding ratio:

1. The left α-quantile: qα(FRt)

2. The left expected shortfall: E [FRt|FRt ≤ qα(FRt)]

3. The conditional expectation: E [FRt|FRt ≤ 1]
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In all three cases, we are ultimately interested in the difference between these three
values and 1 (provided this difference is positive), i.e.

max (1−Measure 1, 2 or 3, 0)

because this is the funding deficit that must actually be financed in the event of
an underfunding. In this way, we obtain the desired measures that also contain
information on the extent of an eventual underfunding.

We derive these quantities in the Lognormal framework and explore their proper-
ties. Note, however, that they all can be easily estimated also by using stochastic
simulation (with some care to be taken such that the tail is sufficiently populated
with data points).

For simplicity, we start with a generic Lognormal random variable Y ∼ LN(µ̃, σ̃2)
and insert the specific values for the Lognormal funding ratio model afterwards.
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Left quantile

Proposition 12 (Left quantile)

Let Y ∼ LN(µ̃, σ̃2) and α ∈ (0, 1). Then we have:

qα(Y ) = exp
{
µ̃+ Φ−1(α) σ̃

}
Proof: We are looking for y0 such that P [Y ≤ y0] = α, i.e.

Φ

(
log y0 − µ̃

σ̃

)
= α

log y0 − µ̃
σ̃

= Φ−1(α)

y0 = exp
{
µ̃+ Φ−1(α) σ̃

}
�

Typical values of α are e.g. 1% or 5%.
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Conditional expectation

Proposition 13 (Conditional expectation)

Let Y ∼ LN(µ̃, σ̃2). Then we have:

E [Y |Y ≤ 1] = exp
{
µ̃+ 1

2 σ̃
2
}

Φ

(
− µ̃+ σ̃2

σ̃

)/
Φ

(
− µ̃
σ̃

)
Proof: On the one hand, we have according to Proposition 10

E
[
1{Y≤1}Y

]
= E [Y ] Φ

(
log 1− (µ̃+ σ̃2)

σ̃

)
= exp

{
µ̃+ 1

2 σ̃
2
}

Φ

(
− µ̃+ σ̃2

σ̃

)
On the other hand, we have

P [Y ≤ 1] = Φ

(
− µ̃
σ̃

)
Then E [Y |Y ≤ 1] = E

[
1{Y≤1}Y

]
/P [Y ≤ 1]. �
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Expected shortfall

Proposition 14 (Expected shortfall)

Let Y ∼ LN(µ̃, σ̃2) and α ∈ (0, 1). Then we have:

E [Y |Y ≤ qα(Y )] = 1
α exp

{
µ̃+ 1

2 σ̃
2
}

Φ
(
Φ−1(α)− σ̃

)
Proof: Using Propositions 10 and 12 we have

E
[
1{Y≤qα(Y )}Y

]
= exp

{
µ̃+ 1

2 σ̃
2
}

Φ

(
log qα(Y )− (µ̃+ σ̃2)

σ̃

)
= exp

{
µ̃+ 1

2 σ̃
2
}

Φ

(
µ̃+ Φ−1(α)σ̃ − (µ̃+ σ̃2)

σ̃

)
= exp

{
µ̃+ 1

2 σ̃
2
}

Φ

(
Φ−1(α)σ̃ − σ̃2

σ̃

)
= exp

{
µ̃+ 1

2 σ̃
2
}

Φ
(
Φ−1(α)− σ̃

)
Moreover, we have P [Y ≤ qα(Y )] = α. �
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Back to the Lognormal model

Recall that in the Lognormal model according to Definition 1, we have according
to Proposition 1

µ̃ = log FR0 + (µ− λ)t and σ̃2 = σ2t

Inserting this into the results of Propositions 12, 13 and 14 yields:

1.) For the quantile:

qα(FRt) = exp
{
µ̃+ Φ−1(α) σ̃

}
= exp

{
log FR0 + (µ− λ)t+ Φ−1(α)σ

√
t
}

= FR0 exp
{

(µ− λ)t+ Φ−1(α)σ
√
t
}
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2.) For the conditional expectation:

E [FRt|FRt ≤ 1] = exp
{
µ̃+ 1

2 σ̃
2
}

Φ

(
− µ̃+ σ̃2

σ̃

)/
Φ

(
− µ̃
σ̃

)
= exp

{
log FR0 + (µ− λ)t+ 1

2σ
2t
}
×

Φ

(
− log FR0 + (µ− λ)t+ σ2t

σ
√
t

)/
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
= FR0 exp

{
(µ− λ)t+ 1

2σ
2t
}
×

Φ

(
− log FR0 + (µ− λ)t+ σ2t

σ
√
t

)/
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
= E [FRt]×

Φ

(
− log FR0 + (µ− λ)t+ σ2t

σ
√
t

)/
Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
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3.) For the expected shortfall:

E [FRt|FRt ≤ qα(FRt)] = 1
α exp

{
µ̃+ 1

2 σ̃
2
}

Φ
(
Φ−1(α)− σ̃

)
= 1

α exp
{

log FR0 + (µ− λ)t+ 1
2σ

2t
}

Φ
(

Φ−1(α)− σ
√
t
)

= 1
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)

= 1
α E [FRt] Φ

(
Φ−1(α)− σ

√
t
)
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Expected Funding Shortfall
We introduce a new risk measure that takes into account the extent of an eventual
underfunding as desired:

Definition 6 (Expected Funding Shortfall)

Let α ∈ (0, 1) and t > 0. The Expected Funding Shortfall is defined as

EFSα,t := 1−E [FRt|FRt ≤ qα(FRt)]

Proposition 15 (EFS in the Lognormal model)

Under the Lognormal model according to Definition 1, the Expected Funding
Shortfall is given by

EFSα,t = 1− 1
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)

= 1− 1
α E [FRt] Φ

(
Φ−1(α)− σ

√
t
)

Proof: See calculations above. �
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Illustration: FRaR and EFS

Graphically, the various measures can be interpreted as follows:

We might as well work directly with the quantile qα or the Expected Shortfall ESα.
But in practice, one is more interested in the deficit that might have to be made
up in order to reach fully-funded status (i.e. FRt = 1) again. Therefore, it is
preferrable to work with the difference to 1.
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This is the expected difference to the funding ratio of 1 (i.e. the expected funding
shortfall) that is present if the α-event materializes. It is a measure for the amount
of money that must be put up in order to bring the institution to fully funded status.

Note that EFSα,t is here expressed in terms of funding ratio. It can, however, be
easily translated into monetary terms.

When doing stochastic simulation, this measure is easy to calculate either in mon-
etary terms or in terms of funding ratio.

For the levels of EFSα,t, we have:

I High value: BAD

I Low value: GOOD

For the changes of EFSα,t, we have:

I Increase: BAD

I Decrease: GOOD
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Also with EFSα,t, we explore the sensitivities:

∂ EFSα,t
∂ FR0

= − 1
α exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)
< 0

∂ EFSα,t
∂ µ

= − t
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)
< 0

∂ EFSα,t
∂ λ

= t
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)
> 0

∂ EFSα,t
∂ σ

= 1
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}
×[√

t ϕ
(

Φ−1(α)− σ
√
t
)
− t σΦ

(
Φ−1(α)− σ

√
t
)]

The first three sensitivities are as one would expect. For the fourth expression, the
term in the square brackets will be positive, unless

ϕ
(
Φ−1(α)− σ

√
t
)

Φ
(
Φ−1(α)− σ

√
t
) < σ

√
t

which is difficult to attain for realistic values of α. This is different from the
probability of underfunding, where we can have a negative sensitivity to σ under
fairly realistic conditions. That is, EFSα,t is more conservative in this respect.
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Normal density and CDF

Typical values for α are e.g. 1%, 5% or 10%. In these cases Φ−1(α) is at -2.3, -1.6
and -1.3, respectively. Typical values for σ are (well) below 10%.

Peter Blum (Suva) V Lognormal Model September 17, 2020 50 / 54



Funding Ratio at Risk

In the same manner as before, we can introduce another risk measure, this time
inspired by Value at Risk:

Definition 7 (Funding Ratio at Risk)

Let α ∈ (0, 1) and t > 0. The Funding Ratio at Risk is defined as

FRaRα,t := 1− qα(FRt)

Proposition 16 (FRaR in the Lognormal model)

Under the Lognormal model according to Definition 1, the Funding Ratio at Risk
is given by

FRaRα,t = 1− FR0 exp
{

(µ− λ)t+ Φ−1(α)σ
√
t
}

Proof: See calculations above. �
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For the sensitivities, we obtain:

∂

∂FR0
FRaRα,t = − exp

{
(µ− λ)t+ Φ−1(α)σ

√
t
}
< 0

∂

∂µ
FRaRα,t = −tFR0 exp

{
(µ− λ)t+ Φ−1(α)σ

√
t
}
< 0

∂

∂λ
FRaRα,t = tFR0 exp

{
(µ− λ)t+ Φ−1(α)σ

√
t
}
> 0

∂

∂σ
FRaRα,t = −Φ−1(α)

√
t FR0 exp

{
(µ− λ)t+ Φ−1(α)σ

√
t
}
> 0 if α < 0.5

This is as one would expect. Given that we are in the left tail, sensible values for α
are e.g. 1%, 5% or 10%, certainly not more. Also here, there is no realistic situation
where the sensitivity to σ is negative, even if the institution is underfunded.
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Concluding remarks

In practice, the probability of underfunding ψt is the predominant risk measure,
and there is no fundamental objection against this. However, ψt does only provide
limited information:

I ψt just gives the probability of something undesirable, i.e. an underfunding,
happening,

I but it bears no information on the extent of the underfunding.

The alternative risk measures EFSα,t and FRaRα,t also bear information on the
extent of the underfunding. In the case of a turnaround, they can be used as a
proxy for the turnaround costs.

This is very useful when weighting the cost of measures for risk reduction against
their effect. See the subsequent chapters with the ALM studies for more on this.

Moreover, at least at first sight, EFSα,t and FRaRα,t seem to be more conservative
when it comes to the treatment of (short-term) investment risk. We will also explore
this further in the subsequent chapters.
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1. Problem statement
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Recall: generic model framework
According to Chapter IV, the generic representation of the problem is

At = At−1(1 +Rt) + Ct

Lt = Lt−1(1 + λt) + Ct

}
for t ∈ {1, . . . , T}

and the relevant influence factors to be reconciled with one another are

Institution Financial markets
Required return Expected return

λt + (FRt−1 − 1) Ct

At−1
µt

Risk-taking capability Investment risk
FR0 σ2

t

This is a first study of the interplay of these factors, specifically

I interplay between expected return and investment risk

I given required return and risk-taking capability

These considerations can be done in the general case by stochastic simulation.
Here, however, we will do them analytically within the Lognormal framework.
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Recall: Lognormal model
As in Definition 1 and Proposition 1 of Chapter V, we assume that the institution
is in equilibrium (i.e. Ct ≡ 0), and we let

log FRt − log FRt−1 = µ− λ+ εt where εt ∼ iid N
(
0, σ2

)
For given FR0, this means that FRt ∼ LN

(
log FR0 + (µ− λ)t, σ2t

)
. This gives

rise to the long-term risk measures:

Probability of underfunding (Chapter V, Proposition 8):

ψt (FR0, λ, µ, σ) = Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
Expected Funding Shortfall (Chapter V, Proposition 12):

EFSα,t (FR0, λ, µ, σ) = 1− 1
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)

Funding Ratio at Risk (Chapter V, Proposition 13):

FRaRα,t (FR0, λ, µ, σ) = 1− FR0 exp
{

(µ− λ)t+ Φ−1(α)σ
√
t
}

The goal is to optimize the values of these long-term risk measures under certain
assumptions.
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Assumptions

We assume throughout this chapter that the required return λ and the risk-taking
capability FR0 are given.

I This corresponds to a situation where the discount rate δ is fixed and given
and cannot be changed by the institution.

I Then, also FR0 directly results from this.

The variables are thus the expected return µ and the short-term investment risk
σ2. In principle, long-term risk is optimized by selecting a high µ and a low σ2; c.f.
the sensitivity analysis in Chapter V.

The problem is that expected return and investment risk are related, i.e. if we select
a higher expected return, then we will invariably incur more investment risk.

Therefore, we assume that there is a functional relationship between expected return
µ and investment risk σ2, or σ for the purpose: σ = σ(µ).

This relationship σ = σ(µ) is called Risk / Return Profile.
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Call from practice

In practice, one considers the standard deviation σ of the investment returns rather
than the variance σ2. This is because the standard deviation is on the same scale as
the returns themselves and their expectation. Therefore, it lends itself to an easier
interpretation, e.g.

I A standard deviation of 5% means that the average absolute deviation of the
returns from their expectation is 5%.

I The resulting variance of 0.0025 has no intuitive interpretation.
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2. Risk / return profile
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Fundamental situation

It is a fundamental matter of fact that a higher expected return µ comes along with
a higher investment risk σ:

I This is theoretically well underpinned, e.g. by the Capital Asset Pricing Model
(CAPM); see [1].

I And it is also empirically confirmed; see the subsequent considerations in this
course or e.g. [2].

Note that we use σ for the risk, and not σ2.
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We are mainly interested in the points (risk / return combinations) on the line:

I Points below the line are suboptimal, i.e. less return for the same risk or more
risk for the same return.

I Points above the line are not feasible.

As risk becomes higher, the extra return obtained becomes lower. This reflects the
economic principle of decreasing marginal utility, and it also makes sense empirically.

We can safely assume that the function µ(σ) is twice continuously differentiable,
so that we can state

µ′(σ) > 0 (increasing return)

µ′′(σ) ≤ 0 (decreasing marginal return)

For the moment, these facts should be taken as given. We will see in subsequent
chapters, when we look at the construction of investment portfolios, why they are
well justified.
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Risk / return profiles in practice
Risk / return profiles feasible for typical Swiss pension funds; as it used to be around
2005 and as it is nowadays:

Parallel to the decrease in interest rates (see Chapter II), there was a dramatic
decline in return expectations over the past ten years. That is:

I (Much) more risk for the same return as before (if feasible at all).

I (Much) less return for the same risk as before.
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Formalization of risk / return profile
In practice, our policy variable is the expected return µ:

I Required returns are clearly defined, and we must set µ accordingly; e.g. in
the Lognormal model this means µ ≥ λ.

I The requirements for the investment risk σ are generally less clearly defined.
This is more of a consequence.

Therefore, we work with a risk / return profile of the form σ = σ(µ), which creates
the following situation:
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We have µ ∈ [µmin, µmax] for some minimum attainable return µmin and some
maximum attainable return µmax > µmin. Nowadays, we must admit the situation
where µmin < 0.

Consequently, there is a minimum risk σmin = σ (µmin) and a maximum risk σmax =
σ (µmax) such that σ ∈ [σmin, σmax]. Note that still nowadays σ ≥ 0.

Hence, we let σ(µ) be a twice continuously differentiable function with

σ(µ) ≥ 0
σ′(µ) > 0
σ′′(µ) > 0

 for all µ ∈ [µmin, µmax]

That is, σ(µ) is a convex function on a compact support.

Example: Let σ(µ) = α (µ− µmin)
2 for µ ≥ µmin and α > 0. Then, we have

σ(µ) ≥ 0

σ′(µ) = 2α (µ− µmin) > 0 for µ > µmin

σ′′(µ) = 2α > 0
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3. Optimizing the probability of underfunding
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Setup

Let the Lognormal model according to Definition 1 of Chapter V hold.

Assume that we have a risk / return profile σ(µ) defined on µ ∈ [µmin, µmax] as
introduced above.

Assume that FR0 and λ are given and fixed. Assume moreover that λ ∈ (µmin, µmax),
i.e. it is actually possible to attain the required return. (The situation where λ needs
to be adapted will be considered in the next chapter.)

Note that we assume the net profit condition to be respected, i.e. µ ≥ λ. In
general, this is indispensable for assuring a sustainable funding.

The question is now: Does it make sense to increase µ beyond λ, i.e. take more
risk than absolutely necessary in order to achieve a higher expected return than the
minimum. The criterion is long-term risk, e.g. the probability of underfunding. If
the latter decreases as we increase µ, then it is worthwhile.

In other words: Can an increase in short-term risk (i.e. σ) lead to a decrease in
long-term risk (e.g. ψt)? And if so, under what circumstances?
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Graphical exploration

Given λ and FR0 as parameters and some fixed t, ψt becomes a mapping

ψt,λ,FR0
: R× R+ → R+

(µ, σ) 7→ Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
We can simply calculate this for each pair (µ, σ) ∈ R × R+, whether feasible or
not, and we can plot the results as a risk map in µ/σ-space, e.g. as a line plot.

In a line plot, the lines connect all those combinations (µ, σ) that lead to the same
value of ψt. That is, the lines in the plot are iso-ψt-lines similar to height curves in
a topographic map or to isobars in weather chart.
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Example: map of ψt given FR0 = 110%, λ = 2% and t = 10 in µ/σ-space:

ψt becomes lower for higher µ and for lower σ as one would expect from the
sensitivities computed in Chapter V.
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Call from practice

The good thing about this representation is that in more complicated settings,
where there is no analytical tractability, one can always obtain this risk map by
stochastic simulation. It requires some computing power, since the simulation of
the probability of underfunding must be repeated for a large number of combinations
of µ and σ. Moreover, it also requires some brain power from the analyst to get
the numerics under control. But it works universally.
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Now, we can simply superimpose our risk / return profile of feasible combinations
of µ and σ. There are two basic situations:

σ(µ) grows slowly w.r.t. ψt, such that
we obtain a lower ψt by increasing µ
beyond λ.

σ(µ) grows too quickly w.r.t. ψt, such
that we obtain a higher ψt by increas-
ing µ beyond λ.
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Analytical evaluation
We simply take the formula for ψt and insert σ(µ) instead of σ:

ψt,FR0,λ(µ) = Φ

(
− log FR0 + (µ− λ)t

σ(µ)
√
t

)
and evaluate over µ ∈ [µmin , µmax]. This representation can also be obtained in a
general stochastic simulation setting. We may obtain, for instance:

ψt increases as µ increases; not worth-
while to select µ > λ.

ψt decreases as µ increases; worth-
while to select µ > λ for as long as
ψt decreases.
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Let us now study the derivative d
dµ ψt,FR0,λ(µ); we have:

d

dµ
ψt,FR0,λ(µ) = ϕ

(
− log FR0 + (µ− λ)t

σ(µ)
√
t

)
(−f ′(µ))

where

f(µ) =
log FR0 + (µ− λ)t

σ(µ)
√
t

Applying the quotient rule to f(µ) and rearranging, we obtain

d

dµ
ψt,FR0,λ(µ) = ϕ

(
− log FR0 + (µ− λ) t

σ(µ)
√
t

)
×

1

σ2(µ)
√
t

[(
log FR0 + (µ− λ) t

)
σ′(µ)− σ(µ) t

]

We are interested in the situation where d
dµ ψt,FR0,λ(µ) < 0. Since both ϕ( · ) and

σ(µ) > 0, this occurs if and only if the term in square brackets is negative, i.e. if

(log FR0 + (µ− λ) t)σ′(µ) < σ(µ) t
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We note that the condition is more likely to be satisfied if the institution is under-
funded (since then log FR0 < 0).

At the point µ = λ the condition boils down to

log FR0 σ
′(λ) < σ(λ) t

Since σ′(λ) > 0, this condition is always satisfied if the institution is underfunded,
i.e. if log FR0 < 0. On the other hand, for log FR0 > 0, we have

σ′(λ)

σ(λ)

!
<

t

log FR0

That is, if the relative increase in investment risk is below the bound given by the
quotient of t and log FR0, then it is worthwhile to take more investment risk and
aspire for a higher return than the minimum required.

I The longer the time horizon, the less restrictive the criterion.

I The higher the initial funding ratio, the more restrictive the criterion.

This appears plausible. We should, however, still remain somewhat careful about
these findings as long as we have not investigated a risk measure that takes into
account the cost of a possible underfunding.
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4. Optimizing alternative risk measures
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Overview

The same risk / return consideration as in the previous section can also be done
based on the Expected Funding Shortfall and on the Funding Ratio at Risk.

As before, let λ and FR0 be given, and let σ = σ(µ) denote the risk / return profile.
Then, we have according to Proposition 12 and 13 of Chapter V:

EFSα,t(µ) = 1− 1
α FR0 exp

{(
µ− λ+ 1

2σ
2(µ)

)
t
}

Φ
(

Φ−1(α)− σ(µ)
√
t
)

FRaRα,t(µ) = 1− FR0 exp
{

(µ− λ)t+ Φ−1(α)σ(µ)
√
t
}

The added value of these evaluations is that they also take into account the extent
of a possible underfunding, not just the probability of it happening.
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Graphical evaluation
The graphical evaluations can be done in the same manner as for the probability of
underfunding. Numbers are in % of funding ratio.

Expected Funding Shortfall Funding Ratio at Risk

All else being equal, the Funding Ratio at Risk is less conservative than the Expected
Funding Shortfall. Otherwise, the basic pattern is not fundamentally different from
the probability of underfunding. To explore differences, we have to revert to ana-
lytical evaluations.
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Analytical evaluation
Based on the equation for EFSα,t with σ = σ(µ) as above, i.e.

EFSα,t(µ) = 1− 1
α FR0 exp

{(
µ− λ+ 1

2σ
2(µ)

)
t
}

Φ
(

Φ−1(α)− σ(µ)
√
t
)

we obtain
d

dµ
EFSα,t(µ) = − 1

α
FR0

(
d

dµ
g(µ)h(µ)

)
where we have

g(µ) = exp
{(
µ− λ+ 1

2σ
2(µ)

)
t
}

h(µ) = Φ
(

Φ−1(α)− σ(µ)
√
t
)

Observing that

g′(µ) = exp
{(
µ− λ+ 1

2σ
2(µ)

)
t
}(
t+ σ(µ)σ′(µ) t

)
h′(µ) = −σ′(µ)

√
t ϕ

(
Φ−1(α)− σ(µ)

√
t
)

and ... ./.
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./. ... applying the product rule, we obtain

d

dµ
EFSα,t(µ) = 1

α FR0 exp
{(
µ− λ+ 1

2σ
2(µ)

)
t
}
×[√

t σ′(µ)ϕ
(

Φ−1(α)− σ(µ)
√
t
)

− t (1 + σ(µ)σ′(µ)) Φ
(

Φ−1(α)− σ(µ)
√
t
) ]

We are again interested in the situation where d
dµ EFSα,t(µ) < 0 , i.e. where it is

worthwhile to increase expected return µ and hence investment risk σ(µ) in order
to obtain a lower long-term risk. This is the case if and only if the expression in
the square brackets is negative, i.e.

t (1 + σ(µ)σ′(µ)) Φ
(

Φ−1(α)− σ(µ)
√
t
)
>
√
t σ′(µ)ϕ

(
Φ−1(α)− σ(µ)

√
t
)

We observe that σ(µ), σ′(µ), ϕ( · ) and Φ( · ) are all positive.
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Therefore, we can rearrange the inequality to obtain

σ′(µ) <
1

1√
t
· ϕ(Φ−1(α)−σ(µ)

√
t)

Φ(Φ−1(α)−σ(µ)
√
t)
− σ(µ)

Again, we obtain an upper bound for σ′(µ). That is, if the additional short-term
risk σ(µ) that we have to take for an additional unit of expected return is sufficiently
low, this reduces long-term risk as expressed by EFSα,t. Moreover, we can observe:

I The bound does not depend on FR0 here. This seems logical, since FR0 only
appears as a factor in front of everything else for this risk measure.

I However, the bound depends on the level of safety α. If α becomes lower
(higher level of safety), then ϕ( · )/Φ( · ) becomes higher (see next page) and
the bound becomes more restrictive.

I The longer the time horizon, the less restrictive the bound. This also seems
logical and is congruent with the probability of underfunding.

I The higher the risk σ(µ) that we already have, the more restrictive the bound
becomes. This also appears sensible.
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Normal density vs. CDF
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Funding Ratio at Risk

Based on the equation for FRaRα,t and with σ = σ(µ) as above, we have

FRaRα,t(µ) = 1− FR0 exp
{

(µ− λ)t+ Φ−1(α)σ(µ)
√
t
}

For the first derivative w.r.t. µ, we obtain

d

dµ
FRaRα,t(µ) = −FR0 exp

{
(µ− λ)t+ Φ−1(α)σ(µ)

√
t
}(

t+ Φ−1(α)σ′(µ)
√
t
)

For this to be negative, we must have

t+ Φ−1(α)σ′(µ)
√
t > 0

For reasonable values of α, i.e. α� 0.5, we have Φ−1(α) < 0, and therefore

σ′(µ) < −
√
t

Φ−1(α)

That is, we again have an upper bound for the marginal investment risk σ′(µ).
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As with the Expected Funding Shortfall, we have the following properties:

I The bound does not depend on FR0.

I It depends, however, on the level of safety α. The higher the level of safety,
i.e. the lower α, the more restrictive the bound becomes.

I The longer the time horizon, the less restrictive the bound becomes.

Contrary to the Expected Funding Shortfall, we have:

I The bound does not depend on the absolute level of investment risk σ(µ)
already in force.

Although the expression for the Funding Ratio at Risk is very handy, the Expected
Funding Shortfall may be the more comprehensive and also the more prudent deci-
sion criterion.
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Concluding remarks

In this chapter, we have basically studied the interplay between short-term risk and
long-term risk:

I Short-term: single-period investment risk as expressed by σ(µ).

I Long-term: multi-period risk to assets and liabilities as expressed by the mea-
sures ψt, EFSα,t or FRaRα,t.

We have seen that, in certain situations, the short-term risk and the long-term risk
may be conflicting dimensions, i.e.

I It may make sense to increase short-term investment risk in order to decrease
the long-term risk of underfunding.

The condition for this to be the case is generally when the marginal short-term risk
is below certain bounds that depend on initial funding ratio, time horizon or desired
level of safety.
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1. Problem statement

Peter Blum (Suva) VII ALM Study 2 September 17, 2020 3 / 45



Recall: generic model framework

According to Chapter IV, the generic representation of the problem is

At = At−1(1 +Rt) + Ct

Lt = Lt−1(1 + λt) + Ct

}

and the relevant influence factors to be reconciled with one another are

Institution Financial markets
Required return Expected return

λt + (FRt−1 − 1) Ct

At−1
µt

Risk-taking capability Investment risk
FR0 σ2

t

In this study, we consider the full interplay between assets and liabilities, i.e. liability
growth rate λ and initial funding ratio FR0 are not anymore given constants.

These considerations can be done in the general case by stochastic simulation.
Here, however, we will do them analytically within the Lognormal framework.
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Recall: Lognormal model
As in Definition 1 of Chapter V, we assume that the institution is in equilibrium
(i.e. Ct = 0), and we let

log FRt − log FRt−1 = µ− λ+ εt where εt ∼ iid N
(
0, σ2

)
For given FR0, this means that FRt ∼ LN

(
log FR0 + (µ− λ)t, σ2t

)
. This gives

rise to the long-term risk measures:

Probability of underfunding:

ψt = Φ

(
− log FR0 + (µ− λ)t

σ
√
t

)
Expected Funding Shortfall:

EFSα,t = 1− 1
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)

Funding Ratio at Risk:

FRaRα,t = 1− FR0 exp
{

(µ− λ)t+ Φ−1(α)σ
√
t
}

The goal is to optimize the values of these long-term risk measures under certain
assumptions as given below.
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Recall: risk / return profile
In the first ALM study in Chapter VI, we have introduced the relationship between
the expected return µ and the short-term investment risk σ, i.e. σ = σ(µ):

Specifically, we assumed that σ(µ) is twice continuously differentiable with

σ(µ) > 0
σ′(µ) > 0
σ′′(µ) > 0

 for all µ ∈ [µmin, µmax]

We will maintain this assumption throughout this second study.
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The problem

In the previous study, we have assumed that λ ∈ (µmin, µmax), i.e. the required
return is within the range of feasible returns.

We have also (tacitly) assumed that the short-term risk σ as well as the long-term
risk as expressed by ψt, EFSα,t or FRaRα,t are acceptable for the institution.

Now, we assume that this is not the case anymore:

I Either λ is simply unfeasible, i.e. λ > µmax.

I Or, at least, the long-term risk caused by letting µ = λ is deemed unacceptably
high for the institution.

That is, we must now adapt λ in such a manner that a feasible and acceptable
solution becomes possible.
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Relevance of the problem
At the beginning of this century, it was commonplace for Swiss pension funds to
have discount rates δ ≥ 4% for their liabilities, giving rise to required returns
λ ≥ 4%. With the then-prevailing risk / return profiles, this was fairly reasonable.

However, since then, risk / return profiles have deteriorated dramatically. Formerly
feasible and acceptable required returns are not sensible anymore.

Therefore, reducing discount rates has become a standard task for Swiss (and many
other) pension funds.
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The consequences

Think of the liabilities as the present value of future promised cashflows, c.f. Chap-
ters II and III:

L0(δ) = PV0(C, δ) =

T∑
t=1

Ct
(1 + δ)t

Now, if we reduce δ (and hence λ), this also means that the present value L0

increases. For instance, using the approximation introduced earlier, we have

L0(δ + ∆δ)− L0(δ) ≈ −DLL0(δ)(∆δ) + 1
2 K

LL0(δ)(∆δ)2

Given that the funding ratio is defined as FRt = At/Lt this also means that the
initial funding ratio FR0, and hence the risk-taking capability decrease.

That is, reducing the discount rate δ reduces the required return λ and the short-
term investment risk σ that must be taken. But it also reduces the risk-taking
capability so that the long-term risk may eventually increase. We somehow must
find an optimal balance in this situation.
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The optimization task
If we put these influences together, we have two different developments:

Institutional side:

If the liability growth rate λ is re-
duced, then also FR0, i.e. the risk-
taking capability, becomes lower, and
vice versa.

Financial markets side:

If the required return λ is reduced,
then also the investment risk σ(λ) is
reduced, and vice versa.

In principle, these developments are compatible with one another, but we must
explore which one dominates under what conditions.
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2. Liability profile
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Liability values

We take a closer look at the relationship between the initial value of the liabilities
L0 and the intrinsic growth rate of liabilities λ. This consideration builds on Section
1 of Chapter II. Assume for the moment that L0 can be expressed as the present
value of a stream of cashflows:

L0(λ) =

T∑
t=1

Ct
(1 + λ)t

Here, we have inserted the intrinsic growth rate λ instead of the discount rate δ.
This is justified by the equality of the two, λ = δ, as it was shown in Section 3
of Chapter III. And, according to Propositions 2 and 3 of Chapter II, we have for
non-negative cashflows Ct:

L′0(λ) =
∂

∂λ
PV0(C, λ) < 0

L′′0(λ) =
∂2

∂λ2
PV0(C, λ) > 0

That is, the value of the liabilities decreases as λ increases, and vice versa.
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Illustration: Relationship between initial value of liabilities and intrinsic liability
growth rate (= discount rate):

Peter Blum (Suva) VII ALM Study 2 September 17, 2020 13 / 45



Economic interpretation

Now that we know the relationship between the liability growth rate λ and the
required value for the expected investment return, we can also give an economic
interpretation to the relationship with the value of the liabilities. For some given
stream of promised cashflows, we have:

I If we choose a high value for λ (i.e. a high discount rate δ), then the initial
value of the liability L0 is low. I.e. we have to put up less money at the
beginning, but we have to earn a higher investment return µ over time, and
we must bear a higher investment risk σ(µ) for doing so.

I If we choose a low value for λ (i.e. a low discount rate δ), we only have to
earn a lower investment return µ, and we incur a lower investment risk σ(µ)
for doing so. But the initial value L0 is higher, i.e. we have to put up a higher
amount of money at the beginning.

In principle, it is desirable to maximize λ, and hence the contribution from invest-
ment returns. But this must be done without compromising long-term security as
expressed by ψt (or EFSα.t or FRaRα.t).

This study is basically about finding a suitable balance.
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Duration and Convexity

We have already introduced the concepts of Duration and Convexity in Section 1
of Chapter II, and we can apply them here.

Let λ0 denote the liability growth rate currently in force, i.e. our starting point.
Then we have for the Duration DL and for the Convexity KL of the liabilities:

DL = −L
′
0(λ0)

L0(λ0)
> 0 and KL =

L′′0(λ0)

L0(λ0)
> 0

In principle, we can usually calculate L0(λ) directly for any value of λ. However, if
necessary, we can use the second-order Taylor approximation

L0(λ) ≈ L0(λ0)−DLL0(λ0)(λ− λ0) + 1
2K

LL0(λ0)(λ− λ0)2

Up until now, we have motivated these relationships for a situation where L0(λ)
is the present value of a stream of cashflows C. In the sequel, we also assume
that they hold when the liabilities contain other elements. For typical social insur-
ance liabilities, this is usually the case. However, in the context of unit-linked life
insurance products, these assumptions may no longer hold; see e.g. [1]. This is
particularly the case if Ct = Ct(λ) which we exclude here.
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Initial funding ratio
The initial funding ratio is defined as FR0 = A0/L0. In our setup, where λ is
deliberately set by the institution, the asset value A0, i.e. the market value, is
independent of λ, so that we have:

FR0(λ) =
A0

L0(λ)

Note: In an immunized setup (c.f. Sections 2 and 3 of Chapter IV), both A0 and
L0 would move with λ which, in turn, is determined by bond yields, and these
movements would cancel out if the immunization is good.

In the setup prevailing here, however, we have

FR′0(λ) =
d

dλ
FR0(λ) = − A0

(L0(λ))2
L′0(λ) = −FR0(λ)

L′0(λ)

L0(λ)
> 0

The expression is positive since we have L′0(λ) < 0. Specifically for λ = λ0, since
DL = −L′0(λ0)/L0(λ0), we have

FR′0(λ0) = DL A0

L0(λ0)
= DL FR0(λ0)
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For the second derivative, we obtain (by applying the quotient rule):

FR′′0(λ) =
d

dλ
(−A0)

L′0(λ)

(L0(λ))
2

= (−A0)

[
L′′0(λ) (L0(λ))

2 − L′0(λ) 2L0(λ)L′0(λ)

(L0(λ))
4

]

= (−A0)

[
L′′0(λ)

(L0(λ))
2 − 2

(L′0(λ))
2

(L0(λ))
3

]

=
A0

L0(λ)

[
2

(
L′0(λ)

L0(λ)

)2

− L′′0(λ)

L0(λ)

]

= FR0(λ)

[
2

(
L′0(λ)

L0(λ)

)2

− L′′0(λ)

L0(λ)

]
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Specifically for λ = λ0, the latter expression is equivalent to

FR′′0(λ0) = FR0(λ0)
[
2
(
DL
)2 −KL

]
The second derivative FR′′0(λ) may thus be positive or negative, depending on the
sign of the expression in the square brackets. Specifically, we have FR′′0(λ) > 0 if

L′′0(λ)

L0(λ)
< 2

(
L′0(λ)

L0(λ)

)2

or, at λ = λ0: KL < 2
(
DL
)2

That is, the convexity of the liabilities should be bounded with respect to their
duration. We refrain from evaluating this condition analytically, but we observe:

I For realistic cashflow patterns, we will usually have FR′′0(λ) > 0.

I FR′′0(λ) < 0 is mainly achieved by degenerate cashflow patterns, e.g. with high
cashflows at the beginning and at the end, with nothing in-between.
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That is, in most practical settings, the second derivative FR′′0(λ) will usually be
non-negative. Therefore, the funding ratio as a function of the liability growth rate
has the following generic (convex) shape:

That is, if we increase the value of λ, then also FR0, and thus also the risk-taking
capability, increases (and even the marginal risk-taking capability increases). This
is, in principle, compatible with the fact that we have to take more investment risk
in order to finance a higher λ.
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Finally, we take a brief look at the log-funding ratio. On the one hand, we have

log FR0(λ) = logA0 − logL0(λ)

and hence

d

dλ
log FR0(λ) = −L

′
0(λ)

L0(λ)

(
= DL > 0 if λ = λ0

)
And on the other side, we have

d

dλ
log FR0(λ) =

FR′0(λ)

FR0(λ)

This may prove to be useful.
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3. Optimizing the probability of underfunding
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Setup

The liability profile is the relationship λ 7→ FR0(λ) as introduced above. We also
have the risk / return profile µ 7→ σ(µ) as introduced in the last chapter. Moreover,
we equate liability growth rate and expected return, i.e. µ = λ. Putting all this
together, we obtain for the probability of underfunding

ψt(λ) = Φ

(
− log FR0(λ)

σ(λ)
√
t

)
We want to find the value λ ∈ [µmin, µmax] that minimizes the probability of
underfunding. If necessary, λ0 denotes the current value of λ, which may not be
the optimum.

Notice the difference in the setup: In the previous chapter, the institutional side,
i.e. λ and FR0, was given, and only the position on the risk / return profile was up
for optimization. Here, also the institutional side is under review.

In practice, we would simply compute ψt(λ) over the full range λ ∈ [µmin, µmax]
and look up the optimum. This also works well in a general setup where stochastic
simulation must be applied. Here, however, we make a few analytical considerations.
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General situation
We take the first derivative

d

dλ
ψt(λ) =

d

dλ
Φ

(
− log FR0(λ)

σ(λ)
√
t

)

= −ϕ
(
− log FR0(λ)

σ(λ)
√
t

)(
g(λ)

h(λ)

)′
where g(λ) = log FR0(λ) and h(λ) = σ(λ)

√
t. We then have

g′(λ) =
FR′0(λ)

FR0(λ)

(
and, in particular: g′(λ0) = DL

)
h′(λ) = σ′(λ)

√
t

This yields then

(
g(λ)

h(λ)

)′
=

FR′0(λ)
FR0(λ)

σ(λ)
√
t− log FR0(λ)σ′(λ)

√
t

(σ(λ))
2
t
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Noting that
FR′0(λ)
FR0(λ)

= d
dλ log FR0(λ) and putting everything together, we obtain

d

dλ
ψt(λ) = ϕ

(
− log FR0(λ)

σ(λ)
√
t

)
log FR0(λ)σ′(λ)−

(
d
dλ log FR0(λ)

)
σ(λ)

(σ(λ))
2√

t

We note that ϕ( · ), σ(λ), σ′(λ) and d
dλ log FR0(λ) are all positive. Only log FR0(λ)

can have both signs.

Again, we are interested in the situation where d
dλψt(λ) < 0, i.e. where it makes

sense to increase λ, and hence µ and hence also the short-term risk σ(λ) in order
to reduce the long-term risk ψt(λ). This is the case if and only if

log FR0(λ)σ′(λ)−
(
d

dλ
log FR0(λ)

)
σ(λ) < 0

or, equivalently

log FR0(λ)σ′(λ) <

(
d

dλ
log FR0(λ)

)
σ(λ)

Now, if log FR0(λ) < 0, i.e. if FR0(λ) < 1 (equivalent to an underfunding), this is
always the case, irrespective of the values of σ(λ) and σ′(λ).
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That is, if the institution is already underfunded, it makes no sense to reduce the
required return λ (i.e. the discount rate δ), because this further exacerbates the
current underfunding, and thus increases the risk of future underfunding, at least
according to this risk measure. We remain, however, a bit suspicious, because this
assertion is completely independent of short-term investment risk σ(λ).

Assume now that log FR0(λ) > 0 (i.e. FR0(λ) > 1, overfunding). Then, the above
inequality transforms into

σ′(λ)

σ(λ)
<

d
dλ log FR0(λ)

log FR0(λ)

That is, if the relative increase in investment risk σ′(λ)
σ(λ) is lower than the relative

increase in (log-) risk-taking capability d
dλ log FR0(λ)/ log FR0(λ), then it makes

sense to increase λ in order to decrease the long-term risk of underfunding ψt.

If, on the other hand, the increase in investment risk outgrows the increase in
risk-taking capability, then it makes sense to decrease λ in order to decrease the
long-term risk of underfunding ψt (provided that FR0(λ) > 1).
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This criterion appears entirely plausible and is easy to evaluate. In the situation
where λ = λ0, it boils further down to

σ′(λ)

σ(λ)
<

DL

log FR0(λ0)

That is, if this criterion is satisfied, it makes sense to set λ > λ0. If the contrary is
true, it makes sense to set λ < λ0.
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Global considerations

As we have seen, we can choose λ ∈ [µmin, µmax]. The global optimization task
consists of choosing λ∗ such that the risk of underfunding is minimized, i.e.

λ∗ = arg min
λ∈[µmin, µmax]

ψt(λ)

Given that we have functional representations for log FR0(λ) and σ(λ), we can
easily calculate

ψt(λ) = Φ

(
− log FR0(λ)

σ(λ)
√
t

)
for λ ∈ [µmin, µmax]

and look up the optimum λ∗. In order to further characterize λ∗ analytically, we

would have to take the second derivative d2

dλ2ψt(λ). This is, of course, possible, but
the expression is rather unwieldy and does not lead to any intuitive criteria.

Given the easy direct consideration of ψt(λ), we need not be unhappy about this.
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4. Optimizing alternative risk measures
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Expected Funding Shortfall
We do the same reasoning as before for the Expected Funding Shortfall according
to Definition 5 and Proposition 12 in Chapter V:

EFSα,t = 1− 1
α FR0 exp

{(
µ− λ+ 1

2σ
2
)
t
}

Φ
(

Φ−1(α)− σ
√
t
)

Letting µ = λ, FR0 = FR0(λ) and σ = σ(λ), we have

EFSα,t(λ) = 1− 1
α FR0(λ) exp

{
1
2 (σ(λ))

2
t
}

Φ
(

Φ−1(α)− σ(λ)
√
t
)

The first derivative is given by

d

dλ
EFSα,t(λ) = − 1

α

d

dλ
(f(λ)g(λ)h(λ))

with component functions

f(λ) = FR0(λ)

g(λ) = exp
{

1
2 (σ(λ))

2
t
}

h(λ) = Φ
(

Φ−1(α)− σ(λ)
√
t
)
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The derivatives of these components are

f ′(λ) = FR′0(λ) > 0

g′(λ) = exp
{

1
2 (σ(λ))

2
t
}
σ(λ)σ′(λ) t > 0

h′(λ) = −ϕ
(

Φ−1(α)− σ(λ)
√
t
)
σ′(λ)

√
t < 0

Applying the three-factor version of the product rule, i.e.

(fgh)′ = (fg)′h+ (fg)h′

= (f ′g + fg′)h+ (fg)h′

= f ′gh+ fg′h+ fgh′

and taking account of the minus signs, we obtain:

d

dλ
EFSα,t(λ) = 1

α exp
{

1
2 (σ(λ))

2
t
}
×[

FR0(λ)ϕ
(

Φ−1(α)− σ(λ)
√
t
)
σ′(λ)

√
t

− FR′0(λ) Φ
(

Φ−1(α)− σ(λ)
√
t
)

− FR0(λ) Φ
(

Φ−1(α)− σ(λ)
√
t
)
σ(λ)σ′(λ) t

]
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We note that all single terms within the square brackets are positive. Hence, for
d
dλ EFSα,t(λ) to be negative, we must have

FR0(λ) ϕ
(

Φ−1(α)− σ(λ)
√
t
)
σ′(λ)

√
t

< Φ
(

Φ−1(α)− σ(λ)
√
t
) [

FR′0(λ) + FR0(λ)σ(λ)σ′(λ) t
]

which is equivalent to

ϕ
(
Φ−1(α)− σ(λ)

√
t
)

Φ
(
Φ−1(α)− σ(λ)

√
t
) <

FR′0(λ) + FR0(λ)σ(λ)σ′(λ) t

FR0(λ)σ′(λ)
√
t

which is also equivalent to

ϕ
(
Φ−1(α)− σ(λ)

√
t
)

Φ
(
Φ−1(α)− σ(λ)

√
t
) <

FR′0(λ)

FR0(λ)σ′(λ)
√
t

+ σ(λ)
√
t

That is, a situation with d
dλ EFSα,t(λ) < 0 can, in principle, arise, depending on

the specific parametrizations of σ(λ) and FR0(λ).
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The criterion depends on the chosen level of safety α. The higher the level of
safety, i.e. the lower α (e.g. 1%), the more restrictive the criterion becomes; see
the graphic on the next page.

The right-hand side depends on the relative growth of the risk-taking capability, i.e.
FR′0(λ)/FR0(λ) as opposed to the growth and level of investment risk, i.e. σ′(λ)
and σ(λ), although the relationship is less handy than the one for ψt.

In any case, a high growth of investment risk, i.e. a high value of σ′(λ), reduces
the term on the right-hand side and makes the criterion less likely to be satisfied,
which is plausible.

Here again, the global optimum λ∗ = arg minλ∈[µmin, µmax] EFSα,t(λ) is best ob-
tained by evaluating the function EFSα,t(λ) over all feasible values λ ∈ [µmin, µmax]
and looking up λ∗.
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Standard Normal density and CDF and their ratio
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Funding Ratio at Risk

According to Definition 6 and Proposition 13 in Chapter V, we have

FRaRα,t = 1− FR0 exp
{

(µ− λ)t+ Φ−1(α)σ
√
t
}

For µ = λ, FR0 = FR0(λ) and σ = σ(λ), this becomes

FRaRα,t(λ) = 1− FR0(λ) exp
{

Φ−1(α)σ(λ)
√
t
}

Taking the first derivative is straightforward:

d

dλ
FRaRα,t(λ) = − exp

{
Φ−1(α)σ(λ)

√
t
}
×[

FR′0(λ) + FR0(λ) Φ−1(α)σ′(λ)
√
t
]

We note that Φ−1(α) < 0 for all sensible values, i.e. α � 0.5. Therefore, also in
this case, there can be situations where d

dλ FRaRα,t(λ) is negative, i.e. where it
makes sense to increase λ, and hence σ(λ) in order to decrease long-term risk as
expressed by FRaRα,t.
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For the derivative to be negative, we must thus have:

FR′0(λ) + FR0(λ) Φ−1(α)σ′(λ)
√
t > 0

This is equivalent to

FR′0(λ) > −FR0(λ) Φ−1(α)σ′(λ)
√
t

which, in turn, is equivalent to

FR′0(λ)

FR0(λ)
> −Φ−1(α)σ′(λ)

√
t

That ist, the relative growth of the risk-taking capability, i.e. FR′0(λ)/FR0(λ) must
be greater than the growth of the investment risk, i.e. σ′(λ), weighted by the
chosen level of safety α.

The higher the level of safety, i.e. the lower α (e.g. 1%), the more restrictive the
criterion becomes. We also note that a lower initial funding ratio FR0(λ) increases
the left-hand side, so that the criterion is more easily satisfied.
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Conclusions
Recall that the liability growth rate λ is a policy variable that the institution can
choose. If the liabilities only consist of the present value of some promised cashflows,
then λ is mainly determined by the discount rate δ. This is also predominantly the
case in more general situations.

The consequence of the choice of λ is, however, that one must attain a correspond-
ing expected investment return µ. In the Lognormal model, we specifically have
µ = λ. In particular, one must also incur the related investment risk σ(λ). In a
myopic setup, one would simply set λ as low as possible in order to incur the lowest
possible investment risk.

This may, however, not be optimal in the long term. Choosing a higher liability
growth rate and thus incurring a higher short-term investment risk may actually
lead to a lower risk of underfunding in the long run, relative to all considered risk
measures ψt, EFSα,t and FRaRα,t.

Whether or not this is the case, depends on the specific liability profile (λ 7→ FR0(λ))
and risk / return profile (µ 7→ σ(µ)). In the simple Lognormal framework used here,
the interplay between these profiles can be studied and optimized analytically. In
more general settings, the same logic can still be applied directly, based on stochastic
simulation models structured accordingly.
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5. Example
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Situation and task

We consider an institution that might e.g. be a Swiss Pension fund. We assume
that the institution is in equilibrium, i.e. cash inflows and outflows from insurance
operations cancel out, so that we can directly apply the Lognormal model.

The current discount rate / liability growth rate / required return λ0 equals 3.0%.
At this rate, the liabilities have a value L0 of 1’695 MCHF; their duration DL equals
12.2. The institution holds assets A0 of 2’035 MCHF, so that the funding ratio
FR0 at λ0 equals 120%.

We assume that the risk / return profile of nowadays, as shown in Chapter VI,
is applied for the institution. Under this risk / return profile, an expected return
µ = λ0 of 3.0% is feasible. However, it comes at a high volatility σ(λ0) of 8.33%.

Question: Is λ0 still optimal in terms of long-term risk, or would a different λ∗ lead
to a lower long-term risk. We consider all risk measures ψt, EFSα,t and FRaRα,t
with a time horizon of t = 10 years and a safety level of α = 5%.
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Liability valuations

Valuations of the liabilities L0 resulting from the application of different possible
discount rates / liability growth rates λ:

Depending of the value of λ chosen, the valuation of the liabilities can vary quite
considerably. Note that cashflows are up to 40 years in the future, and the duration
of the liabilities is around 12.
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Liability profile

The initial value of the assets is unaffected by the choice of λ. Therefore, the
following liability profile results from the liability values according to the last page:

As expected, higher values of λ lead to higher values of FR0 and thus to a higher
risk-taking capability. Does this relation keep pace with the risk / return profile?
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Risk / return profile

The risk / return profile in the representation adapted to our needs, i.e. with µ = λ
as the independent policy variable and σ(λ) as the dependent variable:

As required return λ is increased, the incurred investment risk σ(λ) increases over-
proportionally. Does this increase outpace the increase in risk-taking capability?

Peter Blum (Suva) VII ALM Study 2 September 17, 2020 41 / 45



Probability of underfunding

Probability of underfunding ψt (for t = 10 years) resulting from the liability profile
and risk / return profile given above for different feasible values of λ:

For values λ < 2.5%, ψt increases dramatically. Therefore, based on the consider-
ation of ψt alone, it is advisable not to decrease λ below 2.5%. Even the current
value λ0 = 3.0% could be considered as optimal.
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Alternative risk measures

EFSα,t and FRaRα,t (for t = 10 years and α = 5%) resulting from the liability
profile and risk / return profile given above for different feasible values of λ:

Taking into account also the extent of an eventual underfunding, it appears advis-
able to select λ∗ ≈ 2%, significantly lower than what is suggested by ψt. Values
considerably higher or lower than 2% lead to significantly higher long-term risk.

Peter Blum (Suva) VII ALM Study 2 September 17, 2020 43 / 45



Observations

As we have conjectured from the analytical considerations, the alternative risk mea-
sures that take into account the extent of an eventual underfunding lead to more
conservative conclusions than the mere probability of an underfunding.

In real-world situations, it is, indeed, advisable to take into account the extent of
an eventual underfunding. This extent represents the potential turnaround costs
for the underfunding if the latter turns out to be intolerable.

Form among the alternative risk measures, Expected Funding Shortfall turns out to
be consistently more conservative than Funding Ratio at Risk, as one would expect
from the analytical construction of the two measures.

The conclusions drawn from these evaluations are fairly robust against variations in
the time horizon t and the safety level α. The actual values of the risk measures
differ considerably, but the derived optimal values λ∗ are fairly similar.

In any real-world decision making, one should rely on some risk measure that takes
into account the extent of an underfunding and its financial consequences, not just
of the probability of it happening.
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1. Introduction
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Recall: model framework

Recall our generic model framework from Chapter IV:

At = At−1(1 +Rt) + Ct

Lt = Lt−1(1 + λt) + Ct

}
for all t ∈ {1, . . . , T} and given A0, L0

Here, our interest is on Rt, which denotes the rate of return from investing the
assets At−1 over the time period (t− 1, t], i.e.

Rt =
At − Ct
At−1

− 1 =
At−

At−1
− 1

Up until now, we have only cared about the total return Rt from investing the
entire assets At−1. In the generic model, we did not make specific assumptions on
the stochastic law of Rt, we simply put Rt ∼ Ft with expectation E [Rt] = µt and
finite variance Var [Rt] = σ2

t <∞.

In the Lognormal model of Chapter V, we assumed moreover thatRt ∼ iid N
(
µ, σ2

)
,

i.e. µt ≡ µ and σ2
t ≡ σ2. We will maintain this assumption for the time being and

discuss some limitations later.
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Recall: risk / return profile

In Chapter VI, we assumed that by investing the assets At in different manners, we
can attain different levels of expected returns µ ∈ [µmin, µmax]. And by doing so,
we will incur an investment risk σ that depends on the level of expected return, i.e.
σ = σ(µ) with

σ(µ) > 0

σ′(µ) > 0

σ′′(µ) ≥ 0

 for all µ ∈ [µmin, µmax]

That is, if we want a higher level of return, we must invariably incur a higher level
of investment risk.

We called the relationship µ 7→ σ(µ) the risk / return profile and took it as given.

In this chapter, we will look at how the assets At can be invested into different
asset classes and how the risk / return profile can be derived from doing so. In
particular, we will see that the postulated properties of the risk / return profile are
actually sensible.

Peter Blum (Suva) VIII Portfolio Construction November 14, 2020 5 / 56



Terminology: asset classes

We assume that there are n different asset classes i ∈ {1, . . . , n}. Asset classes
can be e.g. foreign bonds, domestic equities, real estate or hedge funds. In practice,
this set of available asset classes is often called the investment universe. We denote
by Ai,t the amount of money that is invested in asset class i, so that we have

At =

n∑
i=1

Ai,t where Ai,t ≥ 0 for all i and t

Note that we could also allow for Ai,t < 0. This corresponds to a so-called short
position. However, in a social and pension insurance context, such short positions
are usually neither allowed nor desirable.

The portfolio weights wt ∈ Rn denote the relative share that each asset class i
hold of the total portfolio, i.e.

wt = (w1,t, . . . , wn,t)
′ ∈ Rn with wi,t =

Ai,t
At
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Under the assumptions above, we have

wt ≥ 0 and 1′wt = 1

The first expression is to be understood component-wise, and in the second expres-
sion 1 = (1, , . . . , 1)′ ∈ Rn such that 1′wt =

∑n
i=1 wi,t.

Note that wt is a policy variable, i.e. in principle we can set wt to values according
to our needs and wishes at any time t by buying and selling assets of the different
asset classes. In practice, market liquidity or other constraints may limit this ability
to some extent.
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Example: asset classes

Distribution of the investment assets of The Swiss National Accident Insurance
Fund (Suva) onto various asset classes:

The investment universe of Suva is fairly vast.
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Asset class returns

As for the total portfolio return Rt, each asset class has its return Ri,t, i.e.

Ri,t :=
Ai,t − Ci,t
Ai,t−1

− 1 =
Ai,t−

Ai,t−1
− 1

with µi,t = E [Ri,t] and σ2
i,t = Var [Ri,t] < ∞. The return vector is defined as

Rt = (R1,t, . . . , Rn,t)
′ ∈ Rn. For the time being, we assume that returns are iid

multivariate Normal, i.e.
Rt ∼ iid Nn (µ,Σ)

with expectation µ = (µ1, . . . , µn)
′

= E [Rt] ∈ Rn and with covariance ma-
trix Cov [Rt] ∈ Rn×n. The covariance matrix is symmetric and positive (semi-)
definite. Its elements can be represented as

Σij = ρijσiσj for all i, j ∈ {1, . . . , n}

where σ2
i = Var [Ri,t], σ

2
j = Var [Rj,t] and ρij = Corr [Ri,t, Rj,t], i.e. the

correlation which describes the dependence between asset classes i and j.
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We always have ρii = 1, and in the case of the multivariate Normal distribution,
we also have ρij ∈ [−1,+1]. Note that for other multivariate distributions, ρij
may only take values in a subset of [−1,+1], and the correlation may not be a
meaningful measure of dependence; see [4].

By R = (ρij)i,j∈{1, ... , n} ∈ Rn×n, we denote the correlation matrix.

In asset management, it is fairly commonplace to consider the correlation matrix
R and the standard deviations σi (called volatilities) separately, because this lends
itself to a more intuitive interpretation than the covariance matrix.

If we have Rt ∼ Nn(µ,Σ), and if the portfolio weights at the beginning of the
period are wt−1, then we have

E [Rt] = E
[
w′t−1Rt

]
= w′t−1 µ

Var [Rt] = Var
[
w′t−1Rt

]
= w′t−1Σwt−1

This is a general property of multivariate distributions; see e.g. [1].

Peter Blum (Suva) VIII Portfolio Construction November 14, 2020 10 / 56



Example: investment universe

For our subsequent considerations, we will use the following, somewhat simplified
investment universe:

Note that the expected returns had to be revised dramatically over time although
they were meant to be long-term... (c.f. Chapters II, VI and VII). The volatilities
and correlations, however, turned out to be fairly stable.
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2. Investment strategy
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Setup
We assume that we have n asset classes with returns Rt = (R1,t, . . . , Rn,t)

′ ∈ Rn
for all t ∈ {1, . . . , T}. Specifically, we assume

Rt ∼ iid Nn(µ,Σ) for all t ∈ {1, . . . , T}

That is, investment returns on asset class level have an iid multivariate Normal
distribution with

I Expected return vector µ = E [Rt] ∈ Rn,

I Covariance matrix Σ = Cov [Rt] ∈ Rn×n.

We specifically assume that Σ is positive definite instead of just semi-definite, and
we also assume that µ is linearly independent of 1, i.e. not all asset classes have
the same expected return.

Moreover, we assume constant portfolio weights over time, i.e.

wt ≡ w for all t ∈ {1, . . . , T}

This is a so-called rebalancing strategy, i.e. at each time t > 0, the portfolio is
rebalanced to its original weights w by buying and selling assets.
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Illustration: rebalancing

Two asset classes: i ∈ {1, 2} (think of bonds and equities; total assets A0 = 100).

At t = 0: w1,0 = 60% and w2,0 = 40%, corresponding to A1,0 = 60 and A2,0 = 40.

Between t = 0 and t = 1: R1,1 = −2% and R2,1 = +10%

This leads to A1,1− = 58.8 and A2,1− = 44.0 for A1− = 102.8.

We have R1 = A1−/A0 − 1 = 2.8% = (60%, 40%)′(−2%,+10%).

Before rebalancing we have portfolio weights w1,1− = 58.8/102.8 = 57.2% and
w2,1− = 44.0/102.8 = 42.8%

Rebalancing: Sell 2.9 of Asset 2 and buy 2.9 of Asset 1 to obtain A1,1 = 61.7 and
A2,1 = 41.1, corresponding to w1,1 = 60% and w2,1 = 40%.

Basically, we sell the winners and buy the losers. This works well in a cyclical
market.
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More on rebalancing
A rebalancing strategy corresponds to an anti-cyclical behavior, i.e. assets with high
returns in the previous period are sold, and those with low returns in the previous
period are bought. If investment returns are mean-reverting, this is a reasonable
strategy. Moreover, it keeps the risk profile of the portfolio constant.

Rebalancing strategies maintained over several years are fairly commonplace for
long-term institutional investors.

I There may be different disciplines for rebalancing, e.g. calendar-based (each
year / quarter / month), or threshold-based, i.e. when actual weights are too
far away from required ones.

I There may or may not be some active overlay that allows for limited oppor-
tunistic deviations from the strategic portfolio weights w.

There exist more sophisticated, dynamic approaches to investment strategy design.
They basically take into account the specific path of the returns and adjust weights
in an adaptive manner.

I A simple example is portfolio insurance. This approach tends not to work when
one needs it most.

Treatment of more sophisticated dynamic strategies requires stochastic optimization
methodology that is beyond the scope of this course.
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Illustration: value of rebalancing
Cumulative performance of Pictet BVG 25 Plus Index (strictly rebalancing) vs.
Credit Suisse Pension Fund Index (containing procyclical behavior).

Rebalancing strategy outperforms sustainably. Outperformance is particularly high
after losses sustained in financial crises.
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Constraints
Form now on, let w = (w1, . . . , wn)′ ∈ Rn denote the static portfolio weights
that are valid for all times under consideration (not necessarily up to time T ).

As already mentioned, we need to have∑n

i=1
wi = 1 or 1′w = 1

That is, we require that all assets are fully invested in the asset classes 1, . . . , n.

Moreover, we require that wi ≥ 0 for all i ∈ {1, . . . , n}, abbreviated w ≥ 0. That
is, no short positions are allowed. This makes sense for a pension fund, and it is
often (e.g. in Switzerland) also mandated by law.

Moreover, there may be other constraints in place, either given by law or regulation,
or self-imposed by the institution, or simply by necessity for practical reasons. These
constraints may have two generic forms:

I Equality constraints: f(w) = 0

I Inequality constraints: f(w) ≤ 0
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Depending on how well-behaved the functions f and g are, these constraints may be
more or less easily incorporated into an optimization problem. It is most convenient
if constraints are linear, i.e.

I Equality constraints: Aw = b (or Aw − b = 0)

I Inequality constraints: Aw ≤ b (or Aw − b ≤ 0)

for some A ∈ Rk×n and b ∈ Rk.
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Example: constraints

Swiss pension fund regulation (BVV 2, SR 831.441.1) specifically imposes the fol-
lowing constraints:

I No short positions.

I Max. 50% in mortgages or mortgage-backed securities incl. Pfandbriefe.

I Max. 50% in equities.

I Max. 30% in real estate, incl. max. 10% in foreign real estate.

I Max. 15% in alternative investments.

I Max. 30% in unhedged foreign-currency investments of all kinds.

All these constraints can be represented as linear inequality constraints.
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The optimization task
In an asset / liability setup, we are always given some required return. And we must
have an expected return µ = µ′w = E[Rt] that is at least equal to this required
return in order to assure a sustainable funding, provided that this is feasible; c.f.
Chapter VI and VII. In the general model, this amounts to

µ ≥ λt + (FRt−1 − 1)
Ct
At−1

In the simplified Lognormal model, we simply have µ ≥ λ.

In the sequel, we consider µ as the given target return. We must find portfolio
weights w such that µ′w ≥ µ. There is no unique solution to this problem.

From among all possible solutions, it makes sense to choose the one that pro-
duces the minimal short-term investment risk σ2 = w′Σw. Including our other
constraints, this amounts to

min
w

w′Σw s.t. 1′w = 1

µ′w ≥ µ
w ≥ 0
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A portfolio w∗ that is the solution of this optimization problem is then called
mean / variance - efficient, because from all portfolios that satisfy the constraints,
it is the one with the lowest variance, i.e. the lowest risk.

Optimization problems of this kind are called quadratic convex optimization prob-
lems (because the objective function is both quadratic and convex, and the con-
straints are convex).

There exist many numerical optimizers to solve such optimization problems effi-
ciently. This is also the case if further constraints are added, provided that they are
sufficiently well-behaved. For more information on mathematical optimization and
its applications, see e.g. [3].

We will, however, follow a different path hereafter, i.e. we will try to explore some
properties of mean / variance - efficient portfolios analytically so as to gain a deeper
understanding.
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3. Portfolio optimization in the mean / variance case
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Task: properties of efficient portfolios

We use the setup just introduced, and we assume the following elements to be
given:

I Expected return vector µ ∈ Rn, linearly independent of 1.

I Covariance matrix Σ ∈ Rn×n, positive definite.

I Target return µ ∈ R.

The mean / variance efficient portfolio w∗ is then the solution of the problem

min
w

1
2 w
′Σw s.t. 1′w = 1

µ′w ≥ µ
w ≥ 0


Note that we have added the factor 1

2 for mathematical convenience. While µ
and Σ are given by the financial markets, µ is a policy variable that we can set to
different values.
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For the different values of µ, different optimal portfolios w∗(µ) will result,with
different optimal portfolio variances σ2(µ) = w∗(µ)′Σw∗(µ). That is, we have a
functional relationship σ = σ(µ), determined by µ and Σ and the constraints. This
is actually the risk / return profile that we already used.

We are now going to explore the properties of this risk / return profile in order to
justify the assumptions that we simply made in the previous chapters.

I We do this first in the most basic setup with just the constraint 1′w = 1.

I Then we add further constraint and look at their influence.
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Prerequisite: Lagrange multipliers
This should be known from an undergraduate calculus course; otherwise see some
appropriate textbook, e.g. [2].

Let X be an open subset of Rn, and let

f : X → R and g = (g1, . . . , gm)′ : X → Rm

be continuously differentiable; m ≤ n. Let f have a local extremum in ξ ∈ X that
satisfies the constraint g(ξ) = 0. Assume moreover that the matrix

g′(ξ) =

(
∂gi(ξ)

∂xj

)
i∈{1, ... ,m}, j∈{1, ... ,n}

has full rank. Then, there exist m numbers λ1, . . . , λm (the Lagrange multipliers)
such that we have

f ′(ξ) +

m∑
i=1

λi g
′
i(ξ) = 0

Important: This only holds for equality constraints gi(ξ) = 0. For inequality con-
straints, the similar but more complicated Karush-Kuhn-Tucker conditions must be
applied and evaluated; see [3].
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In practice, this means that, if we want to solve the problem

min
x
f(x) s.t. g1(x) = 0, . . . gm(x) = 0

we first establish the Lagrange function or Lagrangian

L(x, λ1, . . . , λm) = f(x) +

m∑
i=1

λi gi(x)

Then, we take derivatives with respect to x and λ1, . . . , λm, set them all to zero
and solve the resulting system of equations

∂L
∂x

= 0 ;
∂L
∂λ1

= 0 , . . . ,
∂L
∂λm

= 0

If f is twice continuously differentiable, and if the Hessian Matrix

(Hf)(ξ) =

(
∂2f

∂xi∂xj
(ξ)

)
i,j∈{1, ... ,n}

is positive definite in ξ, then ξ is actually a minimum. For our typical target function
f(x) = 1

2x
′Σx, we have (Hf)(x) = Σ, which is positive definite by assumption.
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Global minimum variance portfolio

To begin with, we drop the short constraint (w ≥ 0) as well as the return require-
ment (µ′w ≥ µ) and consider the simplified problem

min
w

1
2 w
′Σw s.t. 1′w = 1 (⇔ 1′w − 1 = 0)

The resulting optimal portfolio wmin is called global minimum variance portfolio. It
is the least risky portfolio given that one must be fully invested.

The Lagrangian is L(w, λ) = 1
2 w
′Σw + λ(1′w − 1).

We must solve the following system

∂L
∂w

= Σw + λ1 = 0

∂L
∂λ

= 1′w − 1 = 0

The first equation yields
w = −λΣ−11
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Inserting this into the second equation yields

−λ1′Σ−11 = 1 ⇒ −λ =
1

1′Σ−11

Thus, the global minimum variance portfolio wmin is given by

wmin =
Σ−11

1′Σ−11

For its return µmin and its variance σ2
min, we obtain

µmin = µ′wmin =
µ′Σ−11

1′Σ−11

σ2
min = w′minΣwmin

=
1

(1′Σ−11)2
1′Σ−1ΣΣ−11

=
1

1′Σ−11
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Example: simple investment universe

For the simple investment universe as introduced in Section 1, the global minimum
variance portfolio and its properties look as follows:
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Portfolios with defined returns
Let us assume that µ ≥ µmin. And, given this, let us change the requirement
µ′w ≥ µ into µ′w = µ. (One could show that this must be the case anyway for
optimal portfolios.) This leads to the optimization problem (see also [6]):

min
w

1
2 w
′Σw s.t. 1′w − 1 = 0

µ′w − µ = 0

}

The Lagrangian for this optimization problem is

L(w, λ1, λ2) = 1
2 w
′Σw + λ1(1′w − 1) + λ2(µ′w − µ)

This leads to the optimality conditions

∂L
∂w

= Σw + λ11 + λ2µ = 0 (1)

∂L
∂λ1

= 1′w − 1 = 0 (2)

∂L
∂λ2

= µ′w − µ = 0 (3)
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From condition (1) we obtain

w = −λ1Σ−11− λ2Σ−1µ

Provided that 1′Σ−1µ 6= 0, we can rewrite this as

w = −λ1
(
1′Σ−11

) Σ−11

1′Σ−11
− λ2

(
1′Σ−1µ

) Σ−1µ

1′Σ−1µ

From condition (2), we obtain moreover

1′w = −λ1 1′Σ−11− λ2 1′Σ−1µ = 1

This is equivalent to

−λ2 1′Σ−1µ = 1− (−λ1 1′Σ−11)

Letting ν := −λ1 1′Σ−11, we then have 1− ν = −λ2 1′Σ−1µ.
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That is, we can represent the optimal portfolio w as

w = νwmin + (1− ν)wrisk

where we have

wmin =
Σ−11

1′Σ−11
and wrisk =

Σ−1µ

1′Σ−1µ

We note that wmin is actually the minimum risk portfolio that we have introduced
before. That is, the optimal portfolio w is a convex combination of the minimum
risk portfolio wmin and some risky portfolio wrisk. For the latter, we have

µrisk = µ′wrisk =
µ′Σ−1µ

1′Σ−1µ

σ2
risk = w′riskΣwrisk

=
1

(1′Σ−1µ)2
(Σ−1µ)′Σ(Σ−1µ)

=
µ′Σ−1µ

(1′Σ−1µ)
2
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Example: simple investment universe

For the simple investment universe as introduced in Section 1, the risky portfolio
and its properties look as follows:
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Example: simple investment universe

Using wmin and wrisk from the simple investment universe (version 2015), for dif-
ferent values of ν, we obtain the following risk / return profile:

One might think that this is a hyperbola.
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Relation to expected return µ

We now must further investigate ν. To this end, we evaluate constraint (3), i.e.
µ′w = µ by inserting the expression for w:

µ = µ′ (νwmin + (1− ν)wrisk)

= ν (µ′wmin) + µ′wrisk − ν (µ′wrisk)

= ν µmin + µrisk − ν µrisk

This can be solved to yield

ν =
µrisk − µ
µrisk − µmin

That is, if µ = µrisk, then ν = 0. And if µ = µmin, then ν = 1. We also have:

1− ν =
µ− µmin

µrisk − µmin
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Shape of the risk / return profile
We want to establish a functional relationship between σ2 and µ. To this end, we
explore

σ2 = w′Σw

= (νwmin + (1− ν)wrisk)
′
Σ (νwmin + (1− ν)wrisk)

= ν2 w′minΣwmin + 2ν(1− ν)w′minΣwrisk + (1− ν)2 w′riskΣwrisk

Recall that w′minΣwmin = σ2
min > 0 and w′riskΣwrisk = σ2

risk > 0. We also have
σ2
risk > σ2

min. Moreover, we have

w′minΣwrisk =
1

(1′Σ−11)(1′Σ−1µ)
(1Σ−1)′Σ(Σ−1µ)

=
1

1′Σ−11
= σ2

min

That is, we can rewrite the expression for σ2 as

σ2 = ν2σ2
min +

(
2ν − 2ν2

)
σ2
min +

(
1− 2ν + ν2

)
σ2
risk

= ν2
(
σ2
risk − σ2

min

)
− 2ν

(
σ2
risk − σ2

min

)
+ σ2

risk
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This, in turn, can be rewritten as (noting that σ2
risk − σ2

min > 0)

σ2

σ2
risk − σ2

min

= ν2 − 2ν +
σ2
risk

σ2
risk − σ2

min

= (ν − 1)2 +
σ2
risk

σ2
risk − σ2

min

− 1

= (ν − 1)2 +
σ2
min

σ2
risk − σ2

min

This is, indeed, the equation of a hyperbola in ν. And since

ν =
µrisk − µ
µrisk − µmin

i.e. ν is just an affine coordinate transform of µ, this also describes a north - south
opening hyperbola in µ− σ - space:

σ2

σ2
risk − σ2

min

=
(µ− µmin)

2

(µrisk − µmin)
2 +

σ2
min

σ2
risk − σ2

min
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Illustration: risk / return profile

The risk / return profile resulting from the optimization problem on p.20 (portfolio
with defined returns) is a hyperbola in µ− σ - space.

Note that the hyperbola asymptotically tends towards a straight line.
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Properties of the risk / return profile
Since the risk / return profile (under the given constraints in this optimization) is
a hyperbola in µ− σ - space, it has the following generic representation:

σ2

a2
− (µ− c)2

b2
= 1

For the positive branch with a > 0, this means

σ(µ) = a

√
1 +

(µ− c)2
b2

for a2 = 1; b2 =
σ2
min

σ2
risk − σ2

min

(µrisk − µmin)
2

; c = µmin

Therefore, we have

I σ(µ) > 0 for all µ ≥ µmin

I σ′(µ) > 0 for all µ > µmin (with σ′(µmin) = 0)

I σ′′(µ) > 0 for all µ ≥ µmin (with limµ→∞ σ′′(µ) = 0)

as we have postulated in the previous chapters.
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Digression: adding a risk-free asset
Assume we have an additional, risk-free asset 0 with deterministic return µ0. Let
µ̃ = (µ0,µ)′ ∈ Rn+1 and w̃ = (w0,w)′ ∈ Rn+1. We solve the modified problem

min
w̃

1
2 w′Σw s.t. 1̃′w̃ = 1

µ̃′w̃ = 1

}
Then, provided that 1̃ and µ̃ are linearly independent, one can show (see e.g. [6])
that optimal portfolios are still of the form

w̃ = ν w̃1 + (1− ν) w̃2

but this time with

w̃1 = (1, 0, . . . , 0)′ ∈ Rn+1 and w̃2 = (0, w1, . . . , wn)′ ∈ Rn+1

That is, each optimal portfolio is a combination of the risk-free asset and some
fixed risky reference portfolio w̃2. One can also show that in this case, the risk /
return profile σ = σ(µ) boils down to a straight line, i.e. we should have σ′(µ) > 0
and σ′′(µ) = 0.

This is, in principle, more favorable than the situation with only risky assets. How-
ever, is is not realistic for all cases where w̃ is at some distance from w̃2, since it
is not possible to hold a large portion of the portfolio in cash.
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Where do we stand?

Recall that in the optimization problem that we have just solved analytically, we
have made two omissions:

I We made the constraint µ′w = µ instead of µ′w ≥ µ. For any µ ≥ µmin this
is not important.

I We have not required w ≥ 0, i.e. we still allow for short positions. This,
however, is an important omission.

The optimizations problem including the additional inequality constraint w ≥ 0
can be solved numerically without any problem; c.f. also the risk / return profile
examples already shown.

However, it is not tractable analytically. Thus, in order to gain some qualitative
insights, we have to follow a different path.
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Reformulation of the optimization problem

The generic optimization problem can be formulated as follows:

min
w

f(w) s.t. gi(w) = 0, i = 1, . . . , m

gj(w) ≤ 0, j = m+ 1, . . . , r

}

Let us now consider the set Ar ⊆ Rn containing all points w ∈ Rn that satisfy all
r constraints, i.e.

Ar := {w ∈ Rn | gi(w) = 0 ∀ i = 1, . . . , m; gj(w) ≤ 0 ∀ j = m+ 1, . . . , r}

The original optimization problem is thus equivalent to

min
w∈Ar

f(w)

Let wr ∈ Ar denote the optimal solution.
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Adding further constraints

Now, we can add a further constraint, irrespective of whether this is an equality or
inequality constraint:

min
w

f(w) s.t. gi(w) = 0, i = 1, . . . , m

gj(w) ≤ 0, j = m+ 1, . . . , r

gr+1(w) ≤ 0


This can again be formulated in set notation, i.e.

Ar+1 := {w ∈ Rn | gi(w) = 0 ∀ i = 1, . . . , m; . . .

. . . gj(w) ≤ 0 ∀ j = m+ 1, . . . , r; gr+1(w) ≤ 0}

The only difference between Ar and Ar+1 is the additional constraint. This also
means that

Ar+1 ⊆ Ar
That is, the additional constraint leads to an equal or smaller set of admissible
points.

Peter Blum (Suva) VIII Portfolio Construction November 14, 2020 43 / 56



Now, there can be exactly two situations:

I wr ∈ Ar+1, i.e. the solution of the original problem also satisfies the additional
constraint. Then we have wr+1 = wr, and also f(wr+1) = f(wr).

I wr ∈ Ar \ Ar+1, i.e. the solution of the original problem does not satisfy the
additional constraint. Then we have wr+1 6= wr. And, due to the optimality
of wr on all of Ar, we also have f(wr+1) > f(wr)

Translated back to our portfolio optimization problem, this means:

I For the same level of expected return µ, adding a further constraint leads to
at least as much or more risk than without the additional constraint.

I That is, the hyperbola that we have obtained before is a minorant for all the
risk / return profiles where more constraints apply.

I In particular, the hyperbola is a minorant for the risk / return profile of the
original optimization problem that also incorporates the non-negativity con-
straint.
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Example: simple investment universe

We use the simple investment universe as introduced in Section 1. Relative to
the setup already explored analytically, we investigate (numerically) also the two
following setups featuring additional constraints:

I Add only the non-negativity constraint w ≥ 0.

I Add also the additional constraints imposed by Swiss pension fund legislation
and supervision (c.f. p. 19).
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Example: influence of constraints
Risk / return profiles under various sets of constraints:

Under full constraints, returns above 3.5% are not feasible.
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4. Conclusions and observations
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Conclusions on the risk / return profile

The properties of the risk / return profile σ = σ(µ), i.e.

σ(µ) > 0

σ′(µ) > 0

σ(µ) ≥ 0

 for all µ ∈ (µmin, µmax)

are confirmed to be sensible.

The more constraints one adds, the more risk one has to take in order to achieve
the same expected return.

Therefore, investment constraints should only be imposed where they are really
necessary and sensible. Freedom has a value and regulation has a cost.
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Relation between return and short-term investment risk
So-called risk-adjusted performance measures put expected return in relation with

the risk that must be incurred to earn the return. Let µw = µ′w and σ2
w = w′Σw

denote the expected value and the variance of the portfolio with weights w.

The best-known example is the Sharpe Ratio which assumes the presence of a risk-
free asset with deterministic return µ0. Then we have:

SRw̃ =
µw̃ − µ0

σw̃

In our context, where the availability of a risk-free asset is limited, it makes sense
to consider the risk-adjusted return above the minima given by the global minimum
variance portfolio (c.f. p.27):

RARw =
µw − µmin

σw − σmin

The Information Ratio considers unadjusted risk and return. Its application is,
however, more suitable in the context of active asset management:

IRw =
µw

σw
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Contributions to risk and return

We have µw = µ′w =
∑n
i=1 wiµi. Therefore, we can easily identify the absolute

and relative contribution of some asset class i to the overall return:

ACReturn
i = wi µi resp. RCReturn

i =
wi µi
µw

For the risk, such an easy additive decomposition is less straightforward. First, we
have to take σ2

w rather than σw. Then, we can state:

σ2
w = w′Σw =

∑n

i=1
wi

(∑n

j=1
σij wj

)
The term in the parentheses contains both the risk from the variance of the asset
class itself (σiiwi) as well as the risk from the covariance with the other asset classes
(σijwj , j 6= i). Thus, we can state

ACRisk
i =

∑n

j=1
σijwj and RCRisk

i =
1

σ2
w

∑n

j=1
σijwj
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Marginal contributions to risk and return

Here, we consider the effect that a marginal change in the portfolio weight of asset
class i has on overall risk and return.

For the return:
d

dwk
µw = µk

For the risk:

d

dwk
σ2
w =

d

dwk

n∑
i=1

n∑
j=1

σij wi wj = 2

(
wk σkk +

n∑
i=1

wiσik

)

It is worthwhile to increase the weight of an asset class if it has a favorable relation-
ship between high marginal contribution to return and low marginal contribution to
risk.
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Limitations of the mean / variance optimization
Mean / variance optimization is an excellent and simple tool for studying the in-
terplay between risk, return and constraints in investment portfolios. However, in
real-world settings, it has a number of limitations.

In particular, asset class returns are assumed to follow a multivariate Normal distri-
bution. This may be relaxed somewhat to general elliptical distributions, but this
is still a restrictive assumption.

I It is well-known that many financial time series exhibit significantly non-Normal
behavior; see [4]. The higher the frequency, the more so.

I Moreover, dependence structures tend to be non-linear. In particular, there may
be correlation breakdowns in times of financial crises. That is, diversification
may not work when it is needed most urgently; see also [4].

I This may be less of an issue with yearly data, but care must still be taken!

In any case, the underlying markets must be analyzed carefully. If Normality cannot
be assumed to hold, either different models should be used, or the Normal model
should be complemented with suitable stress tests.

The portfolios obtained from mean / variance optimization tend to be rather sen-
sitive to changes in estimates for expected returns µ and covariances Σ. Given the
high estimation uncertainty, particularly for µ, this is an issue.
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Example: sensitivities

Simple investment universe as on p.11. Slight changes in return estimates lead to
rather sizable changes in optimal portfolio weights.

The same effects would be obtained with changes in volatility or correlation as-
sumptions.

The risk / return profile, i.e. σ = σ(µ) is less sensitive against such changes, which
is an advantage in the present context.
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Alternatives for portfolio construction

For portfolio optimization, there exist many alternatives to the simple mean / vari-
ance optimization introduced here; see e.g. [5]:

I Portfolio bootstrapping, which does not rely on any parametric model for the
asset returns.

I Use of different risk measures, e.g. mean / expected shortfall optimization.

I Bayesian approaches that explicitly incorporate the estimation uncertainty for
µ in the Black / Litterman framework.

In practice, the construction of the strategic portfolio w of an institutional investor
will involve both qualitative and quantitative steps. Operational restrictions also
play an important role.

If it simply comes to determining the risk / return profile σ = σ(µ), the solution
obtained from mean / variance optimization is always a reference: actual risk σ(µ)
for some give level of return µ will likely not be lower that what is suggested by the
mean / variance optimization.

Irrespective of the optimization method: The generic characteristics of the risk /
return profile, i.e. σ(µ) > 0, σ′(µ) > 0 and σ′′(µ) ≥ 0 are certainly plausible.
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Problem statement

In the Lognormal model, we assume that investment returns follow a Normal distri-
bution N (µ, σ2). And in mean / variance portfolio optimization, we assume that
the asset class returns follow a multivariate Normal distribution Nn(µ,Σ).

Also with any other model or method, we make certain (implicit or explicit) as-
sumptions on the stochastic law of the investment returns and other stochastic
variables. It is extremely important to verify whether the underlying markets satisfy
these assumtions. Otherwise, the model is invalid.

Therefore, empirical data analysis is an indispensable part of the modelling process.
One must understand the relevant empirical properties of the data in order to make
valid models and draw valid conclusions: Let the data tell us their story!

The first step is always a descriptive analysis by preparing graphical evaluations and
by computing summary statistics. This is assumed to be known and not treated
any further here.

Then, inferential analysis can be made; see e.g. [1] or [4]. We will limits ourselves
here to some evaluations in order to check Normality.
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Descriptive statistics

Everyone according to his or her own needs and preferences...

(Data and chart: Bloomberg)

Peter Blum (Suva) Empirical November 14, 2020 3 / 13



Multivariate Normal distribution
A random vector X ∈ Rn is said to have a multivariate Normal distribution, written
X ∼ Nn(µ,Σ), if its probability density function is given by

fX(x) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µ)

′
Σ−1 (x− µ)

}
for some vector µ ∈ Rn and some symmetric and positive definite matrix Σ ∈ Rn×n.
We then have (refer e.g. to [2] for all this):

E [X] = µ and Cov [X] = Σ

Moreover, for some w ∈ Rn (think of portfolio weights), we have

E [w′X] = w′µ and Var [w′X] = w′Σw

If X ∼ Nn(µ,Σ), then Xi ∼ N (µi,Σii) for all i ∈ {1, . . . , n}. That is, the
marginal distributions are univariate Normal.

On the other hand, if Xi ∼ N (µi, σi) for i ∈ {1, . . . , n}, this does not necessarily
mean that X = (X1, . . . Xn)

′ ∈ Rn is multivariate Normal. There must also be a
very specific linear dependence structure; see [3].

Peter Blum (Suva) Empirical November 14, 2020 4 / 13



Quantile-Quantile plot (QQ plot)
Let x1, . . . , xK be K independent observations from some random variable X,
and let x(1), . . . , x(K) be the respective order statistics. x(k) corresponds to the

empirical k
K - quantile.

For X ∼ F (e.g. F = N (µ, σ2)), we can also compute the theoretical quantiles

F−1
(

k− 1
2

K

)
. The correction k − 1

2 is in order to avoid F−1(1).

If x1, . . . , xK do actually come from X ∼ F , then the scatter plot of empirical
against theoretical quantiles should form approximately a straight line.
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QQ plots for monthly returns
Clear deviations from normality in some cases. (Data: Bloomberg)
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QQ plots for quarterly returns
Predominantly normal, but with exceptions and outliers. (Data: Bloomberg)
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QQ plots for yearly returns
Usually normal, but occasional outliers occur. (Data: Bloomberg)
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Kolmogorov-Smirnov test
Let x1, . . . , xK be K independent observations from some random variable X.
The empirical cumulative distribution function is then given by

F̂ (x) =
1

K

K∑
k=1

1{xk≤x}

If actually X ∼ F , then the empirical distribution function F̂ (x) should not be too
different from the theoretical one. The difference can be expressed as

Dn := ‖F̂ − F‖∞ = sup
x
|F̂ (x)− F (x)|

Under the null hypothesis X ∼ F against a two-sided alternative, we must have

√
nDn

D→ K (n→∞) where K(x) = 1− 2

∞∑
j=1

(−1)j+1 exp
{
−2j2x2

}
K is called Kolmogorov-Smirnov distribution (see e.g. [5]). The null hypothesis is

rejected on significance level α ∈ (0, 1) if Dn >
1√
n
K←(1− α).
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Illustration: cumulative distribution functions

Empirical (jagged, blue) and theoretical (smooth, red) cumulative distribution func-
tions for two data series:

The Kolmogorov-Smirnov test is based on the greatest (vertical) difference between
theoretical and empirical distribution function.
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Kolmogorov-Smirnov test: results
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Concluding remarks

For financial times series with frequencies of monthly and higher, non-normal return
distributions are the rule rather than the exception (see [3]), and the use of models
based on the Normal distribution is problematic in such cases.

For yearly investment returns, however, the hypothesis of a Normal distribution
of the returns cannot be rejected in many cases. Models based on the Normal
distribution may thus be viable in these instances.

We should, however, notice that even in the most well-behaved yearly time se-
ries, there are occasional outliers that cannot be reconciled with the hypothesis of
normality.

When using Normal models, they should, therefore, always be complemented with
some stress scenarios (historical ones or constructed ones).
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Peter Blum (Suva) Empirical November 14, 2020 13 / 13


	Chapter 1 Introduction
	Administrative matters
	Properties of social insurance
	About this course
	Assuring future pensions: the danger of taking no risk

	Chapter 2 Preliminaries
	Cashflows and their properties
	Bonds and yield curves

	Chapter 3 Financing Liabilities
	Introduction and overwiew
	Cashflow matching and immunized value
	Simplification: duration matching
	Alternative: loose coupling

	Chapter 4 ALM Framework
	Working principle of capital-based insurance
	Model framework for social insurance
	Liabilities and required return
	Elements of the financial account
	General random walk model and net profit condition

	Chapter 5 Lognormal Model
	Concept and model
	Moment generating functions
	Lognormal distribution
	Probability of underfunding
	Alternative risk measures

	Chapter 6 ALM Study 1
	Problem statement
	Risk / return profile
	Optimizing the probability of underfunding
	Optimizing alternative risk measures

	Chapter 7 ALM Study 2
	Problem statement
	Liability profile
	Optimizing the probability of underfunding
	Optimizing alternative risk measures
	Example

	Chapter 8 Portfolio Construction
	Introduction
	Investment strategy
	Portfolio optimization in the mean / variance case
	Conclusions and observations

	Chapter 9 Empirical Considerations

