Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

Variable Annuities with Guaranteed Minimum Withdrawal Benefits

Patrick Cheridito and Peiqi Wang ETH Zurich and Princeton University

Risk Day 2016, ETH Zurich

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Variable a	Innuities w	ith GMxB			

• Exposure to income and longevity risk shifts from employer to the employed

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Variable a	annuities w	vith GMxB			

• Exposure to income and longevity risk shifts from employer to the employed

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Variable annuities with protection features have gained popularity

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Variable a	annuities w	vith GMxB			

• Exposure to income and longevity risk shifts from employer to the employed

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Variable annuities with protection features have gained popularity

VA+GMxB: Variable annuities with benefits

• GMDB: Guaranteed minimum death benefits

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Variable	annuitiae w	ith GMvB			

• Exposure to income and longevity risk shifts from employer to the employed

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Variable annuities with protection features have gained popularity

VA+GMxB: Variable annuities with benefits

- GMDB: Guaranteed minimum death benefits
- GMAB: Guaranteed minimum accumulation benefits

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Variable	annuities w	vith GMxB			

• Exposure to income and longevity risk shifts from employer to the employed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Variable annuities with protection features have gained popularity

VA+GMxB: Variable annuities with benefits

- GMDB: Guaranteed minimum death benefits
- GMAB: Guaranteed minimum accumulation benefits
- GMIB: Guaranteed minimum income benefits

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Variable	annuities w	vith GMxB			

_

Exposure to income and longevity risk shifts from employer to the employed

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Variable annuities with protection features have gained popularity

VA+GMxB: Variable annuities with benefits

- GMDB: Guaranteed minimum death benefits
- GMAB: Guaranteed minimum accumulation benefits
- GMIB: Guaranteed minimum income benefits
- GMWB: Guaranteed minimum withdrawal benefits

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Res

Variable annuities with GMxB

Change from defined-benefit to defined-contribution pension plans

• Exposure to income and longevity risk shifts from employer to the employed

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Variable annuities with protection features have gained popularity

VA+GMxB: Variable annuities with benefits

- GMDB: Guaranteed minimum death benefits
- GMAB: Guaranteed minimum accumulation benefits
- GMIB: Guaranteed minimum income benefits
- GMWB: Guaranteed minimum withdrawal benefits

(See Bauer, Kling and Russ (2008) for an overview)

From Gerold Studer's talk at the SAA Annual Meeting 2010

Global development of Variable Annuities

The HJB Equation

Numerical Scheme

Hedging

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

Numerical Results

VA sales in the US

ъ

VA sales in the US

U.S. interest rate forecast: 2015 - 2021

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Increasing popularity of GMWB with high water mark features (ratchets)

Description on the Vanguard Group website of one of their VA+GMWB

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's the	e plan for t	his talk?			

 Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's the	e plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's the	e plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)

Solve the HJB equation numerically

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's th	e plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)

- Solve the HJB equation numerically
- Gain insights into ...
 - how the price depends on the risk free rate, volatility, ...

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's th	e plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)
- Solve the HJB equation numerically
- Gain insights into ...
 - how the price depends on the risk free rate, volatility, ...
 - the worst case policy holder behavior from the point of view of the issuer

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's th	ne plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)
- Solve the HJB equation numerically
- Gain insights into ...
 - how the price depends on the risk free rate, volatility, ...
 - the worst case policy holder behavior from the point of view of the issuer

how insurance companies should set the fee structure

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's th	ne plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)
- Solve the HJB equation numerically
- Gain insights into ...
 - how the price depends on the risk free rate, volatility, ...
 - the worst case policy holder behavior from the point of view of the issuer

(ロ) (同) (三) (三) (三) (○) (○)

- how insurance companies should set the fee structure
- how surrender penalties can be set to disincentivize early surrender

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
What's th	e plan for t	his talk?			

- Formulate a tractable model for a VA+GMWB contract with high water mark withdrawal benefits
- Characterize the price and worst case policy holder behavior through a Hamilton–Jacobi–Bellman equation (partial differential equation)
- Solve the HJB equation numerically
- Gain insights into ...
 - how the price depends on the risk free rate, volatility, ...
 - the worst case policy holder behavior from the point of view of the issuer

(ロ) (同) (三) (三) (三) (○) (○)

- how insurance companies should set the fee structure
- how surrender penalties can be set to disincentivize early surrender
- Derive a hedging strategy

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The finan	cial market				
The initial	ciai market				

$$dS_t = S_t(\mu dt + \sigma dW_t) = S_t(rdt + \sigma dB_t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The financ	ial market				

$$dS_t = S_t(\mu dt + \sigma dW_t) = S_t(rdt + \sigma dB_t)$$

where

• W is a Brownian motion under the real world probability measure $\mathbb P$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- μ is the expected return rate
- σ is the volatility

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The financ	ial market				

$$dS_t = S_t(\mu dt + \sigma dW_t) = S_t(rdt + \sigma dB_t)$$

where

- $\bullet~$ ${\it W}$ is a Brownian motion under the real world probability measure ${\mathbb P}$
- µ is the expected return rate
- σ is the volatility
- B is a Brownian motion under the risk-neutral probability measure Q

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• r is a constant risk-free rate

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The financ	ial market				

$$dS_t = S_t(\mu dt + \sigma dW_t) = S_t(rdt + \sigma dB_t)$$

where

- W is a Brownian motion under the real world probability measure $\mathbb P$
- µ is the expected return rate
- σ is the volatility
- **B** is a Brownian motion under the risk-neutral probability measure \mathbb{Q}
- r is a constant risk-free rate

Market filtration

$$\mathbb{F} = (\mathcal{F}_t)$$
 generated by (S_t)

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The contra	ct				

• Fixed maturity *T*, e.g. 10, 15 or 20 years

(if the policy holder dies, the policy is transferred to a beneficiary)

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The contra	ct				

- Fixed maturity *T*, e.g. 10, 15 or 20 years (if the policy holder dies, the policy is transferred to a beneficiary)
- At t = 0, the policy holder pays a premium $c = c_1 + c_2$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The contra	ct				

- Fixed maturity *T*, e.g. 10, 15 or 20 years (if the policy holder dies, the policy is transferred to a beneficiary)
- At t = 0, the policy holder pays a premium $c = c_1 + c_2$
- The issuer sets up an account A_t by investing c₁ in the mutual fund, keeps c₂ as a commission and charges fees at rate qA_t

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The contra	ct				

- Fixed maturity *T*, e.g. 10, 15 or 20 years (if the policy holder dies, the policy is transferred to a beneficiary)
- At t = 0, the policy holder pays a premium $c = c_1 + c_2$
- The issuer sets up an account A_t by investing c₁ in the mutual fund, keeps c₂ as a commission and charges fees at rate qA_t
- The holder chooses a withdrawal rate w_t and a surrender time $\theta \leq T$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The contra	ct				

- Fixed maturity *T*, e.g. 10, 15 or 20 years (if the policy holder dies, the policy is transferred to a beneficiary)
- At t = 0, the policy holder pays a premium $c = c_1 + c_2$
- The issuer sets up an account At by investing c1 in the mutual fund, keeps c2 as a commission and charges fees at rate qAt
- The holder chooses a withdrawal rate w_t and a surrender time $\theta \leq T$

If A_t hits zero, the annuity account will be frozen at zero

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The contra	ct				

- Fixed maturity *T*, e.g. 10, 15 or 20 years (if the policy holder dies, the policy is transferred to a beneficiary)
- At t = 0, the policy holder pays a premium $c = c_1 + c_2$
- The issuer sets up an account A_t by investing c₁ in the mutual fund, keeps c₂ as a commission and charges fees at rate qA_t
- The holder chooses a withdrawal rate w_t and a surrender time $\theta \leq T$
- If A_t hits zero, the annuity account will be frozen at zero

Annuity account

$$dA_t = ((r-q)A_t - w_t)dt + \sigma A_t dB_t, \quad A_0 = c_1$$

(日) (日) (日) (日) (日) (日) (日)

with absorption at 0

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	I				

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	ıl				

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

• High water mark $M_t = \sup_{0 \le s \le t} A_t$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	l				

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

- High water mark $M_t = \sup_{0 \le s \le t} A_t$
- Withdrawal rate w_t must be \mathbb{H} -adapted

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	l				

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

- High water mark $M_t = \sup_{0 \le s \le t} A_t$
- Withdrawal rate wt must be H-adapted
- Constraints and withdrawal fees
 - When withdrawing below αM_t , fees are charged at rate p_1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	1				

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

- High water mark $M_t = \sup_{0 \le s \le t} A_t$
- Withdrawal rate wt must be H-adapted
- Constraints and withdrawal fees
 - When withdrawing below αM_t , fees are charged at rate p_1
 - For $\alpha M_t < w_t \le \beta M_t$, fees are charged at a higher rate p_2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	1				

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

- High water mark $M_t = \sup_{0 \le s \le t} A_t$
- Withdrawal rate *w*_t must be **H**-adapted
- Constraints and withdrawal fees
 - When withdrawing below αM_t , fees are charged at rate p_1
 - For $\alpha M_t < w_t \le \beta M_t$, fees are charged at a higher rate p_2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Constraint on total withdrawal: $\int_0^t w_s ds \leq \gamma M_t$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa					

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

- High water mark $M_t = \sup_{0 \le s \le t} A_t$
- Withdrawal rate wt must be H-adapted
- Constraints and withdrawal fees
 - When withdrawing below αM_t , fees are charged at rate p_1
 - For $\alpha M_t < w_t \le \beta M_t$, fees are charged at a higher rate p_2
 - Constraint on total withdrawal: $\int_0^t w_s ds \leq \gamma M_t$

• Guaranteed withdrawal If the account hits 0, withdrawal is still allowed.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Withdrawa	1				

Privat information

Privat events such as changes in employment status, health or family situation is modeled with a filtration $\mathbb{G} = (\mathcal{G}_t)$ Assume: \mathbb{F} and \mathbb{G} are independent under \mathbb{Q} Information of the policy holder: $\mathbb{H} = \mathbb{F} \vee \mathbb{G}$

- High water mark $M_t = \sup_{0 \le s \le t} A_t$
- Withdrawal rate wt must be H-adapted
- Constraints and withdrawal fees
 - When withdrawing below αM_t , fees are charged at rate p_1
 - For $\alpha M_t < w_t \le \beta M_t$, fees are charged at a higher rate p_2
 - Constraint on total withdrawal: $\int_0^t w_s ds \leq \gamma M_t$
- Guaranteed withdrawal If the account hits 0, withdrawal is still allowed.

Income rate

 $f(w_t, M_t) = (1 - p_1)\min(w_t, \alpha M_t) + (1 - p_2)\max(w_t - \alpha M_t, 0), \quad w_t \le \beta M_t$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Surrender					

• The holder can surrender the policy at an \mathbb{H} -stopping time $\theta \leq T$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Surrender					

• The holder can surrender the policy at an \mathbb{H} -stopping time $\theta \leq T$

At time θ the issuer charges a penalty of k(θ)A_θ, returns
(1 - k(θ))A_θ to the holder and terminates the contract,

where $k : [0, T] \rightarrow [0, 1]$ is a surrender penalty function

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Surrender					

• The holder can surrender the policy at an \mathbb{H} -stopping time $\theta \leq T$

At time θ the issuer charges a penalty of k(θ)A_θ, returns
(1 - k(θ))A_θ to the holder and terminates the contract,

where $k : [0, T] \rightarrow [0, 1]$ is a surrender penalty function

• Typically, k(T) = 0

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Policy hole	der behavi	or			

• The policy holder chooses the withdrawal strategy w and surrender time θ

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Policy hole	der behavio	or			

- The policy holder chooses the withdrawal strategy w and surrender time θ
- Worst expected cost of the payments faced by the issuer

$$D(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t=0\}} e^{-rs} f(w_s, M_s) ds - \mathbb{E}^{\mathbb{Q}} e^{-r\theta} k(\theta) A_{\theta}$$
$$-\mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t>0\}} e^{-rs} \left[qA_t + p_1 \min(w_t, \alpha M_t) + p_2 \max(w_t - \alpha M_t, 0) \right] ds$$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Policy hold	ler behavio	r			

- The policy holder chooses the withdrawal strategy w and surrender time θ
- Worst expected cost of the payments faced by the issuer

$$D(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t=0\}} e^{-rs} f(w_s, M_s) ds - \mathbb{E}^{\mathbb{Q}} e^{-r\theta} k(\theta) A_{\theta}$$
$$-\mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t>0\}} e^{-rs} \left[qA_t + p_1 \min(w_t, \alpha M_t) + p_2 \max(w_t - \alpha M_t, 0) \right] ds$$

• One has $A_0 + D(A_0) = E(A_0)$ for

$$E(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \left[\int_0^{\theta} e^{-rs} f(w_s, M_s) ds + e^{-r\theta} (1 - k(\theta)) A_{\theta} \right]$$

worst case policy holder behavior ... not actual policy holder behavior!

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Policy hold	ler behavio	r			

- The policy holder chooses the withdrawal strategy w and surrender time θ
- Worst expected cost of the payments faced by the issuer

$$D(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t=0\}} e^{-rs} f(w_s, M_s) ds - \mathbb{E}^{\mathbb{Q}} e^{-r\theta} k(\theta) A_{\theta}$$
$$-\mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t>0\}} e^{-rs} \left[qA_t + p_1 \min(w_t, \alpha M_t) + p_2 \max(w_t - \alpha M_t, 0) \right] ds$$

• One has $A_0 + D(A_0) = E(A_0)$ for

$$E(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \left[\int_0^{\theta} e^{-rs} f(w_s, M_s) ds + e^{-r\theta} (1 - k(\theta)) A_{\theta} \right]$$

worst case policy holder behavior ... not actual policy holder behavior!

• The policy is correctly priced (from the issuer's perspective) if

$$D(c_1) = c_2 \quad \Leftrightarrow \quad E(c_1) = c_1 + c_2$$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Policy hold	ler behavio	r			

- The policy holder chooses the withdrawal strategy w and surrender time θ
- Worst expected cost of the payments faced by the issuer

$$D(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t=0\}} e^{-rs} f(w_s, M_s) ds - \mathbb{E}^{\mathbb{Q}} e^{-r\theta} k(\theta) A_{\theta}$$
$$-\mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t>0\}} e^{-rs} \left[qA_t + p_1 \min(w_t, \alpha M_t) + p_2 \max(w_t - \alpha M_t, 0) \right] ds$$

• One has $A_0 + D(A_0) = E(A_0)$ for

$$E(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \left[\int_0^{\theta} e^{-rs} f(w_s, M_s) ds + e^{-r\theta} (1 - k(\theta)) A_{\theta} \right]$$

worst case policy holder behavior ... not actual policy holder behavior!

• The policy is correctly priced (from the issuer's perspective) if

$$D(c_1) = c_2 \quad \Leftrightarrow \quad E(c_1) = c_1 + c_2$$

• Good news: $E(A_0)$ is attained for w, θ only depending on market information \mathbb{F}

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Policy hold	ler behavio	r			

- The policy holder chooses the withdrawal strategy w and surrender time θ
- Worst expected cost of the payments faced by the issuer

$$D(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t=0\}} e^{-rs} f(w_s, M_s) ds - \mathbb{E}^{\mathbb{Q}} e^{-r\theta} k(\theta) A_{\theta}$$
$$-\mathbb{E}^{\mathbb{Q}} \int_0^{\theta} \mathbf{1}_{\{A_t>0\}} e^{-rs} \left[qA_t + p_1 \min(w_t, \alpha M_t) + p_2 \max(w_t - \alpha M_t, 0) \right] ds$$

• One has $A_0 + D(A_0) = E(A_0)$ for

$$E(A_0) = \sup_{w,\theta} \mathbb{E}^{\mathbb{Q}} \left[\int_0^{\theta} e^{-rs} f(w_s, M_s) ds + e^{-r\theta} (1 - k(\theta)) A_{\theta} \right]$$

worst case policy holder behavior ... not actual policy holder behavior!

• The policy is correctly priced (from the issuer's perspective) if

$$D(c_1) = c_2 \quad \Leftrightarrow \quad E(c_1) = c_1 + c_2$$

- Good news: $E(A_0)$ is attained for w, θ only depending on market information \mathbb{F}
- Bad news: The optimization problem $E(A_0)$ is not Markovian

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Adding m	nore state v	ariables			

For given $0 \le t \le T$, $0 \le a \le m$, $0 \le z \le \gamma m$, *w*, define

$$dA_s^{t,a,w} = ((r-m)A_s^{t,a,w} - w_s)ds + \sigma A_s^{t,a,w}dB_s, \quad A_t^{t,a,w} = a$$
$$M_s^{t,a,g,w} = m \lor \sup_{t \le u \le s} A_u^{t,a,m,w}$$
$$dZ_s^{t,z,w} = w_s ds, \quad Z_t^{t,z,w} = z$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Adding r	nore state v	ariables			

For given $0 \le t \le T$, $0 \le a \le m$, $0 \le z \le \gamma m$, *w*, define

$$dA_s^{t,a,w} = ((r-m)A_s^{t,a,w} - w_s)ds + \sigma A_s^{t,a,w}dB_s, \quad A_t^{t,a,w} = a$$
$$M_s^{t,a,g,w} = m \lor \sup_{t \le u \le s} A_u^{t,a,m,w}$$
$$dZ_s^{t,z,w} = w_s ds, \quad Z_t^{t,z,w} = z$$

A "non-standard" standard stochastic control problem

$$V(t, a, m, z) = \sup_{w, \theta} \mathbb{E}^{\mathbb{Q}} \left[\int_{t}^{T} e^{-r(s-t)} f(w_s, M_s^{t, a, m, w}) ds + e^{-r(\theta-t)} (1-k(\theta)) A_{\theta}^{t, a, w} \right]$$

where *w* and θ are adapted to $\mathcal{F}_{s}^{t} = \sigma(B_{s} - B_{t}), s \in [t, T]$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Adding r	nore state v	ariables			

For given $0 \le t \le T$, $0 \le a \le m$, $0 \le z \le \gamma m$, *w*, define

$$dA_s^{t,a,w} = ((r-m)A_s^{t,a,w} - w_s)ds + \sigma A_s^{t,a,w}dB_s, \quad A_t^{t,a,w} = a$$
$$M_s^{t,a,g,w} = m \lor \sup_{t \le u \le s} A_u^{t,a,m,w}$$
$$dZ_s^{t,z,w} = w_s ds, \quad Z_t^{t,z,w} = z$$

A "non-standard" standard stochastic control problem

$$V(t, a, m, z) = \sup_{w, \theta} \mathbb{E}^{\mathbb{Q}} \left[\int_{t}^{T} e^{-r(s-t)} f(w_s, M_s^{t, a, m, w}) ds + e^{-r(\theta-t)} (1-k(\theta)) A_{\theta}^{t, a, w} \right]$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where *w* and θ are adapted to $\mathcal{F}_{s}^{t} = \sigma(B_{s} - B_{t}), s \in [t, T]$

One has V(0, a, a, 0) = E(a)

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
The HJB	equation				

Theorem

$$\begin{array}{rcl} V(t, a, m, z) \text{ is a viscosity solution of} \\ \min(-v_t - H(a, m, v, v_a, v_z, v_{aa}), v - (1 - k)a) & = & 0 \ \text{ for } 0 < a < m, \ 0 \le z < \gamma m \\ \min(-v_t - H_0(a, v, v_a, v_{aa}), v - (1 - k)a) & = & 0 \ \text{ for } 0 < a < m, \ z = \gamma m \\ v(t, 0, m, z) & = & \psi(t, m, z) \\ v_m(t, m, m, z) & = & 0 \\ v(T, a, m, z) & = & a, \end{array}$$

where

$$\begin{aligned} H(a, m, z, v, v_a, v_z, v_{aa}) &= \\ \sup_{0 \le w \le \beta m} \{f(w, m) + w(v_z - v_a)\} - rv + (r - q)av_a + \frac{1}{2}\sigma^2 a^2 v_{aa} \\ H_0(a, v, v_a, v_{aa}) &= -rv + (r - q)av_a + \frac{1}{2}\sigma^2 a^2 v_{aa} \\ \psi(t, m, z) &= \sup_{0 \le w \le \beta m} \int_t^T e^{-r(s-t)} f(w_s, m) ds \quad \text{such that } \int_t^T w_s ds \le \gamma m - z. \end{aligned}$$

Non-linear parabolic PDE on $[0, T] \times \mathbb{R}^3$ with a free boundary and unusual boundary conditions

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Reducin	a the dimer	sion			

Reducing the dimension

Theorem

V(t, a, m, z) = mW(t, a/m, z/m) = mW(t, x, y), where W is a viscosity solution of

$$\begin{aligned} \min(-v_t - G(x, y, v, v_x, v_y, v_{xx}), v - (1 - k)x) &= 0 \quad \text{for } (x, y) \in (0, 1) \times [0, \gamma) \\ \min(-v_t - G_0(x, v, v_x, v_{xx}), v - (1 - k)x) &= 0 \quad \text{for } (x, y) \in (0, 1) \times \{\gamma\} \\ v(t, 0, y) &= \zeta(t, y) \\ v_x(t, 1, y) + yv_y(t, 1, y) &= v(t, 1, y) \\ v(T, x, y) &= x, \end{aligned}$$

where

$$G(x, y, v, v_x, v_y, v_{xx}) = \sup_{0 \le u \le \beta} \{u(v_y - v_x) + f(u, 1)\} - rv + (r - q)xv_x + \frac{1}{2}\sigma^2 x^2 v_{xx} G_0(x, v, v_x, v_{xx}) = -rv + (r - q)xv_x + \frac{1}{2}\sigma^2 x^2 v_{xx} \zeta(t, y) = \sup_{0 \le u \le \beta} \int_t^T e^{-r(s-t)} f(u_s, 1) ds \text{ such that } \int_t^T u_s ds \le \gamma - y.$$

Non-linear parabolic PDE on $[0, T] \times [0, 1] \times [0, \gamma]$ with a free boundary and (even more) unusual boundary conditions

 The worst case withdrawal strategy ŵ(t, A_t, M_t, Z_t) is given by the maximizer of

 $w \mapsto f(w, M_t) + w \left[V_z(t, A_t, M_t, Z_t) - V_a(t, A_t, M_t, Z_t) \right]$

• The worst case withdrawal strategy $\hat{w}(t, A_t, M_t, Z_t)$ is given by the maximizer of

$$w \mapsto f(w, M_t) + w \left[V_z(t, A_t, M_t, Z_t) - V_a(t, A_t, M_t, Z_t) \right]$$

The worst case surrender time is

$$\theta = \inf \{t \ge 0 : V(t, A_t, M_t, Z_t) = (1 - k(t))A_t\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 The worst case withdrawal strategy ŵ(t, A_t, M_t, Z_t) is given by the maximizer of

$$w \mapsto f(w, M_t) + w \left[V_z(t, A_t, M_t, Z_t) - V_a(t, A_t, M_t, Z_t) \right]$$

The worst case surrender time is

$$\theta = \inf \{t \ge 0 : V(t, A_t, M_t, Z_t) = (1 - k(t))A_t\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• The issuer can set *k*(*t*) so that the worst case policy holder never surrenders early

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Numerica	al scheme				

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Semi-Lagrangian scheme with an obstacle
- Backwards in time
- Solves an optimization problem in every time-step
- Converges to the true solution if the mesh size of the discretization goes to zero
- Gives approximations to V(t, a, m, z) and the worst case behavior \hat{w} and $\hat{\theta}$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Hedging					

The issuer can **super-hedge** the contract by trading in S_t and the money market account

• Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The issuer can **super-hedge** the contract by trading in S_t and the money market account

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital c₁ + c₂
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund
- Make payments at rate $f(w_t, M_t)$

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ

(ロ) (同) (三) (三) (三) (○) (○)

- Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund
- Make payments at rate $f(w_t, M_t)$
- Keep the rest of the portfolio value in the money market account

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ

(ロ) (同) (三) (三) (三) (○) (○)

- Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund
- Make payments at rate $f(w_t, M_t)$
- Keep the rest of the portfolio value in the money market account
- Pay out $(1 k(\theta))A_{\theta}$ at the surrender time θ

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund
- Make payments at rate $f(w_t, M_t)$
- Keep the rest of the portfolio value in the money market account
- Pay out $(1 k(\theta))A_{\theta}$ at the surrender time θ
- This will super-hedge the contract

Introduction The N	Nodel The HJB Equation	n Numerical Scheme	Hedging	Numerical Results
Hedging				

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ
- Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund
- Make payments at rate $f(w_t, M_t)$
- Keep the rest of the portfolio value in the money market account
- Pay out $(1 k(\theta))A_{\theta}$ at the surrender time θ
- This will super-hedge the contract
- It will exactly hedge the contract if (w, θ) equals the worst case strategy $(\hat{w}, \hat{\theta})$

Introduction The N	Nodel The HJB Equation	n Numerical Scheme	Hedging	Numerical Results
Hedging				

- Assume $V(0, c_1, c_1, 0) = E(c_1) = c_1 + c_2$
- Start a hedging portfolio with initial capital $c_1 + c_2$
- Observe S_t together with the actual withdrawal strategy w_t and surrender time θ
- Hold the amount $1_{\{A_t>0\}}A_tV_a(t, A_t, M_t, Z_t)$ in the mutual fund
- Make payments at rate $f(w_t, M_t)$
- · Keep the rest of the portfolio value in the money market account
- Pay out $(1 k(\theta))A_{\theta}$ at the surrender time θ
- This will super-hedge the contract
- It will exactly hedge the contract if (w, θ) equals the worst case strategy $(\hat{w}, \hat{\theta})$

Proof: Itô's formula

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

• Price is increasing in σ

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

• Price is increasing in σ ... not taken into account by insurance companies

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

• Price is increasing in σ ... not taken into account by insurance companies

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Price is decreasing in r

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

- Price is increasing in σ ... not taken into account by insurance companies
- Price is decreasing in *r* ... makes these products difficult to sell in a low interest rate environment

The Model

Numerical Results

Price and hedging ratio as functions of x = a/m and y = z/m

The Model

Price and hedging ratio as functions of x = a/m and y = z/m

• Price is increasing in x = a/m and decreasing in y = z/m

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The Model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Price and hedging ratio as functions of x = a/m and y = z/m

- Price is increasing in x = a/m and decreasing in y = z/m
- The hedge is always long in S_t in contrast to the hedge of a put option)

The Model

The HJB Equation

Numerical Scheme

Hedging

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Numerical Results

Worst case withdrawal and surrender

• T - t = 5 years, r = 1%, $\sigma = 18\%$, q = 0.8%, $p_1 = 0$, $p_2 = 5\%$, $k \equiv 0$

The Model

The HJB Equation

Numerical Scheme

Hedging

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Numerical Results

Worst case withdrawal and surrender

• T - t = 5 years, r = 1%, $\sigma = 18\%$, q = 0.8%, $p_1 = 0$, $p_2 = 5\%$, $k \equiv 0$

• yellow = full withdrawal (at rate βM_t)

The Model

The HJB Equation

Numerical Scheme

Hedging

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical Results

Worst case withdrawal and surrender

- T t = 5 years, r = 1%, $\sigma = 18\%$, q = 0.8%, $p_1 = 0$, $p_2 = 5\%$, $k \equiv 0$
- yellow = full withdrawal (at rate βM_t)
- light brown = intermediate withdrawal (at rate αM_t)

The Model

The HJB Equation

Numerical Scheme

Hedging

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical Results

Worst case withdrawal and surrender

- T t = 5 years, r = 1%, $\sigma = 18\%$, q = 0.8%, $p_1 = 0$, $p_2 = 5\%$, $k \equiv 0$
- yellow = full withdrawal (at rate βM_t)
- light brown = intermediate withdrawal (at rate αM_t)
- brown = no withdrawal

The Model

The HJB Equation

Numerical Scheme

Hedging

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical Results

Worst case withdrawal and surrender

- T t = 5 years, r = 1%, $\sigma = 18\%$, q = 0.8%, $p_1 = 0$, $p_2 = 5\%$, $k \equiv 0$
- yellow = full withdrawal (at rate βM_t)
- light brown = intermediate withdrawal (at rate αM_t)
- brown = no withdrawal
- black = surrender

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results
Discoura					

Set the surrender penalty function such that

 $k(t) \geq (T-t)q$

Introduction	The Model	The HJB Equation	Numerical Scheme	Hedging	Numerical Results

Thank You

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで